日本畜産学会報

第 70 巻 第 8 号 平成 11 年 4 月

目次

一般論文
血縁情報が不完全なホルスタイン種牛群における泌乳形質の育種価の推定
………………………………………………………………佐々木・修・山本直幸・富坪雄治… J97

BMS ナンバーと牛肉軟骨中脂肪酸比との関連性および各品種の効果
………………………………………………………口田信吾・小西一之・鈴木三義・三好俊三… J106

PCR 法による牛肉の性別判別
…………………………………………………………………………山中昌哉・工藤孝之・坂垣佳明・佐藤静治・中村豊郎… J111

飼料の粗栄養分が妊娠末期の乾乳牛の乾物摂取量に及ぼす影響
………………………………西田武弘・篠原光規・寺田文典・Agung PURNOMOADI・柴田正貴… J114

肥育牛における血清中のビタミン C 濃度
…………………………………………高橋栄二・松井 徹・若松 繁・岡・塩見泰一・松山隆次
村上弘明・田中直哉・鳥居伸一郎・矢野秀雄… J119

乳牛の妊娠末期におけるエネルギー水準が血漿代謝味物およびホルモン濃度に及ぼす影響
………………………………西田武弘・篠原光規・寺田文典・Agung PURNOMOADI・柴田正貴… J123

日本畜産学会報第 70 巻第 2 号和文抄録 ……………………………………………………………………………………………… J132

学会記事…… J135
Regular Papers (in Japanese with English Abstract)

Estimation of Breeding Value for Milk Production Traits in a Holstein Herd with Incomplete Relationships
Sasaki O, Yamamoto N, Togashi K ... J97

Effect of Breeds on the Relationship between Beef Marbling Standard and Fat Percentage in Ribeye of Beef
Kuchida K, Konishi K, Suzuki M, Miyoshi S ... J106

Sex Identification of Beef by Polymerase Chain Reaction
Yamanaka M, Kudo T, Itagaki Y, Sato S, Nakamura T J111

Effects of Proportion of Forage in The Diet on The Dry Matter Intake of Holstein Dry Cows During Last 9 weeks of Pregnancy
Nishida T, Kurihara M, Terada F, Purnomoaudi A, Shibata M J114

Serum Vitamin C Concentration in Fattening and Fattened Beef Cattle.
Takahashi E, Matsui T, Wakamatsu S, Yuri N, Shiojiri Y, Matsuyama R,
Murakami H, Tanaka S, Torii S, Yano H ... J119

Effects of Energy Level on Plasma Hormones and Metabolites During the Last Two Months of Pregnancy in Holstein Dairy Cows
Nishida T, Kurihara M, Terada F, Purnomoaudi A, Shibata M J123

Abstracts (in Japanese)

Animal Science Journal Vol. 70 No. 2 ... J132

News and Announcements (in Japanese) .. J135
乳牛の妊娠末期におけるエネルギー水準と血漿代謝産物
およびホルモン濃度に及ぼす影響

西田武弘*・矢原光規*・寺田文典* Agung PURNOMOADI**・柴田正貴***

* 農林水産省畜産試験場、茨城県筑波農業研究圃場 305-0901
** Faculty of Animal Husbandry, Diponegoro University, Semarang, Indonesia

(1998.10.19 受付、1999.2.12 受理)

要約 ホルスタイン種産妊娠牛26頭を用いて、乳牛の妊娠末期におけるエネルギー摂取量が血中代謝産物およびホルモン濃度に及ぼす影響について検討した。エクササイズおよび非配合飼料を可消化食塩分含量（TDN）でホルスタイン種母牛の維持要求量（MP区）に、または維持要求量に体脂1頭分を増給（MP区）するものとした飼育試験を、妊娠28週目から行った。妊娠30週から40週まで2週に1度飼料および飼料配合、糖質代謝産物およびホルモン濃度の変化について検討した。MP区の血漿インスリン濃度は、妊娠32週以降はMP区より有意に低く、妊娠36週以降は妊娠の進行に従って低下する傾向を示した。血漿グルコース濃度は、有意な差は観察されなかったが、妊娠36週前後におけるMP区の各妊娠ステージでは、TDN摂取量が低くなるに伴って、インスリン濃度は高くなり、インスリンとグルコースのモル比は低くなり、グルコース濃度が増加し、以上の結果から、妊娠に必要なエネルギーを増給させ、維持量のみで妊娠末期を飼育した乳牛ではインスリンおよびグルコース濃度が低く、FFA濃度が高いことから体脂肪の動員が確認された。

日本家畜学会誌、70 (8) : J123-J131, 1999

材料および方法

供試家畜
試験には、母子ともにホルスタイン種の妊娠牛55頭を用いて、妊娠23週から妊娠28週までを試験期間とする飼育試験を行った。

飼料配合
無給与飼料量は、日本飼育標準（乳牛、1994年版）に従って、妊娠28週目の体重を基準として算出した。
Table 1. Chemical composition of hay, silage and concentrate

<table>
<thead>
<tr>
<th></th>
<th>DM (%)</th>
<th>CP</th>
<th>EE</th>
<th>NDF</th>
<th>CA</th>
<th>TDN*</th>
<th>GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian ryegrass hay</td>
<td>86.9</td>
<td>11.5</td>
<td>3.2</td>
<td>55.3</td>
<td>9.9</td>
<td>62.2</td>
<td>4.88</td>
</tr>
<tr>
<td>Italian ryegrass silage</td>
<td>51.0</td>
<td>16.5</td>
<td>2.5</td>
<td>24.5</td>
<td>18.8</td>
<td>31.7</td>
<td>4.25</td>
</tr>
<tr>
<td>Concentrate**</td>
<td>89.0</td>
<td>16.5</td>
<td>2.5</td>
<td>24.5</td>
<td>18.8</td>
<td>31.7</td>
<td>4.25</td>
</tr>
</tbody>
</table>

*: Data from table value**.

**: Ingredients (DM %): corn 30%, barley 25%, wheat bran 19%, defatted rice bran 7%, soybean meal 12%, molasses 3.7%, alfalfa meal 7%, beet pulp 3%, CaCO₃ 1.3%.
Table 2. Parity, length of gestation, live weight, live weight gain, birth weight of calves, dry matter (DM) intake, total digestible nutrient (TDN) intake, crude protein (CP) intake and neutral detergent fiber (NDF) intake of pregnant cows

<table>
<thead>
<tr>
<th>Treatment</th>
<th>M LSM</th>
<th>MP LSM</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>9</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td>3.7</td>
<td>3.8</td>
<td>1.4</td>
<td>NS</td>
</tr>
<tr>
<td>Length of gestation (days)</td>
<td>283.9</td>
<td>282.2</td>
<td>6.4</td>
<td>NS</td>
</tr>
<tr>
<td>Live weight (kg)</td>
<td>659.2</td>
<td>649.9</td>
<td>20.0</td>
<td>NS</td>
</tr>
<tr>
<td>at the start of experiment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>before parturition</td>
<td>662.6</td>
<td>711.8</td>
<td>20.2</td>
<td>NS</td>
</tr>
<tr>
<td>after parturition</td>
<td>632.2</td>
<td>642.1</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>Live weight gain (kg/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dam−fetus</td>
<td>1.42</td>
<td>0.95</td>
<td>0.61</td>
<td>< 0.05</td>
</tr>
<tr>
<td>dam</td>
<td>−1.65</td>
<td>−0.12</td>
<td>0.68</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Birth weight of calves (kg/head)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter intake (%)</td>
<td>43.4</td>
<td>45.2</td>
<td>5.3</td>
<td>NS</td>
</tr>
<tr>
<td>(of requirement)</td>
<td>8.10</td>
<td>9.89</td>
<td>2.72</td>
<td>< 0.01</td>
</tr>
<tr>
<td>TDN intake (kg/day)</td>
<td>3.37</td>
<td>6.32</td>
<td>0.23</td>
<td>< 0.05</td>
</tr>
<tr>
<td>CP intake (kg/day)</td>
<td>1.07</td>
<td>1.08</td>
<td>0.04</td>
<td>< 0.05</td>
</tr>
<tr>
<td>NDF intake (kg/day)</td>
<td>4.41</td>
<td>4.16</td>
<td>0.21</td>
<td>NS</td>
</tr>
</tbody>
</table>

1: P > 0.1.
2: Last 10 weeks of gestation.

低下する傾向を示した。M区のグルカゴン濃度も、妊娠32週以降はMP区より低く、妊娠の進行に従って減少する傾向がみられた。分娩前4週間は有意に低かった。

インスリンとグルカゴンのモル比率に明確な差は認められなかった。

上記のデータを基に、妊娠期におけるエネルギー代謝産物濃度の変動を考察するにあたり、各項目の結果を以下に示す。

Table 2. Parity, length of gestation, live weight, live weight gain, birth weight of calves, dry matter (DM) intake, total digestible nutrient (TDN) intake, crude protein (CP) intake and neutral detergent fiber (NDF) intake of pregnant cows

<table>
<thead>
<tr>
<th>Treatment</th>
<th>M LSM</th>
<th>MP LSM</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>9</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td>3.7</td>
<td>3.8</td>
<td>1.4</td>
<td>NS</td>
</tr>
<tr>
<td>Length of gestation (days)</td>
<td>283.9</td>
<td>282.2</td>
<td>6.4</td>
<td>NS</td>
</tr>
<tr>
<td>Live weight (kg)</td>
<td>659.2</td>
<td>649.9</td>
<td>20.0</td>
<td>NS</td>
</tr>
<tr>
<td>at the start of experiment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>before parturition</td>
<td>662.6</td>
<td>711.8</td>
<td>20.2</td>
<td>NS</td>
</tr>
<tr>
<td>after parturition</td>
<td>632.2</td>
<td>642.1</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>Live weight gain (kg/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dam−fetus</td>
<td>1.42</td>
<td>0.95</td>
<td>0.61</td>
<td>< 0.05</td>
</tr>
<tr>
<td>dam</td>
<td>−1.65</td>
<td>−0.12</td>
<td>0.68</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Birth weight of calves (kg/head)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter intake (%)</td>
<td>43.4</td>
<td>45.2</td>
<td>5.3</td>
<td>NS</td>
</tr>
<tr>
<td>(of requirement)</td>
<td>8.10</td>
<td>9.89</td>
<td>2.72</td>
<td>< 0.01</td>
</tr>
<tr>
<td>TDN intake (kg/day)</td>
<td>3.37</td>
<td>6.32</td>
<td>0.23</td>
<td>< 0.05</td>
</tr>
<tr>
<td>CP intake (kg/day)</td>
<td>1.07</td>
<td>1.08</td>
<td>0.04</td>
<td>< 0.05</td>
</tr>
<tr>
<td>NDF intake (kg/day)</td>
<td>4.41</td>
<td>4.16</td>
<td>0.21</td>
<td>NS</td>
</tr>
</tbody>
</table>

1: P > 0.1.
2: Last 10 weeks of gestation.

図4には、妊娠34～36週および38～40週におけるTDN摂取量と血漿代謝産物濃度との関係を示した。インスリン濃度はTDN摂取量が増加するに従って上昇する傾向が観察された。グルカゴン濃度はTDN摂取量が増加するに従って逆に低下する傾向にあった。インスリンとグルカゴンのモル比率は、TDN摂取量が増加するに従って上昇する関係にあった。M区およびMP区ともに同様の傾向であった。

図5には、妊娠34～36週および38～40週におけるTDN摂取量と血漿代謝産物濃度との関係を示した。M区のグルコース濃度はTDN摂取量が増加するに従って上昇する関係が見られたが、MP区ではTDN摂取量が増加するに従って逆に低下する関係にあった。UN濃度は、TDN摂取量が増加するに従って低下する関係が観察された。TCHO濃度は、TDN摂取量が増加するに従って低下する関係が見られた。FFA濃度には、はっきりした傾向は観察されなかった。
Fig. 1. Dry matter intake during last 10 weeks of gestation. Open circle and closed squares indicate least square means ± SEM of maintenance (M) and maintenance plus pregnancy (MP) level of feeding, respectively. Statistically significant differences (P < 0.01) were observed between M and MP during the whole experimental period.

考察

Forbesらは、分娩直前には増大する妊娠子宮によりルーメンが圧迫され、DMIが著しく減少すると報告している。乳牛では分娩前1〜2週間で、DMIが10〜30%減少することが観察されており44。また、妊娠末期におけるDMIの減少は、脂肪肝を引き起こすことが知られている。本研究では、MP区のDMIは妊娠39週目に低下する傾向がみられた。また、MP区の方がM区よりも全試験期間中有意に高かった（P < 0.01）。日本飼養標準では、分娩前2ヶ月間の妊娠に要する養分要量を、1日に代謝エネルギーで5.90 Mcalに相当する飼料を増給することによって満たすものとしている。妊娠ステージの進行に従った妊娠代謝エネルギー要量は、68.97 MJ/日（妊娠日数）Mcal/dayととなっているため、日本飼養標準乳牛1994年版の5.90 Mcal/dayを超えるのは妊娠256日目であると計算される。このことから、妊娠255日目以降は、実際に胎盤の成長に要する要求量より多く、妊娠256日目以降は要求量よりも少ないものと言える。そのため、妊娠255日目まった、妊娠36週目以降は、M区においても深刻なエネルギー不足には陥っておらず、妊娠38週目以降にエネルギー欠損が負となっている可能性が大きい。M区におけるFFA、インスリンおよびグルカゴン濃度の変化は妊娠38週目以降が著しく、このエネルギー出納状態の変化を反映しているものと考えられた。

Fig. 2. The effect of energy level during last 10 weeks of gestation on plasma insulin (I), glucagon (G) and I/G ratio in dairy cows. Open circle and closed squares indicate least square means ± SEM of maintenance (M) and maintenance plus pregnancy (MP) level of feeding, respectively. +, * and ** indicate statistically significant differences (+: P < 0.1, *: P < 0.05 and **: P < 0.01, respectively) between the M and MP.
『妊娠末期牛のエネルギー水準と血液成分』

ある。本研究では、MP区のグルコース濃度は、試験期間中常にM区よりも高い傾向にあったが、その差は大きなものではなく、エネルギー摂取量が低い場合には、母体での血糖値が絶えず低く、体脂防などの他の栄養素利用作用によって、血液中のグルコース濃度を一定に維持する機構が働いているものと考えられた。

本研究では、M区のFFA濃度は、試験期間中常にMP区より高く、分娩前前に急激に上昇し、M区で838.8μEq/l、MP区で712.1μEq/lとなった。血漿FFA濃度は、分娩前17日から2日目までの間に2倍に上昇し、分娩時に高値を示すことが報告されている。図5から、それぞれの妊娠ステージにおけるTDN摂取量と血漿FFA濃度との間には明確な関係がみられなかった。血漿FFA濃度が分娩が近づくのに従って増加するのは、この時期にDMIが徐々に減少するとともに、胎子が短期間に著しく増大するため、エネルギー不足になり、体脂防組織から動員が行われているためであると考えられた。

DMIの減少によって脂肪肝にいったん陷ると、新生仔の能力が減少し、血漿のグルコース濃度が低下する。そのため、インスリン濃度が低下し、脂肪の動員が促進されるため、血漿FFA濃度が上昇するといわれている。分娩前は、泌乳中とは異なり、FFAは乳製品で消費されることがなかった。胎盤を除いて、脂肪肝がますます重要となっていくという悪循環に陥るおそれがある。TCHO濃度は、肝機能上関係があり、脂肪肝状態では低下する傾向があるといわれている。本研究のM区において、FFAとともにTCHO濃度がMP区より高い傾向にあった。

エネルギー摂取量が不足すると、ルーメン内での微生物のエネルギー源が不足し、微生物性蛋白合成能力が低下することによって、ルーメン微生物による窒素利用率の低下および血漿UN濃度の上昇がみられることが知られている。本研究においても、M区のUN濃度は、試験期間中にMP区より高く、細胞が観察され、同様に妊娠ステージにおいてはTDN摂取量が低くなるに従ってUN濃度は高くなる傾向にある。エネルギー摂取量が不足によってルーメン内での利用されない窒素が増加していると考えられた。

インスリン濃度の低下は、肝臓からのグルコース放出を促進し、母体のインスリン依存性組織におけるグルコースの消費を抑制することが知られている。静脈でのグルコースの利用は、母体のインスリン濃度の影響を受けないため、胎仔にとって有利な状況といえる。
Fig. 4. The relationships between TDN intake (TDNI) and plasma insulin (I), glucagon (G) and I/G ratio during 34-36 and 38-40 weeks of gestation in dairy cows. Open circle and closed squares indicate data of maintenance (M) and maintenance plus pregnancy (MP) level of feeding, respectively. +, * and ** indicate statistically significant correlation coefficient (+: P<0.1, *: P<0.05 and **: P<0.01, respectively).
Fig. 5. The relationships between TDNI and plasma glucose, urea nitrogen (UN), total cholesterol (TCHO) and free fatty acid (FFA) concentrations during 34-36 and 38-40 weeks of gestation in dairy cows. Open circle and closed squares indicate data of maintenance (M) and maintenance plus pregnancy (MP) level of feeding, respectively. * and ** indicate statistically significant correlation coefficient (*: P < 0.05 and **: P < 0.01, respectively).
MP区では、妊娠ステージの進化によるインスリンおよびグルカゴン濃度の変化は観察されなかったが、妊娠症のステージでのTDN摂取量と血漿ホルモン濃度との関係は明確と同様であったため、TDN摂取量の低い方が母体組織へのグルコースの取り込み量が低下し、体脂肪からのFFAの動員が増しやすい環境になっているものと推察される。

以上の結果から、分娩前にエネルギー摂取量が要求量以下に減少した場合においても、胎仔や乳製の正常な発達のためにエネルギーが配分される機構が働いている可能性が示唆された。ただ、エネルギーの欠乏は体脂肪を動員して補うため、このような状態が長期化するとう、肝臓には、その処理能力を超えた脂肪が流入・蓄積され、血脂肪値が低下した状態となる。そのため、分娩前の乾物摂取量を最大にしてエネルギー出わを改善することとか、体脂肪の動員を最低限にし、脂肪肝やケトーシスを防ぐこととなり、健康で体栄値が十分な状態で分娩を迎えることによって、泌乳初期の乳量および乳製成績を改善するものといえる。

謝辞
本試験を実施するに当たり、実験動物の管理を担当していただいた寒試験場業務一科職員の皆様、および試料の分析にご協力していただいた日野血液元技官ならびに栄谷氏方に深く感謝の意を表します。

文 献

Effects of Energy Level on Plasma Hormones and Metabolites During the Last Two Months of Pregnancy in Holstein Dairy Cows

Takehiro NISHIDA1,*, Mitsunori KURIHARA1, Fuminori TERADA1, Agung PURNOMOADI1,2 and Masaki SHIBATA1,6

1 National Institute of Animal Industry, Tsukuba Norin Kenkyu Danchi, Ibaraki-ken 305-0901, Japan
2 Faculty of Animal Husbandry, Diponegoro University, Semarang, Indonesia

Corresponding: Takehiro NISHIDA (fax: +81 (0) 287-37-7022, e-mail: nishtake@affrc.go.jp)

A study was undertaken to determine the effect of feed amount on the blood metabolites and hormones in Holstein dairy cows during the last 10 weeks of gestation. Italian ryegrass and concentrate were fed to meet requirement of dam for maintenance only (M, n = 9) or dam for maintenance plus fetus (MP, n = 17). Proportion of forage in the diet were 90%, 70% and 50%. Blood samples were taken via the coccygeal artery and jugular vein at 30, 32, 34, 36, 38 and 40 weeks of gestation before morning feeding. Least square means of dry matter intake (DMI) during the experiment in M and MP were 8.15 and 9.89 kg/day, respectively. The plasma insulin concentration in M was statistically lower than that in MP from 32 weeks of gestation and decreased from 36 to 40 weeks of gestation due to growth of fetus. The plasma free fatty acid (FFA) concentration in M was higher than that in MP during the last 10 weeks of gestation and increased from 36 to 40 weeks of gestation. The increase in plasma FFA was observed in MP at 40 weeks of gestation. The decrease in plasma insulin and the increase in plasma glucagon concentration and the molar insulin : glucagon ratio were found as TDN intake increased after 34 weeks of gestation. The lower plasma insulin and glucagon concentration and increase of fat mobilization were observed when no additional energy for fetal development was fed to pregnant dairy cows during the last 10 weeks of gestation.

Key words: Nutrition, Dairy cows, Late pregnancy, Energy level

Animal Science Journal. 70 (8) : J123–J131

Present address: *National Grassland Research Institute, Senbonmatsu, Nishinmune-chou, Tochigi-ken 329-2793.
6Kyusyu National Agricultural Experiment Station, Nishigoushi-machi, Kumamoto-ken 861-1192