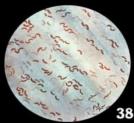
FISH AND FISHERY PRODUCTS MICROBIOLOGY - 3 (2 - 1)

PATHOGEN BACTERIA IN FISH


EKO SUSANTO

Study Program of Fisheries Processing Technology
Faculty of Fisheries and Marine Science, Diponegoro University
Email: eko_thp@undip.ac.id

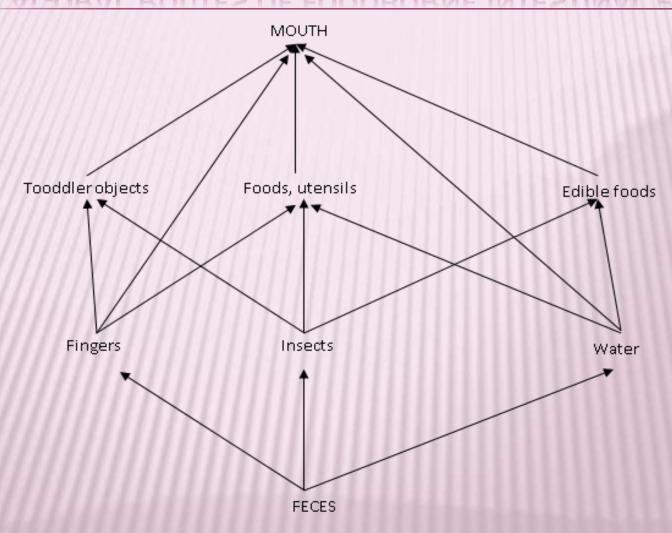
REFERENCES:

- * Huss, H.H. 1994. Assurance of seafood quality. FAO fisheries technical paper
- Banwart, G.J. 1989. Basic Food Microbiology 2nd Ed. Van Nostrand Reinhold. New York: UK
- * Garbutt, J., 1997 Essential of Food Microbiology. London. UK.
- Foshyte and Hayes. 1998. Food Hygiene, Microbiology and HACCP. ASPEN Publication: UK.
- ➤ Jay, J.M. 2000. Modern Food Microbiology. Aspen Publisher. Maryland: USA.
- * Arias, C. 2009. Chilled and frozen raw fish. Microbiology handook fish and seafood Edited by: Rhea Fernandes. Leather publishing: Surrey UK. Pp: 1-25.
- Derrick, S. 2009. Chilled and prepared fish products. Microbiology handook fish and seafood Edited by: Rhea Fernandes. Leather publishing: Surrey UK. Pp. 27-51.
- ➤ Derrick, S. 2009. Chilled and prepared fish products. Microbiology handook fish and seafood Edited by: Rhea Fernandes. Leather publishing: Surrey UK. Pp. 27-51.
- * Abeyta, C. 2009. Molluscans shellfish. Microbiology handook fish and seafood Edited by: Rhea Fernandes. Leather publishing: Surrey UK. Pp: 53-77.

REFERENCES (CONTINUED):

- Nicollaides, L. 2009. Crustaceans shellfish. Microbiology handook fish and seafood Edited by: Rhea Fernandes. Leather publishing: Surrey UK. Pp: 93-123.
- Nicollaides, L. 2009. Crustaceans shellfish. Microbiology handook fish and seafood Edited by: Rhea Fernandes. Leather publishing: Surrey UK. Pp: 93-123.
- * Adams, M. 2009. Fermented fish. Microbiology handook fish and seafood Edited by: Rhea Fernandes. Leather publishing: Surrey UK. Pp: 125-140.
- Nilsson, L. and Gram, L. . 2002. Improving the control of pathogens in fish products. Edited by: Bremmer, A.H. Safety and quality issues in fish processing. CRC Press. Boca Raton.
- Richard Lawley, Laurie Curtis & Judy Davis. 2008. The Food Safety Hazard Guidebook. RSC Publishing.

DEFINITION


- ➤ Pathogens → MO that cause disease.
- ★ Disease → any harmful change in the tissues and/or metabolism of a plant, animal & human that produces the symptoms of illness.
- ★ Toxin → chemical substances produced by MO that are harmful to human tissues and physiology.
- ★ Food poisoning → an acute (arising suddenly and of short duration) gastroenteritis caused by the ingestion of food

(source: Garbutt, 1997

GROUPS OF FOODBORNE PATHOGENS

Flatworms	Bacteria			
Flukes	Gram positive			
Fasciola	Staphylococcus			
Fasciolopsis	Bacillus cereus			
Paragonimus	B. anhracis			
Clonorchis	Clostridium botulinum			
Tapeworm	C. perfringens			
Diphyllobothtium	Lysteria monocytogenes			
Taenia	Mycobacterium paatuberculosis			
Roundworms	Gram negative			
Trichinela	Salmonella			
Ascaris	Shigella			
Anisakis	Escherichia			
Pseudoterranova	Yersinia			
Toxocara	Vibrio			
Protozoa	Campylobacter			
Giardia	Aeromonas			
Entamoeba	Brucella			
Toxoplasma	Plesiomonas			
Sarcocystis	Viruses			
Cryptosporium	Hepatitis A			
Cyclospora	Small round structured viruses (SRSVs)			
Fungi – mycotoxin producers	Rotavirus			
Afatoxins	Prions			
Fumonisins	Creutzfeldt-Jakob disease (new varianr			
	form)			
Alternaria toxins	Toxigenic Phytplanktons			
Ochratoxins	Paralytic shellfish poison			
	Domoic acids			
	Pfiesteria piscicida			
	Ciguatoxins			

FECAL-ORAL ROUTES OF FOODBORNE INTESTINAL PATHOGENS

Source: Jay, 2000

PATHOGENESIS OF FOODBORNE & RELATED ORGANISM

Skeletal muscle : Trichinella spiralis

Stomach : Helicobacter pylori


Liver : Clonorchis

Small intestine :

Astroviruses, Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, E. coli, Salmonellae, S.typhi, Vibrio cholerae, V.parahaemolyticus

• Large intestine/colon :

Campylobacter (small intestine), E.coli, Entamoeba histoytica, Salmonella eneritidis, Shigellae, especially S. dysenteridae.

PATHOGEN BACTERIA ON SEAFOOD

		Action model		Toxin	Minimum dose	
	Bacteria	infection	Toxin forming	stability	to infect	
	Clostridium botulinum		+	Low	-	
/	Vibrio sp	+			High	
	V. cholerae	+			-	
	V. parahaemoliticus	+			(> 10 ⁶ /g)	
	Aeromonas hydrophila	+			NK	
	Plesiomonas shigelloides	+			NK	
	Listeria monocytogenes				NK	
indigenous	Salmonella sp	+			< 102	
	Shigella	+			≻10 ⁶	
	E. coli	+			10¹ - 10²	
	Staphylococcus aureus		+	High	$10^1 - 10^3$	

Source: Huss, 1994

Products	Preservation methods	General risk	Main health hazard		
		category	Agent	Releasing factor	
Raw or partially cooked shellfish	No or light heat treatment, refrigeration	High	Virus Biotoxins Vibrio spp. Salmonella typhi	Filter feeding Nature Temperature abuse, Inefficient Preservation stategy	
Fresh/frozen fish	Refrigeration, MAP packing, frozen	Low	Histamine producers Marine toxins Parasites C. botulinum and indigenous pathogens	Temperature abuse, uncooked before consumption	
Lightly preserved fish product	< 6% NaCl (wps), refrigeration (4– 8°C), (sorbate, benzoate, nitrite, smoke)	High	L. monocytogenes Indigenous pathogens	Poor GMP, Ineffecient preservation Temperature abuse during storage	
Semi-preserved fish	> 6% NaCl (wps) pH < 5; temp. <10°C (sorbate, benzoate, nitrate)	Low	C. Botulinum Histamine Producers	Poor raw material, NaCl < 10% wps, pH > 5 Poor raw material	
Minimally processed seafood ('sous vide')	Mild cooking under vacuum Chill storage	High	C. botulinum L. monocytogenes S. Aureus E. coli, Salmonella spp., Vibrio spp.	Insufficient to eliminate C.botulinum post-process contamination	
Pasteurized fish (e.g. hot-smoked fish)	Brined or drysalted, heat treatment (77.2– 98.8°C/1 min.), chill storage	High	C. botulinum L. monocytogenes S. aureus, E.coli, Salmonella spp.	>5C, <3% NaCl wps Post-process contamination Temperature abuse Post-process contamination	
Sterilized (canned) fish	Heat treatment	Low	Histamine producing Bacteria C. botulinum	Poor raw material Post-process contamination, underprocessing	

Source: Nilsonn & Gram, 2002 (risk categories of seafoods)

MAJOR FOOD POISONING ORGANISMS ASSOCIATED WITH SEAFOOD ORGANISM CAUSING DISEASE (NILSSON & GRAM, 2002)

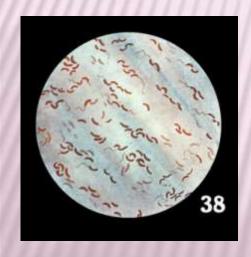
Organism causing disease	MID of toxin or live cells	Primary habitat
Bacteria of aquatic origin		
Clostridium botulinum type E	0.1–1 µg toxin	Ubiquitous in aquatic environment, soil, ocean sediment, intestinal tract of fish, surface of fish
Marine Vibrio spp		
V. cholera V. parahaemolyticus V. vulnificus	10 ⁸ cfu/g 10 ⁵ –10 ⁶ cfu/g Unknown	Estuarine and coastal warm waters (>15°C), intestines of shellfish-eating fish and tract of oysters
Histamine producing bacteria	>100 mg histamine/100 g	Members of <i>Enterobacteriaceae</i> from the aquatic environment
Dinoflagellates; maybe bacteria associated with the algae	Paralytic shellfish poisoning (PSP) toxin	Aquatic environment, accumulated in bivalves (e.g. mussels, oysters)

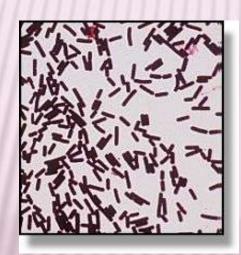
CONTINUED:

Bacteria from the general environment				
Listeria monocytogenes	unknown-108 cfu/g	Widespread in nature, soil,		
9999999		foilage, faeces, seafood		
<i>91111</i> 11111111111111111111		processing environments		
C.botulinum (mesophilic)		Widespread in soil		
Bacteria from the human/an	nimal reservoir			
Shigella spp.	$10^2 - 10^5 \text{ cfu/g}$	Faecal polluted coastal regions		
Salmonella spp.	10–10 ⁶	or ponds; cause faecal		
Escherichia coli	10–10 ⁸ cfu/g	contamination of seafood		
Staphylococcus aureus	0.14–0.19 µg toxin/kg	Pond water, human carrier (cause		
	bodyweight	postharvest contamination)		
Viruses				
Hepatitis A	Living virus can infect	Faecal polluted water,		
Norwalk virus	humans	accumulation in shellfish		
Algae				
Dinoflagellates	E.g. ciguatoxins,	Open waters, marine tropical		
	PSP, ASP, DSP, NSP toxins	waters; accumulation in shellfish		
		(e.g. mussels, oysters)		
Parasites	Some living parasites can infect	Fish and shellfish		
	humans			

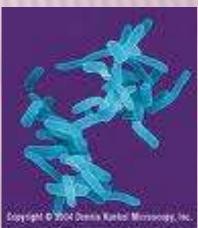

PATHOGEN BACTERIA

C. botulinum


E. coli


Staphylococcus sp

Listeria sp


Vibrio sp

C. perfringens

Salmonellae sp

Shigella sp

AEROMONAS SPP

- **×** Gram-negative rods, 0.3 1.0 x 1.0 3.5 μm
- * Facultative anaerobe
- * Aeromonas grows at temperatures of 2 45 °C
- * The optimum growth temperature is 28 °C
- * Aeromonads are sensitive to moderately high temperatures, and D-values at 45 and 51 °C have been reported as 29.5 minutes, and 2.3 minutes.
- ★ Aeromonas has the potential to grow over a pH range of ca 4 –
 10.
- * Growth of *Aeromonas* is optimal in the presence of 1 2% sodium chloride (NaCl), and is sensitive to > 4.5% NaCl.

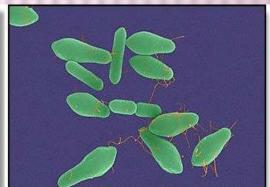
OCCURENCE IN FOODS

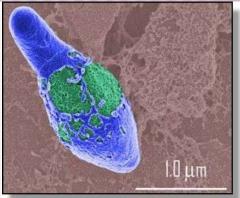
- * Aeromonas species have been isolated from the following food commodities: fresh vegetables; salads; fish; seafood; raw meats including beef, lamb, pork and poultry; and raw milk.
- * A. hydrophilia is more commonly isolated from meat, fish and poultry.

SOURCE OF AEROMONASS

- * fresh water
- in water supplies (including chlorinated water)
- * sewage
- * marine waters
- **x** estuaries
- aquatic animals such as frogs, fish and leeches, in reptiles and in domestic animals such as pigs, sheep, poultry and cow

CLOSTRIDIUM BOTULINUM



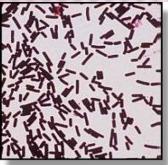

CHARACTERISTIC OF C. botulinum

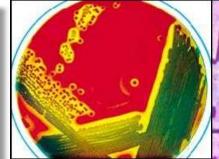
- Gram positive, endospore-forming anaerobes.
- * Botulism is characterized as a rare paralytic disease caused by a nerve toxin produced by the pathogen.
- The rod-shaped organisms grow best in low-oxygen environments.
- * Proteolityc C. botulinum is a highly dangerous pathogen.
- Gram (+) spore-forming rod
- * Only srovar A, B, E & F cause botulism in human.

SUMMARY COMPARISON OF C. BOTULINUM STRAINS

Dropout	Serologic types						
Property	Α	В	С	D	Е	F	G
Year discovered	1904	1896	1960	1936	1960	1985	1969
Proteolytic (+), nonproteolytic (-)	+	+	-	-	+	-	+ (weak)
Group	1	1	П	П	1	П	IV
Primary habitat	Terrestrial	Terrestrial	Aquatic	Aquatic	Aquatic	Aquatic	Terrestrial
Minimum growth temp. (°C)	~10	~10	3.3	3.3	~10	3.3	~12
Maximum growth temp. (°C)	~50	~50	~45	~45	~50	~45	n.d.
Minimum pH for growth	4.7	4.7	4.7	4.8	4.8	4.8	4.8
Minimum Aw for growth	0.94	0.94	~0.97	~0.97	0.94?	~0.97	n.d.
Thermal D value for endospore	D ₁₁₀ = 2.72 - 2.89	D ₁₁₀ = 1.34 -1.37	n.d.	D ₁₁₀ = 0.80	D ₁₁₀ = 1.45 - 1.82	D ₁₁₀ = 0.25 - 0.84	D ₁₁₀ = 0.45 - 0.54
Maximum NaCl for growth (%)	~10	~10	5 - 6	5 - 6	8 - 10	5 - 6	n.d.
Relative frequency of food outbreak	High	High	n.d.	Highest for seafoods	1 outbreak	1 outbreak	none
H ₂ S production	+	+	-	-	+	-	++
Casein hydrolysis	+	+	-	-	+	-	+
Lipase production	+	+	+	+	+	+	-
Manose fermentation	-	-	+	+	-	+	-

Source: Jay, 2000


CLOSTRIDIUM PERFRINGENS


- **★** Gram-positive spore-forming rods; 0.3 1.9 x 2.0 10.0 µm.
- obligate anaerobe
- * Its optimum temperature for growth is 43 45 °C, although *C.* perfringens has the potential ability to grow within the temperature range 15 50 °C.
- **★** The D-value for *C. perfringens* in roast beef at 60 oC is 14.5 minutes.
- **x** Limit growth pH values over the range pH \leq 5 and \geq 8.3, optimum 6-7.
- * The lowest aw recorded to support the growth of *C. perfringens* appears to be 0.93 and 0.97.
- **★** Salt concentrations of 6 8% inhibit growth of most *C. perfringens* strains.
- **★** 95 °C (D-values) range from 17.6 64.0 minutes for heat resistant spores to 1.3 2.8

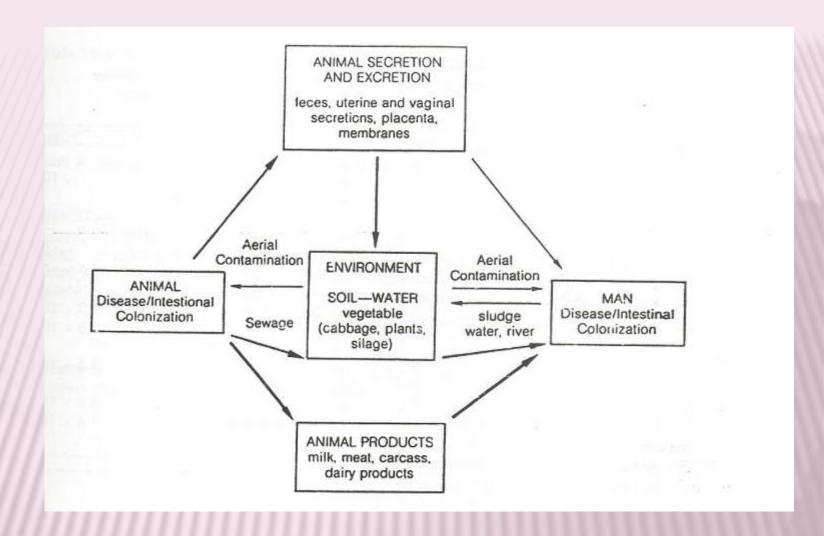
SOURCE: C. PERFRINGENS

* Exist in:

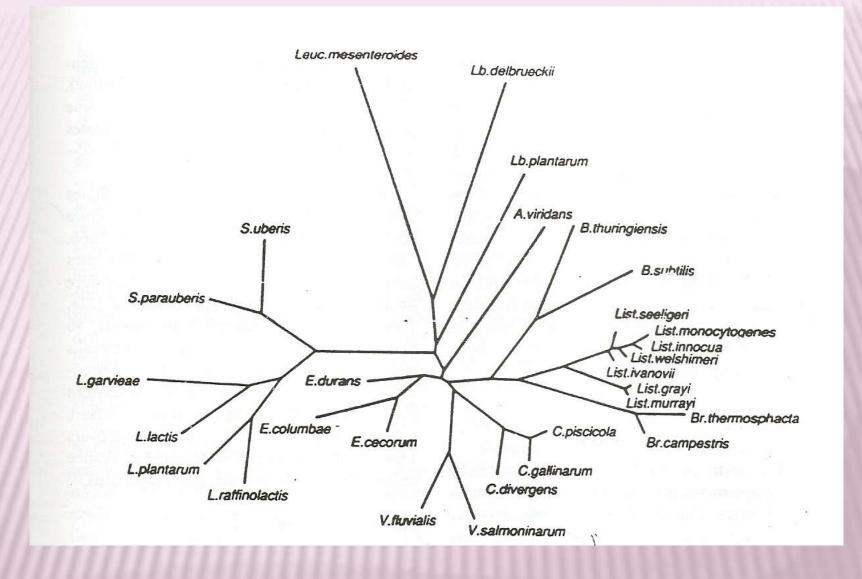
- + soils,
- + water,
- + Foods products,
- + dust,
- + spices,
- + intestinal tract of humans & other animals.

LISTERIA SP

- \star Gram-positive short rods; 0.4 0.5 x 0.5 2.0 μ m.
- * Aerobe or microaerophilic
- **x** Its optimum growth temperature, however, is between 30 and 37 °C.
- **★** D-values for *L. monocytogenes* in crawfish tail meat at 55, 60 and 65 °C were reported as 10.23, 1.98 and 0.19 minutes.
- * the organism is able to grow at pH values well below pH 5.
- **x** *L.* monocytogenes is quite tolerant of high NaCl (10-12%)/low water activities (≥ 0.97).

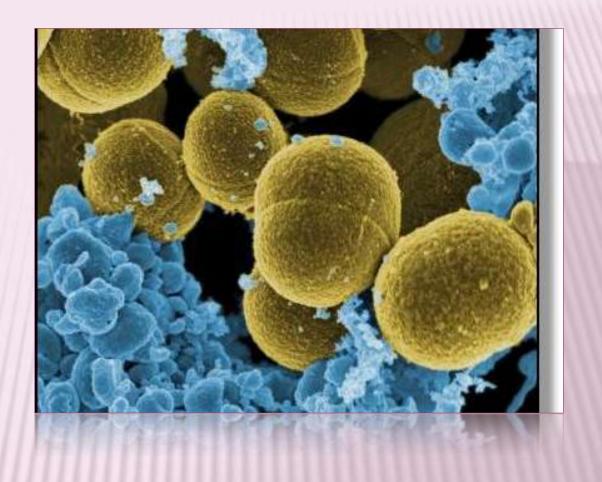

SOURCE OF LISTERIA

* Environment


- + Decaying vegetation
- + Feces
- + Sewage
- + Silage
- + water

* Foods & human

- + Raw milk
- + Soft cheese
- + Fresh & frozen meat
- + Seafoods products (smoked fish)
- + Fruit & vegetable products
- + human


WAYS OF LISTERIA IS DISEMINATED IN ENVIRONMENT

PHYLOGENIC INTERRELATIONSHIPS OF LISTERIAE

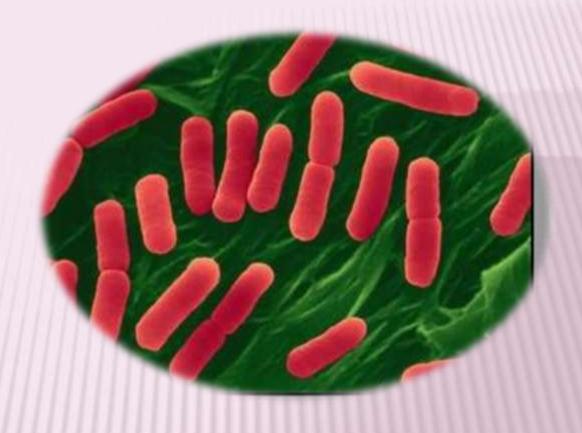
PLESIOMONAS

- **×** Gram-negative, 0.8 1.0 x 1 3 μm.
- **x** Facultative anaerobe.
- ➤ Plesiomonas can grow in the temperature range of 8 45 °C, the optimum being 30 °C.
- * Pasteurisation at 60 oC for 30 minutes has been reported as being effective in killing *Plesiomonas shigelloides*.
- ★ Plesiomonas has a pH range for growth of pH 4.5 8.5.
- ★ Plesiomonas can grow well at NaCl concentrations up to 4%.



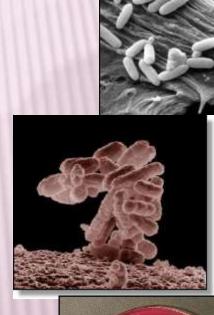
STAHYLOCOCUS AUREUS

CHARACTERISTIC OF THE ORGANISM


- ★ Gram-positive cocci occuring in iregular clumps.
- **x** Facultative anaerobe.
- **★** Gram-positive cocci; 0.7 0.9 µm diameter
- **★** Optimum growth temperature is 37°C (range of 6 to 48°C).
- **★** Growth is inhibited in the presence of 0.1% presence acetic acid (pH 5.1) or at pH 4.8 with 5 % NaCl.
- * Able to grow at Aw 0.86. it is capable to grow at Aw 0.83 in the presence of NaCl, sucrose, or glycerol humectants.

SOURCE OF MO

- Staphylococci are ubiquitous in air, dust, sewage, water, milk, & many foods & on food equipments, environmental surface, human & animals.
- **★** 30 50 % of population are nasal & throat carrier.
- ★ 15 % are skin carrier (hands esp. patients & staff in hospitals having a carier rate 80%)
- **x** Skin lesson exp. boils & infection of cuts & burns.
- Human faeces & clothing.
- **×** Cows & goat.
- ★ Food products with high protein is a good growth substrates for S. aureus.

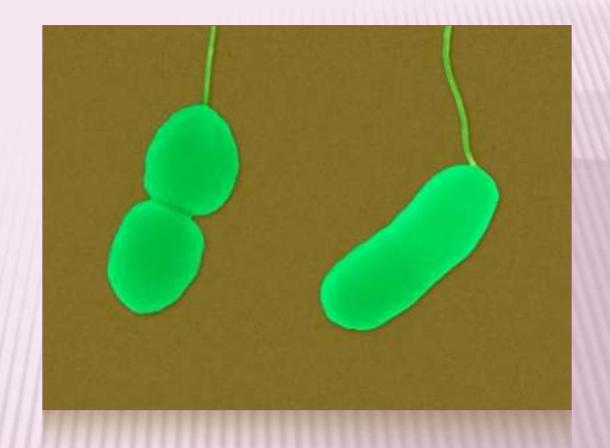


ESCHERICHIA COLI

THE CHARACTERISTIC OF ORGANISM

- * Gram negative rod.
- * Member family Enterobacteriaceae family.
- Able to adapt & colonize a diverse array of environment & the gastrointestinal (GI)
- * E. coli bacteria are mesophilic organism
- E. coli able to grow at temperature of 10-40°C with optimum tempt 37°C
- Pathogen can replicate pH values of 4 10
 & in the presence up t 8% NaCl.
- Most strains of *E.coli* are not human pathogen

SOURCE OF DIARRHEAGENIC E. coli


× Environment:

+ Water sources, compost, urban & rural soils & landscape, sewage, animals include beef & dairy cattle, sheep, swine, horses, rodents, dogs, horses, rodents.

* Foods:

+ Cross contamination to RM, processing water, equipments, & workers.

VIBRIO CHOLERAE

CHARACTERISTIC OF MICROORGANISM

- ★ Gram-negative curved rods; 0.5 0.8 x 1.4 2.6 µm.
- Facultative anaerobe
- **★** Temperature range for growth of 10 43 °C.
- ★ The D-value for V. cholerae in crab meat homogenate at 60 °C is 2.65 minutes.
- **x** pH range for growth of pH 5 9.6, with optimum at 7.6.
- **x** a_w range 0.97 0.998, optimum 0.984.
- It can grow in the presence of 0.1 4.0% NaCl.

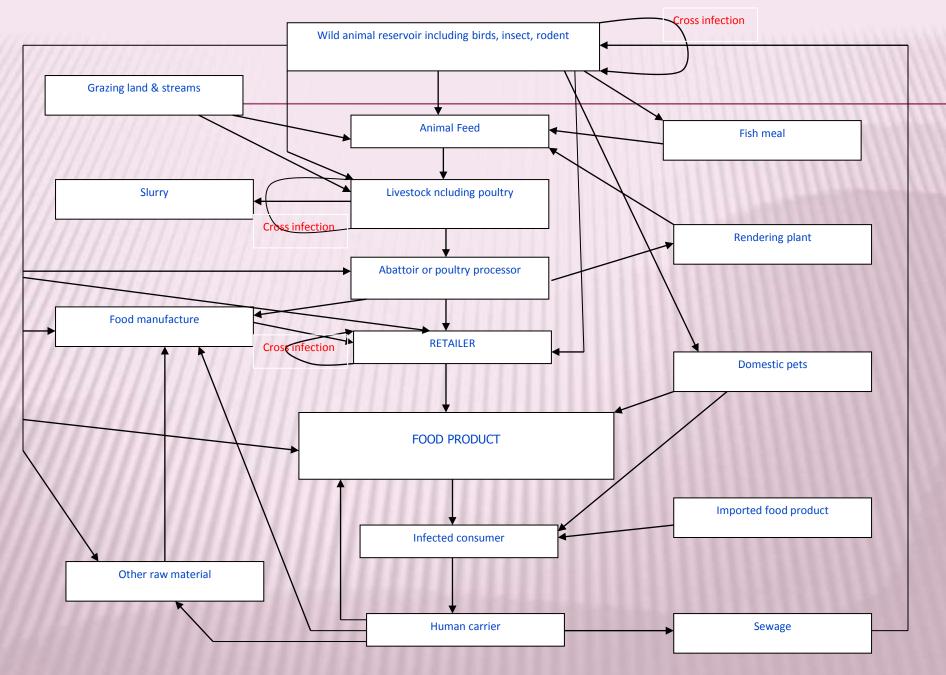
VIBRIO PARAHAEMOLYTICUS

- * Gram-negative curved rods.
- * Facultative anaerobe.
- Range temperature 5 and 43 oC. Optimum 37oC.
- ★ The D-values at 55 oC for clam and crab homogenate are 0.02 0.29 minutes.
- ★ pH range for growth is 4.8 11, with an optimum pH of 7.6 8.6.
- × Optimu Aw 0.98

VIBRIO VULNIFICUS

- ★ Gram-negative curved rods.
- * Facultative anaerobe.
- * temperature range for growth of 8 43 oC
- it has been reported that cooking oysters for 10 minutes at 50 oC.
- \star pH range for growth is 5 10, with an optimum pH of 7.8.
- **v.** *vulnificus* grows over the range 0.5 5.0% NaCl, with an optimum of 2.5%.

SALMONELLA SP


CHARACTERISTICS OF SALMONELLA SP

- Member of family Enterobacteriaceae.
- Gram-negative short rods; peritrichous flagella; 0.5 0.7 x 1.0 3.0 µm
- Occurring in the gut of man & animals in environment polluted with human or animals excreta.
- * Salmonella can multiply & survive in the estuarine & freshwater envi
- Facultative anaerobe.
- ★ Salmonellae can grow in the temperature range of 7 48 °C.
- \times D₆₀ °C values normally range from about 1 to 10 minutes, with a z-value of 4 5 °C.
- ★ Salmonella has a pH range for growth of pH 3.8 9.5.
- Salmonella has the potential to grow at aw levels as low as 0.945

SOURCE

× Ubiquitous

- + Soil
- + Air
- + Water
- + Animals (rodents, wildlife, pets)
- + Humans
- + Food
- + Feed
- + Processig equipment
- + Some plant products

Source: Jay, 2000 (possible pathways of salmonella contamination)

THANK YOU FOR ATTENTION