BAB II
TINJAUAN PUSTAKA

2.1. Pencemaran Air

Pencemaran lingkungan adalah masuknya atau dimasukkannya makhluk hidup, zat, energi dan atau berubahnya tatanan lingkungan oleh kegiatan manusia atau proses alam, sehingga kualitas lingkungan menjadi berkurang atau tidak berfungsi lagi sesuai peruntukannya (Anonim, 1997). Berdasarkan Keputusan Menteri Negara Kependudukan dan Lingkungan Hidup No.02/MENKLH/I/1988 pencemaran air adalah masuk atau dimasukkannya makhluk hidup, zat dan atau komponen lain ke dalam air dan atau berubahnya komposisi air oleh kegiatan manusia atau proses alam, sehingga kualitas air turun sampai ke tingkat tertentu yang menyebabkan air menjadi kurang atau tidak dapat berfungsi sesuai dengan peruntukannya.

Berdasarkan komposisinya, pencemaran dapat digolongkan menjadi dua, pencemaran organik dan pencemaran anorganik. Pencemaran organik merupakan penambahan bahan organik ke dalam suatu perairan sehingga merusak atau mengganggu segala aktivitas yang terdapat di dalamnya dan menurunkan daya guna perairan tersebut (Fardiaz, 1992). Di dalam ekosistem perairan, salah satu perubahan yang akan mempengaruhi keseimbangan tersebut adalah adanya pencemaran yang disebabkan oleh bahan – bahan organik, zat hara maupun pencemaran oleh bahan beracun yang sangat berbahaya (Sugondo, 1992).
Pencemaran organik di suatu perairan menurut Persoone dan Pauw (1978) dalam Sugondo (1992) akan menyebabkan dua kemungkinan, antara lain:

- Limbah organik, akan menekan pertumbuhan hewan makrobenthos yang sensitif, tetapi limbah organik ini merupakan makanan bagi jenis – jenis yang dominan.

- Hasil dekomposisi dari limbah organik dalam jumlah besar akan menekan pertumbuhan hewan makrobenthos, baik yang sensitif atau yang toleran. Namun dengan adanya pemulihan secara alamiah (self purification) dari perairan tersebut jenis – jenis yang toleran dalam waktu yang relatif singkat dapat pulih kembali.

Salah satu cara untuk mengetahui adanya pencemaran organik di suatu perairan, menurut Lee et. al. (1978) adalah dilihat dari nilai DO, BOD dan H⁺ atau Indeks Keanekaragamannya. Klasifikasi derajat pencemaran dapat dilihat pada tabel berikut:

Tabel 1. Klasifikasi derajat pencemaran (Lee, et. al., 1978)

<table>
<thead>
<tr>
<th>Derajat pencemaran</th>
<th>(H^+)</th>
<th>DO (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidak tercemar</td>
<td>> 2,0</td>
<td>> 6,5</td>
</tr>
<tr>
<td>Tercemar ringan</td>
<td>1,6 – 2,0</td>
<td>4,5 – 6,5</td>
</tr>
<tr>
<td>Tercemar sedang</td>
<td>1,0 – 1,5</td>
<td>2,0 – 4,4</td>
</tr>
<tr>
<td>Tercemar berat</td>
<td>< 1,0</td>
<td>< 2,0</td>
</tr>
</tbody>
</table>

Pencemaran anorganik dapat diartikan sebagai penambahan bahan anorganik ke dalam suatu perairan sehingga merusak atau mengganggu segala
aktivitas yang terdapat di dalamnya dan menurunkan daya guna perairan tersebut (Fardiaz, 1992).

2.2. Faktor – faktor Fisika Kimia Perairan Sungai

Suatu daerah aliran sungai yang sering disingkat DAS adalah suatu daerah atau wilayah yang kemiringan lerengnya bervariasi serta dibatasi oleh bukit – bukit atau gunung yang dapat menampung seluruh curah hujan sepanjang tahun dimana air terkumpul di sungai utama yang dialirkan terus ke laut, sehingga merupakan suatu ekosistem kesatuan wilayah tata air (Sarief, 1988).

Sungai tersebut menerima air dari mata air dan dari curah hujan yang jatuh disekitar sungai. Sungai pada dasarnya terletak lebih rendah dari sekitarnya, sehingga air hujan akan mengalir ke arah sungai tersebut (Amsyari, 1986).

Adapun faktor - faktor fisika dan kimia yang berpengaruh terhadap ekosistem perairan antara lain:

2.2.1. Arus

Kecepatan arus sungai ditentukan oleh kecuraman sungai yang disebabkan oleh tinggi rendahnya dasar sungai, halus kasarnya dasar sungai serta kedalaman sungai. Dengan adannya arus maka kandungan oksigen terlarut pada berbagai tempat di sungai relatif hampir sama (Odum, 1993).

Arus di dalam perairan sungai akan dapat menimbulkan kekeruhan air, sehingga secara tidak langsung akan mempengaruhi penetrasi cahaya yang masuk ke dalam suatu perairan. Selain itu arus juga dapat mempengaruhi keadaan substrat dasar perairan sungai yang merupakan salah satu faktor yang sangat

2.2.2. Suhu

Setiap species atau kelompok species mempunyai suhu optimal, dalam batas — batas terkendali dan mengijinkan setiap kenaikan suhu 10 °C akan menaikkan derajat metabolisme dua sampai tiga kali lebih besar (Kaswadi, 1976).

2.2.3. Kedalaman

Perairan yang dangkal dengan kecepatan arus tinggi menyebabkan dasar perairan tampak bersih dari pasir maupun material lain, biasanya dihuni oleh organisme yang mampu melekat pada substrat. Sedangkan pada perairan dalam, dimana kecepatan arus relatif kecil maka pasir dan material lain dapat mengendap sehingga dasar perairan tersebut manjadi lunak. Dasar perairan yang lunak cocok untuk organisme yang membuat lubang (Odum, 1993).

2.2.4. Substrat Dasar

2.2.5. Oksigen Terlarut (DO)

Sumber utama oksigen terlarut adalah berasal dari atmosfer dan proses fotosintesis tumbuhan hijau. Oksigen dari udara diserap dengan difusi langsung atau agitasi permukaan air oleh angin atau arus. Penyebab oksigen hilang dari air di alam disebabkan oleh adanya respirasi oleh biota, penguraian bahan organik, aliran masuk air bawah tanah yang miskin oksigen, adanya mineral besi, dan tingginya suhu (Michael, 1994).

2.2.6. Biological Oxigen Demand (BOD)

2.2.7. Derajat Keasaman (pH)

Derajat keasaman atau pH merupakan salah satu faktor pembatas bagi kehidupan organisme. Masing – masing jenis organisme mempunyai toleransi yang berbeda, tergantung pada tingkat kejenuhan oksigen terlarut, alkalinitas, jenis organisme dan konsentrasi ion – ion (Hawkes, 1975).

Banyak bahan buangan dari industri yang bersifat asam atau basa, tetapi dengan adanya zat – zat lain menyebabkan sukar diduga pengaruh pH terhadap komunitas sungai. Parameter ini sangat penting dalam mempengaruhi toksisitas
racun, tetapi pada kisaran pH antara 5 – 9 kemungkinan sedikit berpengaruh langsung (Hawkes, 1975).

2.2.8. Salinitas

2.3. Populasi Hewan Makrobenthos

2.3.1. Hewan Makrobenthos

Benthos adalah organisme air yang hidup dan tinggal di endapan dasar perairan, baik yang ada di atas maupun di bawah permukaan sedimen. Selain itu benthos juga merupakan organisme dasar perairan yang mempunyai habitat relatif

Menurut Hutabarat dan Evans (1984), dilihat secara ekologis hewan benthos di dalam suatu perairan dapat dibedakan menjadi dua kelompok besar, yaitu :

1. Menurut habitatnya :
 - Epifauna, hewan benthos yang sedang atau dalam berasosiasi dengan permukaan dasar perairan baik yang merayap, melekat atau merangkak.
 - Infauna, hewan benthos yang hidup di substrat lunak dengan membenamkan diri atau membuat lubang pada dasar perairan.

2. Menurut ukurannya :
 - Mikrobenthos, yang memiliki ukuran < 0,1 mm.
 - Meiobenthos, yang memiliki ukuran 0,1 – 1 mm.
 - Makrobenthos, yang memiliki ukuran > 1 mm.

Taksa terpenting yang termasuk di dalam hewan makrobenthos adalah Insecta, Mollusca dan Annelida. Taksa – taksa tersebut mempunyai fungsi yang sangat penting di dalam komunitas perairan, karena sebagian dari mereka menempati tingkatan tropik kedua dan ketiga. Sebagian dari yang lain mempunyai
peranan yang penting di dalam proses mineralisasi dan pendaurulangan bahan – bahan organik yang berasal dari perairan atau daratan (Nybakkenn, 1992).

2.3.2. Kelimpahan, Keanekaragaman dan Pemerataan Jenis

Komposisi jenis dalam komunitas dapat dihitung dengan menggunakan rumus sebagai berikut:

\[
D_i = \frac{n_i}{N} \times 100\%
\]

dimana:

\(D_i\) = Indeks kelimpahan relatif dari jenis ke – i

\(n_i\) = Jumlah individu jenis ke – i

\(N\) = Jumlah total individu seluruh jenis

- $D_i \geq 5\%$, menggambarkan jenis yang dominan
- $D_i = 2 - 5\%$, menggambarkan jenis sub dominan
- $D_i = 0 - 2\%$, menggambarkan jenis yang tidak dominan.

Keanekaragaman merupakan jumlah species dalam daerah tertentu, sedangkan indeks keanekaragaman merupakan jumlah species diantara jumlah total individu dari seluruh species yang ada. Jumlah species dalam suatu komunitas sangat penting dari segi ekologi karena keanekaragaman species bertambah bila komunitas menjadi makin stabil, dan sebaliknya akan semakin berkurang apabila komunitas tidak stabil. Komunitas yang mengalami situasi lingkungan yang tidak menguntungkan dimana kondisi fisik terus – menerus menurun, kadangkala atau secara berkala, cenderung terdiri atas sejumlah kecil species yang melimpah. Dalam lingkungan yang menyenangkan jumlah speciesnya besar, namun tidak ada satupun yang melimpah (Michael, 1994).

Keanekaragaman jenis dalam suatu komunitas dapat dihitung menggunakan indeks keanekaragaman Shannon – Wiener (Krebs, 1989), indeks ini akan menggambarkan kestabilan atau kemantapan suatu ekosistem dalam suatu perairan. Semakin tinggi angka indeksnya maka kestabilannya juga akan tinggi, dan sebaliknya apabila angka indeksnya rendah maka kestabilannya juga akan rendah, dapat dihitung menggunakan rumus:

$$H' = - \Sigma [(ni/N) \ln (ni/N)]$$

dimana:

H' = Indeks keanekaragaman
\[N = \text{Jumlah total individu seluruh jenis} \]
\[n_i = \text{Jumlah individu jenis ke} - i \]
\[\ln = \text{Logaritma bilangan dasar} \]

Pemerataan atau penyebaran jenis dalam komunitas dapat dihitung dengan indeks keseragaman (Evenness Indeks). Nilai e merupakan nilai yang tidak bersatuan dan besarnya berkisar antara 0,0 – 1,0. Semakin kecil nilai e maka akan semakin kurang merata penyebaran populasi dalam suatu komunitas. Artinya semakin tidak merata penyebaran jumlah individu tiap jenis atau dapat dikatakan komunitas tersebut didominasi oleh jenis – jenis tertentu. Sebaliknya semakin besar nilai e, berarti jumlah individu setiap jenis semakin mendekati kesamaan (Krebs, 1989).

Indeks pemerataan jenis dapat dihitung dengan rumus berikut:

\[
e = \frac{H'}{\ln S}
\]

dimana:

\[e = \text{Indeks pemerataan jenis} \]
\[H' = \text{Indeks keanekaragaman} \]
\[S = \text{Jumlah jenis} \]

2.3.3. Hewan Makrobenthos sebagai Bioindikator

terjadi pencemaran air atau perubahan kualitas air maka hewan makrobenthos akan sulit untuk menghindarkan diri. Hal tersebut berpengaruh terhadap komposisi, kelimpahan dan keanekaragaman jenisnya.

Lebih lanjut Hellawel (1977) mengungkapkan bahwa apabila ada tekanan dari lingkungan, misalnya terjadi peningkatan bahan organik di perairan, maka akan dengan cepat terlihat adanya dua hal yang saling berhubungan pada hewan makrobenthos, yaitu:

1. Berkurangnya keragaman komunitas makrobenthos yang menyukai air bersih, yang pada awalnya terdapat banyak species dengan jumlah individu relatif sedikit. Adanya polusi tersebut, maka hewan makrobenthos menjadi stress atau tertekan, sehingga species tertentu menjadi sedikit tetapi jumlah individu masing-masing species melimpah.

2. Semakin berkurangnya species tertentu sebagai indikator sehingga hanya tinggal sedikit species yang tersisa dan tempat mereka digantikan oleh species yang sebelumnya tidak ada atau sedikit jumlahnya atau keberadaannya tidak melimpah (species opportunitik).

Pemanfaatan hewan makrobenthos sebagai indikator pencemaran lebih mudah diterapkan karena analisa identifikasinya jauh lebih mudah dibandingkan organisme mikroskopis (Wilhm, 1975).