Missense mutations at homologous positions in the fourth and fifth laminin A G-like domains of eyes shut homolog cause autosomal recessive retinitis pigmentosa

Muhammad Imran Khan,1,2 Rob W.J. Collin,2,3,4 Kentar Arimadyo,2,5 Shazia Micheal,1 Maleeha Azam,1 Nadeem Qureshi,6 Sultana M.H. Faradz,5 Anneke I. den Hollander,2,3,4 Raheel Qamar,1,7 Frans P.M. Cremers1,2,4

1Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan; 2Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 3Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 4Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 5Division of Human Genetics, Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang, Indonesia; 6Vitreoretina Services, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan; 7Shifa College of Medicine, Islamabad, Pakistan

Purpose: To describe two novel mutations in the eyes shut homolog (EYS) gene in two families with autosomal recessive retinitis pigmentosa (arRP) from Pakistan and Indonesia.

Methods: Genome-wide linkage and homozygosity mapping were performed using single nucleotide polymorphism microarray analysis in affected members of the two arRP families. Sequence analysis was performed to identify genetic changes in protein coding exons of EYS.

Results: In the Indonesian and Pakistani families, homozygous regions encompassing the EYS gene at 6q12 were identified, with maximum LOD scores of 1.8 and 3.6, respectively. Novel missense variants in the EYS gene (p.D2767Y and p.D3028Y) were found in the Pakistani and Indonesian families, respectively, that co-segregate with the disease phenotype. Interestingly, the missense variants are located at the same homologous position within the fourth and fifth laminin A G-like domains of EYS.

Conclusions: To date, mostly protein-truncating mutations have been described in EYS, while only few patients have been described with pathogenic compound heterozygous missense mutations. The mutations p.D2767Y and p.D3028Y described in this study affect highly conserved residues at homologous positions in laminin A G-like domains and support the notion that missense mutations in EYS can cause arRP.

Received 2 July 2010 | Accepted 9 December 2010 | Published 15 December 2010