BAB III
METODOLOGI PENELITIAN

3.1. Waktu dan Tempat

3.2. Cara Kerja

3.2.1. Penentuan Lokasi Penelitian

Lokasi penelitian ditentukan berdasarkan kondisi habitat di kawasan Hutan Wisata Penggaron, Ungaran, sehingga ditetapkan 3 stasiun, yaitu :

- Stasiun I : Lahan pertanian, yaitu lahan yang telah diolah oleh manusia.
- Stasiun II : Areal perkemahan, yaitu areal yang sering digunakan untuk aktivitas berkemah.
- Stasiun III : Hutan campuran, yaitu ekosistem yang belum terganggu (terkena dampak aktivitas manusia).

3.2.2. Pengambilan Sampel Tanah

Titik sampling ditentukan dengan menarik garis transek sepanjang 10 m. Setiap jarak 2 m pada garis transek diambil sebanyak 3 titik sampling pada
masing-masing stasiun secara acak. Sampel tanah diambil dengan menggunakan
bor tanah berdiameter 8,5 cm dan kedalaman 10 cm. Sampel yang didapat
kemudian dimasukkan ke dalam kantong sampel yang terbuat dari kain katun
hitam yang diberi label.

3.2.3. Pengukuran Faktor Abiotik Lingkungan

Suhu udara diukur dengan menggunakan termometer udara, suhu tanah
dengan menggunakan termometer tanah, kelembaban udara relatif dengan
menggunakan higrometer, pH tanah dengan menggunakan pH meter tanah pada
masing-masing stasiun. Masing-masing pengukuran dilakukan tiga kali
pengulangan.

Dalam pengukuran kadar organik tanah diasumsikan bahwa semua bahan
organik akan volatil jika dibakar pada suhu 600° C selama 3 jam. Selisih berat
antara sebelum dan sesudah pembakaran dianggap sebagai kandungan bahan
organik yang hilang. Langkah-langkah yang dilakukan adalah sebagai berikut :

10 gram sampel tanah diambil, kemudian dihaluskan dengan bantuan mortir dan
dimasukkan ke dalam cawan porselein. Bahan tersebut dimasukkan ke dalam oven
untuk dikeringkan pada suhu 120° C selama 6 hari, sehingga beratnya konstan.
Tanah yang telah kering bebas air tersebut diambil 5 gram, kemudian dibakar di
dalam tungku pembakar (“furnace muffle”) pada suhu 600° C selama 3 jam
sehingga semua materi organik terbakar. Penimbangan kembali dilakukan
terhadap bahan tersebut. Selanjutnya selisih berat antara sebelum dan sesudah
pembakaran dihitung. Kemudian kadar total organik tanah dihitung dengan menggunakan rumus sebagai berikut (Adianto, 1993):

\[
\frac{berat\ awal - berat\ sisa\ pembakaran}{berat\ awal} \times 100\%
\]

3.24. Penyortiran Mikroartropoda Tanah
3.2.4.1. Metode Corong Barlese Tullgren

Gambar. 3.1. Alat corong Barlese Tullgren modifikasi
3.2.4.2. Metode Pengapungan

3.2.5. Pengamatan dan Identifikasi Mikroartropoda tanah

Pengamatan mikroartropoda tanah yang diperoleh menggunakan mikroskop binokuler, selanjutnya diidentifikasi menggunakan kunci identifikasi maupun mencocokkan dengan gambar pustaka yang ada. Identifikasi dilakukan sampai tingkat ordo (Addison, dkk, 1998; Vu, 2000; Lachnicht, dkk., 2002).
Setelah diidentifikasi, diawetkan dalam larutan alkohol 70%. Pustaka acuan yang
digunakan dalam identifikasi adalah sebagai berikut : Linquist dan Evan (1965); Brown (1980); Subyanto dan Sulton (1991); Borror, dkk (1992); Suin (1997).

3.3. Parameter Penelitian

3.3.1. Parameter Utama
1. Kemelimpahan mikroartropoda tanah
2. Kadar organik tanah

3.3.2. Parameter Pendukung
1. pH tanah
2. Suhu tanah
3. Kelembaban tanah
4. Kelembaban udara relatif
5. Suhu udara
6. Struktur tanah

3.4. Analisa Data
1. Indeks Keanekaragaman Jenis Shannon – Wiener (Odum, 1996) :

 \[H' = - \sum_{i} \frac{n_i}{N} \ln \frac{n_i}{N} \]

 Keterangan :
 \[H' \] = indeks keanekaragaman Shannon - Wiener
 \[n_i \] = jumlah individu ordo ke-\(i\)
 \[N \] = jumlah total individu
 \[\ln \] = logaritma normal

This document is Undip Institutional Repository Collection. The author(s) or copyright owner(s) agree that UNDIP-IR may, without changing the content, translate the submission to any medium or format for the purpose of preservation. The author(s) or copyright owner(s) also agree that UNDIP-IR may keep more than one copy of this submission for purposes of security, back-up and preservation. (http://eprints.undip.ac.id)
2. Indeks Kemelimpahan Relatif

\[Di = \frac{ni}{N} \times 100 \%
\]

Keterangan: \(Di \) = indeks kemelimpahan relatif
\(ni \) = jumlah individu ordo ke-\(i \)
\(N \) = jumlah total individu

3. Indeks Derajat Perubahan Keanekaragaman

Untuk mengetahui perbedaan keanekaragaman mikroartropoda tanah di habitat yang tidak terkena gangguan (dampak aktivitas manusia) dengan habitat yang telah terkena gangguan (terkena dampak aktivitas manusia), digunakan indeks derajat perubahan keanekaragaman untuk 4 kelompok takson, yaitu: Oribatida, Acarina lainnya (Acarina secara keseluruhan kecuali Oribatida), Collembola, dan Insekta lainnya (Insekta secara keseluruhan kecuali Collembola).

Indeks derajat perubahan keanekaragaman (\(\Delta V \)) menggunakan lima parameter, yaitu kemelimpahan kelompok takson (\(x \)), jumlah kelompok takson (\(S \)), jumlah unit sampel (\(n \)), indeks keanekaragaman takson (\(H'x \)), indeks keanekaragaman cenotic (\(H'y \)), dengan rumus perhitungan sebagai berikut:

\[\Delta V = \left[\frac{V(x) + V(S) + V(n) + V(H'x) + V(H'y)}{K} \right] \]

dimana \(K \) adalah jumlah parameter yang digunakan, dan:

\[Vm = \left(\frac{Cm - Im}{Cm + Im} \right) \]

dimana \(Im \) adalah parameter nilai \(m \) pada ekosistem yang tidak terganggu (terkena dampak aktivitas manusia); dan \(Cm \) adalah parameter nilai \(m \) pada ekosistem
yang diduga telah terganggu (terkena dampak aktivitas manusia). Vm memiliki nilai berkisar antara –1 hingga +1. Jika Cm = Im, maka tidak ada perbedaan keanekaragaman antara dua ekosistem. Jika Cm < Im, maka perbedaan keanekaragaman antara dua ekosistem adalah negatif. Apabila nilai Cm > Im, maka perbedaan keanekaragaman antara dua ekosistem adalah positif (Cancela, 1996).

4. Analisa Regresi Linier Ganda

Analisa regresi linier berganda dilakukan untuk melihat hubungan antara kemelimpahan mikroartropoda tanah yang ditemukan dengan faktor-faktor abiotik lingkungan yang terukur.

Bentuk hubungan tersebut dinyatakan sebagai berikut:

\[Y = \alpha + \beta_1 X_1 + \ldots + \beta_5 X_5 \]

Keterangan:
\[Y \] = variabel tidak bebas (kemelimpahan mikroartropoda tanah)
\[\alpha \] = intersep
\[\beta_i \] = koefisien regresi
\[X_i \] = faktor-faktor abiotik lingkungan yang terukur

Adapun derajat hubungan variabel – variabel dalam persamaan regresi tersebut di atas dinyatakan sebagai r (koefisien korelasi). Nilai r memiliki kriteria hubungan sebagai berikut (Djarwanto, 1998):

- \(0 < |r| < 0,20 \); tidak ada korelasi
- \(0,20 < |r| < 0,40 \); korelasi lemah
- \(0,40 < |r| < 0,70 \); korelasi sedang
- \(0,70 < |r| < 1,00 \); korelasi kuat