Vol. 4. No. 2, 65 - 70, Agustus 2001, ISSN: 1410-8518

SYARAT PERLU LAPANGAN PEMISAH

Bambang Irawanto Jurusan Matematika FMIPA UNDIP

Abstact

Field is integral domain and is a such that every non-zero elemen in it has multiplicative inverse. Extension field F of field K is splitting field of collections polinomial $\{fi(x) \mid i \in I\}$ of K if F is the smallest subfield \overline{K} containing K and all the zeros in \overline{K} of the polinomial fi(x). Elemen $\alpha \in F$ is algebra over K if $f(\alpha) = 0$ for some $0 \neq f(x) \in K[x]$. Splitting field is extension algebra.

Keywords: extension fields, elemen algebra

1. PENDAHULUAN

Lapangan adalah daerah integral yang setiap elemen yang tidak nol mempunyai invers terhadap pergandaan. Lapangan F disebut lapangan perluasan F atas lapangan K jika lapangan merupakan subfield dari lapangan F (Hungerford, T. W, 1984). Polinomial $f(x) \in K[x]$ dan $a \in K$ adalah akar dari f(x) jika dan hanya jika (x - a) faktor dari f(x) (Hungerford T. W, 1984). Lapangan perluasan F disebut lapangan pemisah (splitting field) dari polinomial $f(x) \in K[x]$ jika f(x) terfaktor dalam F [x] dengan akar-akar f(x) berada dalam F (Hungerford T.W, 1984).

Lapangan pemisah F untuk koleksi polinomial $\{f_i(x) | I \in I\}$ atas K jika F subfield terkecil dalam penutup aljabar \overline{K} yang memuat semua akar-akar dari $f_i(x)$ dan K. (Fraleigh, J. B, 1994). Dalam tulisan ini dipelajari syarat perlu lapangan pemisah dalam hubungan dengan elemen aljabar.

2. LAPANGAN PERLUASAN

Hungerford T.W, (1984), memberikan pengertian lapangan perluasan F atas lapangan K, jika lapangan K merupakan subfield dari lapangan F berdasarkan pengertian ini dibuktikan teorema Kronecker.

Teorema 1. (Teorema Kronecker)

Misal K adalah lapangan dan f(x) polinomial yang tidak konstan dalan K[x], maka terdapatlah lapangan perluasan (Extension field) F dari K, dan elemen $\alpha \in F$ sedemikian sehingga $f(\alpha) = 0$.

Bukti:

 $K[x] \ adalah \ daerah \ ideal \ utama, \ karena \ daerah \ ideal \ utama \ merupakan \ daerah \ faktorisasi \ tunggal, \ maka \ f(x) \in K[x] \ dapat \ difaktorkan \ secara \ tunggal \ sebagai \ f(x) = p_1(x) \ p_2(x)... \ p_n(x), \ dengan \ p_i \ (x) \ (i = 1,2,...n) \ adalah \ polinomial \ prima \ yang \ tak \ tereduksi ; \ karena \ p(x) \ polinomial \ tak \ tereduksi \ maka \ < p(x)> \ adalah \ ideal \ maximal, \ dalam \ K[x], \ dengan \ \frac{K[x]}{\left\langle p(x)\right\rangle} \ suatu \ lapangan. \ Didefinisikan$

suatu pemetaan ψ oleh ψ : $K \to \frac{K[x]}{\left\langle p(x) \right\rangle}$ dengan $a \mapsto a + \left\langle p(x) \right\rangle$ ψ adalah

pemetaan 1 – 1, sebab \forall a,b \in K jika $\psi(a) = \psi(b)$ maka a + $\left\langle p(x) \right\rangle = b + \left\langle p(x) \right\rangle$

 \Leftrightarrow a-b $\in \langle p(x) \rangle \Leftrightarrow$ a-b = k p(x), jadi a - b suatu kelipatan p(x) yang berderajat 0 maka a - b = 0 atau a = b. ψ homomorfisma ring.

Sehingga $\psi(K)=\{a+\left\langle p(x)\right\rangle \mid a\in K\ \}\subseteq \frac{K[x]}{\left\langle p(x)\right\rangle}$ merupakan sub field dari

$$\frac{K[x]}{\left\langle p(x)\right\rangle }, \text{ jadi } K\cong \{a+\left\langle p(x)\right\rangle |\ a\in K\}.$$

Misal F = $\frac{K[x]}{\langle p(x) \rangle}$ maka F merupakan lapangan perluasan dari K.

 $\text{Akan dibuktikan } f(\alpha) = 0, \ a \ \in \ F = \frac{K[x]}{\left\langle p(x) \right\rangle}, \ \text{ambil} \ \alpha \in F \ \text{dengan} \quad \alpha = x \ + \ \left\langle p(x) \right\rangle.$

$$\begin{aligned} &\mathrm{Jika}\; p(x) = a_0 x^0 + a_1 x^1 + \ldots + a_n x^n \in K, \, maka\; p(\alpha) = a_0 \alpha^0 + a_1 \alpha^1 + \ldots + a_n \alpha^n = \\ &\bar{0} \in \frac{K[x]}{\left\langle p(x) \right\rangle} \end{aligned}$$

 $P\left(\alpha\right)=0.\text{ Karena }f(x)=p_{1}(x)\text{. }p_{2}(x)\text{.................}p_{n}(x)\text{, maka }f(\alpha)=0\text{.}$

Contoh:

Vol. 4. No. 2, 65 - 70, Agustus 2001, ISSN: 1410-8518

Misal K = R, $f(x) = x^2 + 1$, f(x) tak tereduksi dalam R, maka $\langle x^2 + 1 \rangle$ ideal maksimal dalam R[x] jadi $\frac{R[x]}{\left\langle x^2+1\right\rangle}$ lapangan dengan

$$\frac{R[x]}{\left\langle x^2+1\right\rangle}=\{g(x)+<\!\!x^2+1\!\!>\!\mid g(x)\in R[x]\;\}.$$

$$Ambil \; \alpha \; = x \; + <\!\!x^2 + 1> maka \; f(\alpha) = \left(x \; + <\!\!x^2 + 1>\right)^2 + 1 = \; \bar{0} \in \; \frac{R\!\left[x\right]}{\left\langle x^2 + 1\right\rangle}.$$

Elemen $\alpha \in F$ disebut elemen aljabar atas K jika $f(\alpha) = 0$, untuk suatu $0 \neq 0$ $f(x) \in K[x]$ sebaliknya α bukan aljabar disebut transedental (Fraleigh J.B, 1994).

Selanjutnya dari pengertian aljabar diperoleh pengertian perluasan aljabar. **Definisi 1.** F adalah lapangan perluasan atas lapangan K disebut perluasan aljabar jika setiap elemen dari F merupakan aljabar atas K. F dapat dipandang sebagai ruang vektor atas lapangan K. Dimensi ruang vektor F atas K disebut derajat dari lapangan perluasan F atas K, yang selanjutnya dinotasikan dengan [F:K]. Lebih lanjut lapangan perluasan disebut perluasan berhingga bila [F:K] berhingga.

Teorema 2. Setiap perluasan berhingga dari (finite extention) suatu lapangan merupakan perluasan aljabar. (Raisinghania MD, 1980). Bukti:

Pandang F perluasan berhingga lapangan K yang mempunyai derajat F atas K berhingga sebut n, maka ruang vektor F atas K memiliki dimensi n. Akan ditunjukkan F adalah perluasan aljabar berarti setiap elemen didalam F adalah aljabar atas K. Ambil α sebarang elemen dalam F, maka α , α^2 ,, α^n elemenelemen dalam F dan jika 1 adalah unit dari F maka 1, α , α^2 , ..., α^n merupakan elemen-elemen di dalam F berjumlah (n+1).

Karena ruang vektor F berdimensi n, maka setiap himpunan (n+1) elemen atau lebih tak bebas linier, sehingga himpunan $\{1, \alpha, \alpha^2, \dots, \alpha^n\}$ tak bebas linear, jadi terdapat elemen-elemen $\alpha_0, \alpha_1, \ldots, \alpha_n$ dari K yang tidak semuannya nol sedemikian sehingga,

$$a_0.1 + a_1\alpha + a_2\alpha^2 + \ldots + a_n\alpha^n = 0$$

ini menunjukkan bahwa α adalah akar dari polinomial tidak nol $a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ dalam K[x], sehingga α adalah aljabar atas K. Karena α adalah sebarang elemen dalam F, maka F adalah perluasan aljabar.

Himpunan $K_F = \{ \alpha \in F / \alpha \text{ aljabar atas } K \}$ merupakan subfield dari F, selanjutnya disebut penutup aljabar (aljabraic closure) dari K dalam F (Fraleigh J. B, 1994).

3. LAPANGAN PEMISAH

Definisi 2. Misal K suatu lapangan dengan penutup aljabar (algebraic closure) \overline{K} . { $f_i(x) / i \in I$ } koleksi dari polinomial-polinomial dalam K[x]. Suatu lapangan $F \leq \overline{K}$ disebut lapangan pemisah (splitting field) dari { $f_i(x) / i \in I$ } atas K jika F adalah sub field terkecil dari \overline{K} yang memuat K dan semua akar dalam \overline{K} dari setiap $f_i(x)$, untuk $i \in I$. Suatu lapangan $F \leq \overline{K}$ adalah lapangan pemisah (splitting field) atas K, jika $F \leq \overline{K}$ adalah lapangan pemisah (splitting field) dari himpunan sebarang dari polinomial-polinomial dalam K[x].

Dean R. A (1996) menyebutkan bahwa semua lapangan K dan semua $f(x) \in K[x]$ sedemikian sehingga deg $(f) \ge 1$, terdapatlah perluasan F dari K yang merupakan lapangan pemisah untuk f(x) atas K.

Teorema 4. Misal F lapangan pemisah dari polinomial $f(x) \in K[x]$ atas K, jika E lapangan pemisah dari $f(x) \in K[x]$ yang lain maka terdapatlah isomorfisma $\emptyset : E \to F$

Bukti:

Pandang polinomial jika $f(x)=a_0x^0+a_1x^1+\ldots+a_nx^n,\,a_i\in K,\,i=0,\,1,\,\ldots\,n.$ F lapangan pemisah dari polinomial f(x) atas K maka akar-akar f(x) berada dalam F. Misal $\alpha\in F$ maka $f(\alpha)=a_0\alpha^0+a_1\alpha^1+\ldots+a_n\alpha^n=0$ begitu juga untuk $\beta\in E$ maka $f(\beta)=a_0\beta^0+a_1\beta^1+\ldots+a_n\beta^n=0$ (karena E lapangan pemisah dari f(x)

atas K).

JURNAL MATEMATIKA DAN KOMPUTER

Vol. 4. No. 2, 65 - 70, Agustus 2001, ISSN: 1410-8518

Bentuk pemetaan $\varnothing: E \to F$ dengan $\beta \mid - \mid \to \alpha$, maka $\forall \beta_1, \beta_2 \in E$ dan $\forall \alpha_1, \alpha_2 \in F$ maka $\varnothing(\beta_1 + \beta_2) = (\alpha_1 + \alpha_2) = \alpha_1 + \alpha_2 = \varnothing(\beta_1) + \varnothing(\beta_2)$ dan $\varnothing(\beta_1, \beta_2) = (\alpha_1, \alpha_2) = \alpha_1$. $\alpha_2 = \varnothing(\beta_1)$. $\varnothing(\beta_2)$ jadi \varnothing homomorfisma dan jika $\varnothing(\beta_1) = \varnothing(\beta_2)$ maka $\alpha_1 = \alpha_2$ dan $\forall \alpha \in F$ maka terdapatlah $\beta \ni \varnothing(\beta) = \alpha$ jadi \varnothing isomorfisma.

Dan untuk
$$\varnothing$$
 (f(β)) = \varnothing (a₀ β ⁰ + a₁ β ¹ + ... + a_n β ⁿ)
= a₀ \varnothing (β ⁰) + a₁ \varnothing (β ¹) + ... + a_n \varnothing (β ⁿ)
= a₀ α ⁰ + a₁ α ¹ + ... + a_n α ⁿ

Teorema 5. (**Raisinghania**, **M.D**, **1980**). Lapangan pemisah meerupakan perluasan aljabar.

Bukti:

Pandang F lapangan pemisah dari polinomial f(x) atas lapangan K dan α_1 , α_2 , ... α_n adalah akar –akar dari f(x), maka F dapat ditulis F = K $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ atau

$$\begin{split} F_1 &= K\left(\alpha_1\right) \\ F_2 &= K_1\left(\alpha_2\right) = \left(\ K(\alpha_1) \right) \left(\alpha_2\right) = K\left(\alpha_1, \, \alpha_2\right) \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ F_n &= K_{n-1}\left(\alpha_n\right) = \left(\ K(\alpha_1, \, \alpha_2, \ldots \alpha_{n-1}) \right) \left(\alpha_n\right) = K\left(\alpha_1, \, \alpha_2, \ldots \alpha_n\right) = F. \end{split}$$

Tetapi setiap elemen-elemen $\alpha_1, \alpha_2,...\alpha_n$ merupakan akar-akar polinomial tidak nol f(x) atas lapangan K, jadi $\alpha_1, \alpha_2,...\alpha_n$ merupakan aljabar atas K, maka F merupakan perluasan berhingga dari lapangan K (sebab $[K (\alpha_1, \alpha_2,...\alpha_n) : K]$ berhingga).

Jadi (menurut Teorema 2) F merupakan perluasan ajabar.

Contoh:

Misal
$$f(x) = x^4 - x = x^2 - x \in \mathbb{Z}_2[x], p = 2, n = 2.$$

 $x^4 - x = x (x - 1) (x^2 + x + 1).$ Ambil $\alpha = x + \langle x^2 + x + 1 \rangle$

Maka 0, 1, α , 1 + α , adalah akar-akar dari $f(x) = x^4 - x$ sehingga Z_2 (α) merupakan lapangan pemisah dari $f(x) = x^4 - x$ atas Z_2 yang merupakan suatu perluasan aljabar.

4. KESIMPULAN

- 1. Setiap perluasan berhingga merupakan perluasan aljabar.
- 2. Untuk semua lapangan K dan semua $f(x) \in K[x]$ sedemikian sehingga deg $(f) \ge 1$, terdapatlah perluasan F dari K yang merupakan lapangan pemisah untuk f(x) atas K.
- 3. Lapangan pemisah merupakan perluasan aljabar.

DAFTAR PUSTAKA

- 1. Dean R. A. Element of Abstract Algebra, John Wiley & Sons, USA, 1966.
- 2. Fraleigh, J. B , *A First Course in Abstract Algebra*, Addison Wesley Publishing Company, USA, 1994.
- 3. Hungerford, T. W, *Graduete Text in Mathematics Algebra*, Springer Verlag, New York, Heidelberg Berlin, 1984.
- 4. Raisinghania M. D, Aggarwal R. S, *Modern Algebra*, S Chand & Company Ltd, New Delhi, 1980.