BAB IV
HASIL DAN PEMBAHASAN

4.1 Komposisi, Kemelimpahan, dan Keanekaragaman Jenis

mendominasi pada periode empat mingguan. Hal ini menunjukkan adanya pola pertumbuhan zooplankton selama empat mingguan.

Pada stasiun II (Gb. 2.2) minggu I dan II di dominasi oleh Tintinnida dengan kemelimpahan relatif 92,09 % pada minggu I dan 90,48 % pada minggu II. Ordo Tintinnida sebagian besar hidup dilaut, bentuknya kecil seperti tube dan berdinding dari Chitine (Sahlan, 1982). Melimpahnya Tintinnida di stasiun II yang merupakan perairan tawar dimungkinkan adanya air pasang pada saat itu sehingga zooplankton laut masuk ke perairan tawar, Tintinnida mampu beradaptasi dengan perubahan salinitas yang ada karena memiliki struktur dan fungsi organ yang tahan terhadap perubahan tekanan osmotik dalam jaringan tubuhnya, sehingga dapat tumbuh dan mendominasi pada stasiun II. Adanya dominansi dari Tintinnida menyebabkan zooplankton yang lain mengalami penurunan.

Pada minggu III dan IV di dominasi sepenuhnya oleh Cerripedia dengan kemelimpahan relatif sebesar 100 %. Kemelimpahan Cerripedia pada minggu III dan IV disebabkan pola pertumbuhan dari Cerripedia yang cenderung memanfaatkan kesempatan yang ada, dalam artian pada saat kondisi lingkungan mendukung maka Cerripedia akan berkembang sebanyak – banyaknya dan berangsur – angsur turun (Suwono, 1993). Hal ini diperkuat dengan data parameter fisik kimia yang menunjukkan tidak adanya perubahan yang mencolok.

Pada minggu V Cerripedia memiliki kemelimpahan relatif sebesar 33,33 % berada di bawah Copepoda dengan kemelimpahan relatif sebesar 66,66 %.
Pada stasiun III (Gb. 2.3) dijumpai Tintinnida yang hadir tiap empat minggu yaitu pada minggu I Tintinnida memiliki kemelimpahan relatif sebesar 75 %, minggu III sebesar 40 % dan minggu V 16,67 %. Munculnya Tintinnida dengan periode empat mingguan ini menunjukkan adanya pola pertumbuhan dari Tintinnida tersebut. Pada minggu IV terdapat dominasi dari jenis Copepoda, dengan adanya dominansi dari Copepoda menyebabkan menurunnya kehadiran zooplankton yang lain, hal ini dibuktikan dengan kemelimpahan relatif sebesar 100%. Kondisi ini didukung dengan data parameter fisik kimia yang tidak menunjukkan perubahan. Hal ini memperlihatkan adanya pergantian komposisi seperti pada stasiun I.

Berdasarkan Gb. 2.4 pada stasiun IV memiliki komposisi yang lebih beragam dibanding stasiun – stasiun yang lain. Hal ini terlihat pada minggu I yang terdiri dari : Branchiopoda, Cerripedia, Copepoda, Errantia, Hydoida, Floscularia, Foraminifera, Rotatoria, Sagittoidea dan Tintinnida. Pada tiap minggu di dominasi oleh Copepoda dengan kemelimpahan relatif tertinggi pada minggu IV sebesar 100 %. Hal ini menunjukkan adanya pola pertumbuhan Copepoda pada minggu IV baik pada stasiun III maupun Stasiun IV. Pada stasiun V (Gb. 2.5) komposisi jenisnya juga beragam tapi tidak terdapat dominasi oleh salah satu jenis. Tiap minggu di dominasi oleh Copepoda. Berdasarkan pie chart terlihat adanya pergantian jenis pada tiap stasiun / waktu.
Gambar 2.1 Komposisi Zooplankton di Sungai Banjir Kanal Barat pada stasiun I minggu I
Gambar 2.2 Komposisi Zooplankton di Sungai Banjir Kanal Barat pada stasiun II minggu I - V
Gambar 2.3 Komposisi Zooplankton di Sungai Banjir Kanal Barat pada stasiun III minggu I - V
Gambar 2.4 Komposisi Zooplankton di Sungai Banjir Kanal Barat pada stasiun IV minggu I - V
Gambar 2.5 Komposisi Zooplankton di Sungai Banjir Kanal Barat pada stasiun V minggu I - V
Gambar 3. Flktuasi jumlah individu/liter zooplankton di Sungai Banjir Kanal Barat Semarang pada stasiun I – V minggu I – V.

Berdasarkan Gb. 3 jumlah individu tertinggi dijumpai pada stasiun IV minggu pertama sebesar 828 individu/liter dan terendah pada stasiun II minggu keempat yaitu 18 individu/liter. Tingginya jumlah individu pada stasiun IV minggu pertama didukung dengan kondisi faktor fisika kimia yang baik. Dimana kondisi perairan tersebut berada dalam kisaran optimal bagi pertumbuhan zooplankton air laut (Suwono, 1993). Faktor fisik kimia yang terukur yaitu : salinitas sebesar 2,6%, kandungan bahan organik sebesar 25,28 mg/lit dan DO sebesar 7,1 ppm akan mempengaruhi tingginya jumlah individu. Faktor lain yang ikut berperan adalah lokasi stasiun IV yang berada di muara sungai yang merupakan perairan peralihan antara air tawar dan air laut sehingga banyak ditemukan spesies dari perairan tawar maupun perairan laut yang berada pada
perairan peralihan (muara sungai). Spesies yang melimpah pada stasiun IV antara lain: *Pseudocalanus gracilis* (26,63%), *Calanus sinicus* (20,36%), *Calanus gracilis* (16,92%), *Eurytemora herdmani* (15,81%), *Aetideus armatus* (11,27%), *Nyctiphanes couchii* (8,50%), *Acartia clausi* (7,36%). Pada stasiun IV dijumpai *Calanus gracilis* dalam jumlah yang melimpah pada minggu I dan II yaitu sebesar 117 individu/liter yang tidak dijumpai kehadirannya pada stasiun – stasiun sebelumnya, didukung dengan kandungan salinitas sebesar 2,6 % hal ini menunjukkan *Calanus gracilis* sebagai zooplankton air laut (Sahlan, 1982).

Rendahnya jumlah individu pada stasiun II minggu keempat selain karena kecepatan arusnya yang cukup kecil yaitu 0,03 m/dtk dapat juga disebabkan adanya kondisi lingkungan khususnya salinitas yang selalu berubah – ubah setiap waktunya sesuai dengan data parameter fisik kimia yang ada.

Variasi terkecil jumlah individu/liter terdapat pada stasiun III dengan jumlah individu tertinggi pada minggu II dan IV sebesar 108 individu/liter dan jumlah individu terendah pada minggu IV yaitu 36 individu/liter. Kecilnya variasi pada stasiun III yang berlokasi di sekitar pompa Tanah Mas dimungkinkan karena adanya masukan limbah dari perumahan Tanah Mas dan sekitarnya.

Jumlah individu/liter minggu I pada tiap stasiun memiliki kecenderungan jumlah individu yang lebih tinggi dibanding dengan minggu IV dan V yang cenderung lebih rendah. Hal ini didukung dengan kondisi faktor fisik kimia yang cukup baik seperti yang tampak pada Tabel 1. Data parameter fisik kimia lingkungan pada stasiun I – V minggu I – V.
Tabel 1. Data Parameter Fisik Kimia stasiun I - V minggu I - V

STASIUN I

<table>
<thead>
<tr>
<th>NO</th>
<th>PARAMETER</th>
<th>MINGGU I</th>
<th>MINGGU II</th>
<th>MINGGU III</th>
<th>MINGGU IV</th>
<th>MINGGU V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 Mei 02</td>
<td>18 Mei 02</td>
<td>1 Juni 02</td>
<td>14 Juni 02</td>
<td>29 Juni 02</td>
</tr>
<tr>
<td>1</td>
<td>Waktu pengambilan</td>
<td>06.45</td>
<td>06.10</td>
<td>06.30</td>
<td>06.30</td>
<td>06.00</td>
</tr>
<tr>
<td>2</td>
<td>Kecepatan arus (m/dtk)</td>
<td>0.33</td>
<td>0.34</td>
<td>0.17</td>
<td>0.18</td>
<td>0.15</td>
</tr>
<tr>
<td>3</td>
<td>Salinitas (%)</td>
<td>0</td>
<td>0.16</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
</tr>
<tr>
<td>4</td>
<td>Suhu (ºC)</td>
<td>26</td>
<td>28</td>
<td>24</td>
<td>24</td>
<td>23.5</td>
</tr>
<tr>
<td>5</td>
<td>pH</td>
<td>6.73</td>
<td>6.74</td>
<td>6.76</td>
<td>7.1</td>
<td>6.92</td>
</tr>
<tr>
<td>6</td>
<td>DO (mg/l)</td>
<td>4</td>
<td>4.43</td>
<td>3.3</td>
<td>6.2</td>
<td>6.00</td>
</tr>
<tr>
<td>7</td>
<td>BOD (mg/l)</td>
<td>2.2</td>
<td>1.9</td>
<td>2.32</td>
<td>1.28</td>
<td>4.25</td>
</tr>
<tr>
<td>8</td>
<td>Kedalaman (cm)</td>
<td>30.7</td>
<td>33</td>
<td>33.8</td>
<td>33.8</td>
<td>33.55</td>
</tr>
<tr>
<td>9</td>
<td>Bahan organik (mg/l)</td>
<td>4.105</td>
<td>4.045</td>
<td>4.704</td>
<td>6.573</td>
<td>6.144</td>
</tr>
<tr>
<td>10</td>
<td>Kelembaban rata - rata (%)</td>
<td>68</td>
<td>68</td>
<td>77</td>
<td>75</td>
<td>65</td>
</tr>
</tbody>
</table>

STASIUN II

<table>
<thead>
<tr>
<th>NO</th>
<th>PARAMETER</th>
<th>MINGGU I</th>
<th>MINGGU II</th>
<th>MINGGU III</th>
<th>MINGGU IV</th>
<th>MINGGU V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 Mei 02</td>
<td>18 Mei 02</td>
<td>1 Juni 02</td>
<td>14 Juni 02</td>
<td>29 Juni 02</td>
</tr>
<tr>
<td>1</td>
<td>Waktu pengambilan</td>
<td>07.40</td>
<td>07.00</td>
<td>07.15</td>
<td>07.20</td>
<td>07.00</td>
</tr>
<tr>
<td>2</td>
<td>Kecepatan arus (m/dtk)</td>
<td>0.15</td>
<td>0.1</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>Salinitas (%)</td>
<td>0.1</td>
<td>0.18</td>
<td>0</td>
<td>0.05</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>Suhu (ºC)</td>
<td>28</td>
<td>25</td>
<td>24</td>
<td>26.3</td>
<td>23.7</td>
</tr>
<tr>
<td>5</td>
<td>pH</td>
<td>6.8</td>
<td>6.88</td>
<td>6.5</td>
<td>6.51</td>
<td>6.8</td>
</tr>
<tr>
<td>6</td>
<td>DO (mg/l)</td>
<td>6.5</td>
<td>6.1</td>
<td>6.5</td>
<td>5.7</td>
<td>6.90</td>
</tr>
<tr>
<td>7</td>
<td>BOD (mg/l)</td>
<td>4</td>
<td>4.3</td>
<td>4.953</td>
<td>2.215</td>
<td>3.684</td>
</tr>
<tr>
<td>8</td>
<td>Kedalaman (cm)</td>
<td>42.32</td>
<td>40.5</td>
<td>40.32</td>
<td>40</td>
<td>40.32</td>
</tr>
<tr>
<td>9</td>
<td>Bahan organik (mg/l)</td>
<td>6.32</td>
<td>8.216</td>
<td>9.406</td>
<td>8.974</td>
<td>40.7</td>
</tr>
<tr>
<td>10</td>
<td>Kelembaban rata - rata (%)</td>
<td>68</td>
<td>68</td>
<td>77</td>
<td>75</td>
<td>65</td>
</tr>
</tbody>
</table>

STASIUN III

<table>
<thead>
<tr>
<th>NO</th>
<th>PARAMETER</th>
<th>MINGGU I</th>
<th>MINGGU II</th>
<th>MINGGU III</th>
<th>MINGGU IV</th>
<th>MINGGU V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 Mei 02</td>
<td>18 Mei 02</td>
<td>1 Juni 02</td>
<td>14 Juni 02</td>
<td>29 Juni 02</td>
</tr>
<tr>
<td>1</td>
<td>Waktu pengambilan</td>
<td>08.10</td>
<td>08.05</td>
<td>08.00</td>
<td>08.15</td>
<td>08.10</td>
</tr>
<tr>
<td>2</td>
<td>Kecepatan arus (m/dtk)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.12</td>
<td>0.11</td>
<td>0.065</td>
</tr>
<tr>
<td>3</td>
<td>Salinitas (%)</td>
<td>0.2</td>
<td>0.43</td>
<td>0.13</td>
<td>0.2</td>
<td>0.86</td>
</tr>
<tr>
<td>4</td>
<td>Suhu (ºC)</td>
<td>27</td>
<td>26</td>
<td>24</td>
<td>26</td>
<td>23.3</td>
</tr>
<tr>
<td>5</td>
<td>pH</td>
<td>6.66</td>
<td>6.77</td>
<td>6.60</td>
<td>6.5</td>
<td>6.8</td>
</tr>
<tr>
<td>6</td>
<td>DO (mg/l)</td>
<td>6.2</td>
<td>6.13</td>
<td>7.2</td>
<td>5.4</td>
<td>6.70</td>
</tr>
<tr>
<td>7</td>
<td>BOD (mg/l)</td>
<td>5.1</td>
<td>5.1</td>
<td>5.339</td>
<td>1.572</td>
<td>1.329</td>
</tr>
<tr>
<td>8</td>
<td>Kedalaman (cm)</td>
<td>45.00</td>
<td>48.33</td>
<td>44.29</td>
<td>46.90</td>
<td>51.7</td>
</tr>
<tr>
<td>9</td>
<td>Bahan organik (mg/l)</td>
<td>12.39</td>
<td>7.584</td>
<td>3.763</td>
<td>22.49</td>
<td>53.76</td>
</tr>
<tr>
<td>10</td>
<td>Kelembaban rata - rata (%)</td>
<td>68</td>
<td>68</td>
<td>77</td>
<td>75</td>
<td>65</td>
</tr>
</tbody>
</table>

STASIUN IV

<table>
<thead>
<tr>
<th>NO</th>
<th>PARAMETER</th>
<th>MINGGU I</th>
<th>MINGGU II</th>
<th>MINGGU III</th>
<th>MINGGU IV</th>
<th>MINGGU V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 Mei 02</td>
<td>18 Mei 02</td>
<td>1 Juni 02</td>
<td>14 Juni 02</td>
<td>29 Juni 02</td>
</tr>
<tr>
<td>1</td>
<td>Waktu pengambilan</td>
<td>08.45</td>
<td>08.10</td>
<td>08.50</td>
<td>09.05</td>
<td>08.45</td>
</tr>
<tr>
<td>2</td>
<td>Kecepatan arus (m/dtk)</td>
<td>0.025</td>
<td>0.014</td>
<td>0.19</td>
<td>0.067</td>
<td>0.070</td>
</tr>
<tr>
<td>3</td>
<td>Salinitas (%)</td>
<td>2.6</td>
<td>1.46</td>
<td>2.3</td>
<td>2.9</td>
<td>2.93</td>
</tr>
<tr>
<td>4</td>
<td>Suhu (ºC)</td>
<td>30</td>
<td>26</td>
<td>26</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>pH</td>
<td>6.72</td>
<td>7.12</td>
<td>7.05</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>6</td>
<td>DO (mg/l)</td>
<td>7.1</td>
<td>7.53</td>
<td>8</td>
<td>5.2</td>
<td>7.20</td>
</tr>
<tr>
<td>7</td>
<td>BOD (mg/l)</td>
<td>5.0</td>
<td>4.8</td>
<td>4.413</td>
<td>1.499</td>
<td>6.972</td>
</tr>
<tr>
<td>8</td>
<td>Kedalaman (cm)</td>
<td>42.90</td>
<td>43.27</td>
<td>42.82</td>
<td>40.20</td>
<td>45.60</td>
</tr>
<tr>
<td>9</td>
<td>Bahan organik (mg/l)</td>
<td>25.28</td>
<td>20.22</td>
<td>54.58</td>
<td>10.11</td>
<td>54.14</td>
</tr>
<tr>
<td>10</td>
<td>Kelembaban rata - rata (%)</td>
<td>68</td>
<td>68</td>
<td>77</td>
<td>75</td>
<td>65</td>
</tr>
</tbody>
</table>

STASIUN V

<table>
<thead>
<tr>
<th>NO</th>
<th>PARAMETER</th>
<th>MINGGU I</th>
<th>MINGGU II</th>
<th>MINGGU III</th>
<th>MINGGU IV</th>
<th>MINGGU V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 Mei 02</td>
<td>18 Mei 02</td>
<td>1 Juni 02</td>
<td>14 Juni 02</td>
<td>29 Juni 02</td>
</tr>
<tr>
<td>1</td>
<td>Waktu pengambilan</td>
<td>09.15</td>
<td>10.00</td>
<td>09.45</td>
<td>09.30</td>
<td>09.05</td>
</tr>
<tr>
<td>2</td>
<td>Kecepatan arus (m/dtk)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.1</td>
<td>0.062</td>
<td>0.066</td>
</tr>
<tr>
<td>3</td>
<td>Salinitas (%)</td>
<td>2.8</td>
<td>3.1</td>
<td>3</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>Suhu (ºC)</td>
<td>30</td>
<td>28</td>
<td>27</td>
<td>27.3</td>
<td>26.5</td>
</tr>
<tr>
<td>5</td>
<td>pH</td>
<td>7.23</td>
<td>7.42</td>
<td>7.27</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>6</td>
<td>DO (mg/l)</td>
<td>7.6</td>
<td>7</td>
<td>8.7</td>
<td>5.7</td>
<td>7.70</td>
</tr>
<tr>
<td>7</td>
<td>BOD (mg/l)</td>
<td>4.6</td>
<td>4.2</td>
<td>5.43</td>
<td>5.141</td>
<td>6.87</td>
</tr>
<tr>
<td>8</td>
<td>Kedalaman (cm)</td>
<td>78.30</td>
<td>87.90</td>
<td>89.00</td>
<td>80.30</td>
<td>54.88</td>
</tr>
<tr>
<td>9</td>
<td>Bahan organik (mg/l)</td>
<td>24.27</td>
<td>23.00</td>
<td>54.09</td>
<td>26.29</td>
<td>54.46</td>
</tr>
<tr>
<td>10</td>
<td>Kelembaban rata - rata (%)</td>
<td>68</td>
<td>68</td>
<td>77</td>
<td>75</td>
<td>65</td>
</tr>
</tbody>
</table>
Dengan kondisi perairan yang stabil lebih mendukung pertumbuhan dari zooplankton. Berbeda dengan kondisi pada minggu IV dan V, dengan kandungan bahan organik yang lebih tinggi di banding minggu – minggu sebelumnya mempengaruhi populasi zooplankton. Hal ini disebabkan tingginya kandungan bahan organik yang berkisar 6,14 - 54,46 mg menyebabkan besarnya kebutuhan oksigen di perairan, sehingga oksigen akan cepat berkurang (Nybakken, 1992). Hal ini terbukti dengan kandungan oksigen terlarut (DO) pada minggu IV lebih rendah dibanding minggu – minggu sebelumnya dengan kisaran sebesar 5,2 – 6,2 mg/Lt. Nilai indeks keanekaragaman (H') 0,00 – 3,02 sedangkan nilai indeks pemerataan (e) berkisar antara 0,00 – 1,00.

Gambar 4. Indeks Keanekaragaman (H') zooplankton di Sungai Banjir Kanal Barat Semarang pada lima stasiun minggu I – V.
Nilai indeks keanekaragaman terkecil yaitu 0.00 dijumpai pada stasiun II minggu ketiga dan keempat. Hal ini didukung dengan indeks pemerataan jenisnya yang rendah yaitu 0,00, karena terdapat dominasi oleh salah satu species yaitu *Cypris barnacle* pada minggu III dan *Littorivaga sp* pada minggu IV dengan indeks kemelimpahan relatif sebesar 100 % keduanya merupakan spesies dari ordo Cerripedia. Adapun sifat dari *Cypris barnacle* maupun *Littorivaga sp*., penyebarannya sangat tergantung pada arus dan cahaya saat berada pada fase larva (Suwono, 1993). Dengan melihat Tabel 1, data parameter fisik kimia pada stasiun II tidak dijumpai perbedaan yang sangat mencolok antar minggu.

Nilai H' terbesar yaitu 3,02 dijumpai pada stasiun V minggu I. Pada stasiun V yang merupakan perairan laut dengan salinitas antara 2,8 – 3,2 % dijumpai beberapa spesies yang dominan yaitu: *Calanopia elliptica* ditemukan pada tiap minggu dengan indeks kemelimpahan berkisar antara 5,88 – 25,00 %. Hal ini menunjukkan bahwa *Calanopia elliptica* merupakan zooplankton air laut (Sahlan, 1982). *Undinula darwini* juga memiliki jumlah yang dominan dengan kemelimpahan relatif berkisar antara 1,59 – 25,00 %.

Komposis jenis yang beragam pada stasiun V disebabkan lokasinya berada di pantai yang masih dekat dengan muara sehingga dimungkinkan adanya percampuran antara zooplankton air tawar dengan zooplankton air laut. Zooplankton air tawar yang dijumpai pada stasiun V antara lain: Branchiopoda, Rotatoria, dan Copepoda, adapun zooplankton laut antara lain: Copepoda, Floscularia, Foraminifera dan Tintinnida. Copepoda merupakan zooplankton air
tawar dan air laut. Presentase antara zooplankton air tawar (32%) lebih kecil dibanding zooplankton air laut (68%) yang dijumpai pada stasiun V.. Hal ini disebabkan hanya sedikit zooplankton air tawar yang dapat bertoleransi terhadap perubahan salinitas yang ada, salah satunya: Cathypna unguilata. Kandungan salinitas sebesar 2,8% mendukung pertumbuhan zooplankton air laut. Salinitas ini juga akan mempengaruhi struktur dan fungsi organ organisme perairan melalui perubahan tekanan osmotik jaringan tubuhnya (Zainuri, 1994). Dengan di dukung kandungan bahan organik sebesar 24,27 mg/l dan kecepatan arus yang cukup tinggi yaitu 0,25 m/dt memungkinkan zooplankton tersebar merata dalam kolom air. Disamping itu arus yang cukup tinggi memungkinkan nutrisi hasil penguraian bahan organik yang cenderung tenggelam karena berat, dapat teraduk kembali ke kolom air (Nybakken, 1992).

Pada stasiun I banyak didominasi oleh Sagittoidea dan Copepoda, stasiun II didominasi oleh Tintinnida dan Cerripedia, stasiun III didominasi oleh Copepoda dan Tintinnida sedangkan stasiun IV dan V meskipun lebih beragam dan lebih lengkap komposisi jenisnya tetapi masih didominasi oleh Copepoda. Dengan melihat Gambar 3. menunjukkan bahwa pada minggu IV dan V jumlah jenisnya lebih sedikit dibandingkan pada minggu – minggu sebelumnya (I – III). Hal ini disebabkan karena pada minggu IV dan V kandungan bahan organiknya cukup tinggi berkisar 6,1 – 54,46 mg/l. Tingginya kandungan bahan organik akan mempengaruhi besarnya kebutuhan oksigen di perairan yang nantinya akan berpengaruh terhadap zooplankton