LAPORAN PENELITIAN

UJI POTENSI EKSTRAK DAUN KRINYCH SEBAGAI BAHAN INSEKTISIDA ALTERNATIF: PENGARUHNYA TERHADAP TOKSISTAS DAN ANTIMAKAN ULAT *Agrotis sp*

Oleh:
Drs. Mochamad Haqi, MSi
Rully Sabdidian, SSi, MSi

Dibuat oleh Pimpinan Penelitian Penelitian Pendidikan Tinggi
Direktur Jenderal Pendidikan Tinggi, Departemen Pendidikan Nasional, sesuai dengan
Surat Perjanjian Pelaksanaan Aktivitas Dosen Muda, Studi Ketenagakerjaan dan Sosial

JURUSAN BIOLOGI
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS DIPONEGORO
November 2004

UPT-PUSTAK-UNDIP

No. Daftar: 180/kt/mhp\(f/0)
LAImproa Kegiatan Penelitian Dosen Muda 2004

b. Bidang Ilmu : MIPA/Biologi

2. Ketua Peneliti.
a. Nama Lengkap : Dra. Mohamad Hadi, Msi
b. Jenis kelamin : Pria
c. Gedung/Unit : III D/ 131 672 951
d. Jab. Panganonal : Lektor
e. Fak. Jurusan : MIPA / Biologi
f. Pusat Penelitian : Lemlit UNDIP

3. Susunan Tim Penelitian
a. Ketua Peneliti : Dra. Mohamad Hadi, Msi
b. Anggota Peneliti : 1 orang.


5. Lama Penelitian : 3 bulan.

7. Biaya Penelitian : Rp. 6.000.000,-- tahun anggaran 2004

Semarang, 4 Nopember 2004
Ketua Penelitian

Dra. Mohamad Hadi, M.Si
NIP. 131 672 951

Mengetahui
Dekan Fakultas Pertanian UNDIP

Prof. Dr. Ir. E. Rizwan, Sp. BD
NIP. 138 529 454
ABSTRAK

Penggunaan insektisida kimia telah menimbulkan resistensi hama, resurgensi hama dan ledakan hama sekunder serta penomoran lingkungan. Oleh karena itu perlu dicari suatu jenis insektisida alternatif yang aman dan tidak menimbulkan resistensi dan pencemaran lingkungan, antara lain dengan menggunakan material tanah bukan bahan akifiova. Salah satu jenis tanaman yang berpotensi sebagai bahan insektisida botani adalah Kirinyuh Eupatoriopsis odorataum L. (Asteraceae).

Penelitian ini merupakan penelitian lanjutan dari penelitian uji potensi ekstrak daun Kirinyuh sebagai bahan insektisida alternatif. Pada penelitian yang lalu, telah dilakukan aspek toksisitas dan safet anti makan terhadap serangga Heliotis armigera Hubner, dengan hasil bahwa toksisitas (LC50 96 jam) terjadi pada konsentrasi 0,91 persen (b/v) dan pada konsentrasi 0,25 persen (b/v) ekstrak daun Kirinyuh telah menunjukkan safet anti makan secara nyata terhadap larva uji. Selanjutnya diketahui pula bahwa pada konsentrasi su}= lethal 0,2 dan 0,4 persen (b/v), ekstrak daun Kirinyuh secara nyata menghambat pertumbuhan larva dan perkembangan serangga H. armigera L. Pada konsentrasi tersebut, ekstrak uji juga menghambat fekunditas atau kesuburan serangga H. armigera yang diulang, bahkan pada konsentrasi 0,4 persen (b/v) tidak diperoleh pengendalian betina sehingga fekunditas per ngengat betina menjadi nol (tidak dihasilkan telur).

Pada penelitian ini akan diteliti pengaruh ekstrak daun kirinyuh tersebut terhadap toksisitas dan antimakan larva Agrotis sp. Tujuan penelitian adalah mengkaji bagaimana pengaruh ekstrak daun Kirinyuh terhadap toksisitas dan antimakan larva Agrotis sp. serta pada konsentrasi berapa ekstrak uji memerlukan pengaruh nyata terhadap serangga uji. Karena pada saat penelitian ulat Agrotis sp cukup sulit didapatkan di lapangan karena nampaknya musim tidak sesuai, dan sementara itu ulat Spodoptera sp justru cukup banyak maka ulat ini dipakai sebagai ulat uji (objek) pengganti.

Hasil penelitian menunjukkan bahwa toksisitas ekstrak daun Kirinyuh terhadap ulat Spodoptera sp yang diuji terjadi pada konsentrasi 0,14 persen (b/v). Pada konsentrasi ini mortalitas ulat uji mencapai 50 % (LC50-96 jam). Tingkat toksisitas ini lebih rendah dibandingkan dengan toksisitasnya terhadap ulat Heliotis armigera, yaitu pada konsentrasi 0,91 persen (b/v). Akan tetapi nampaknya ekstrak uji belum mampu sebagai senyawa antimakan terhadap ulat uji, terbukti dari hasil uji statistik (LSD Tukey-Kramer) yang tidak menunjukkan beda nyata pada semua konsentrasi yang diulang. Berbeda dengan pengujian terhadap ulat H. armigera, safet antimakan secara signifikan ditunjukkan pada konsentrasi uji 0,25 persen (b/v).

Kata kunci: Kirinyuh, Eupatoriopsis odorataum, Heliotis armigera, Agrotis sp, Spodoptera sp. Toksisitas, Antimakan.
SUMMARY

The use of chemical insecticide has promoted pest resistance, resurgence and break of secondary pest and environmental pollution. So that, it needs to be searched a somewhat alternative insecticide that is safe and not promotes pest resistance. One of them is using plant materials as active agent. A plant that has potential as botanical insecticide is Eupatorium odoratum (Asteraceae).

This research is aimed to see the potential of extract E. odoratum leaves as botanical insecticide and investigate the effect this insecticide on one of important agricultural pest which Spodoptera sp larvae. The problem that wants to be solved is that how the E. odoratum leaves extract on toxicity and antifeedant of Spodoptera sp larvae and on what concentration this extract will be effective effect.

Extraction on tested materials was done using 95% alcohol. Larvae were taken care in the laboratory with artificial diet. Toxicity test was done using Probit Analysis. Antifeedant test was done using no choice method with artificial diet. Data analysis was done using ANOVA and LSD Tukey-Kramer test.

The results showed that toxicity of extract on tested larvae predvails on 3.14% (w/v) concentration, larvae mortality as much as 50% (LC50-96 hours). Extract of E. odoratum as antifeedant effect showed no significantly on Spodoptera sp larvae.

Keywords: E. odoratum, Spodoptera, antifeedant, toxicity.
KATA PENGANTAR

Segala puji dan nyakur saya panjatkan kehadirat Tuhan Allah SWT, karena hanya atas rahmat dan kemulia-Nya lah penelitian ini dapat dilaksanakan.

Pelaksanaan penelitian ini tidak terlepas dari bantuan berbagai pihak. Oleh karena itu, dengan segenap kerendahan hati, saya menyampaikan banyak terima kasih kepada berbagai pihak.

1. Dekan F. MIPA Universitas Diponegoro, atas kesempatan yang diberikan.
2. Ketua Lembaga Penelitian Universitas Diponegoro, atas peruntungan penelitian yang diberikan.
5. Karyawan Bankor, MSc. atas bantuan tenaga yang diberikan
7. Semua pihak yang tidak dapat disebutkan satu persatu yang telah membantu dalam pelaksanaan penelitian ini.

Semoga Allah SWT melimpahkan hidayah-Nya atas segala amal baik yang telah diberikan hingga penelitian ini dapat dilaksanakan dengan diselisahkan dengan baik. Akhirnya penulis berharap semoga para karya tercinta bermanfaat bagi kemajuan ilmu pengetahuan di masa yang akan datang.
<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lembas Identitas dan Pengesahan</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>Abstrak</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>KATA PENGANTAR</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>BAB I. PENDAHULUAN</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BAB II. PENJAUAN PUSTAKA</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>BAB III. TUJUAN DAN MANFAAT PENELITIAN</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>BAB IV. METODA PENELITIAN</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>BAB V. HASIL DAN PEMBAHASAN</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>BAB VI. KESIMPULAN DAN SARAN</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
BAB I PENDAHULUAN


Penggunaan insektisida kimia yang tidak terkendali tentu tidak saja memberikan keuntungan-kentungan, akan tetapi juga sering menimbulkan masalah serius sebagai efek sampingnya. Dampak negatif yang muncul akibat penggunaan insektisida kimia antara lain terhadap resistensi dan renggerai hama, pemberian hama sekunder serta kontaminasi lingkungan (Loechner & Matosil, 1982; Perkins, 1985, Yoshida & Toscano, 1994).

Masyarakat tanpa dirasakan tebus, maka penggunaan insektisida hama dilakukan secara tepat dan bijaksana yaitu setiap mengatasi kelompok keceraan yang menimbulkan jenis insektisida alternatif yang aman bagi organisme bukan suasan, tidak menyebabkan resistansi hama dan rancun hama-bunyi-hamugge (Facknath & Kawo, 1993). Sifat demikian dapat dimiliki oleh insektisida bahan alami sebagai bahan eksipifis (Tjekrowo, 1987; Yoshida & Toscano, 1994).

Dengan pentingnya fungsi biji yang banyak jenis serangan hama yang telah resisten terhadap berbagai jenis tanaman insektisida sintetis dan telah banyak pula kasus pencemaran lingkungan akibat penggunaan insektisida yang berlebihan dan terus menerus, maka perlu dicari usaha untuk memperoleh jenis insektisida alternatif yang efektif untuk membatasi dan mengembalikan populasi
hama, aman bagi lingkungan dan manusia, terjangkau oleh daya beli petani, dan sumberdayanya murah dan mudah didapat, misalnya insektisida botani yang menggunakan berbagai jenis tumbuhan sebagai bahan aktifnya (Hadi, 1996).


Salah satu jenis tumbuhan yang dianggap mempunyai potensi untuk dikembangkan sebagai bahan insektisida botani adalah tumbuhan Kirinyah (Eupatorium odoratum - Asteraceae) yang banyak tumbuh disekitar kita (Grainge & Ahmad, 1988). Tumbuhan ini diketahui mempunyai kandungan metabolik sekunder antara lain monoterpen, sesquiterpen, oksimino, cinamone, beta Caryophyllene (White et al., 1977; Zygadlo et al., 1995; Zygadlo et al., 1996; Hadi, 2001)


Dengan perimbangan bahan telah beras tanggula hama yang resisten terhadap insektisida sintesis dan telah pula banyak kasus pencemaran lingkungan skibat pergunaan insektisida sintesis. Maka perlu dicari jenis insektisida alternatif yang efektif dan aman serta terjangkau oleh daya beli petani dan sumberdayanya mudah didapat.

Hasil penelitian terdahulu, Hadi, dkk (1999) terbukti bahwa ekstrak daun kirinyuh toksis terhadap ulat jagung H. armigera dengan LC-50 = 0,910 % (v/v)
dan pada konsentrasi 0,25 % (b/v) telah nyata berpengaruh sebagai anti makan (penolak makan) terhadap ulat jagung tersebut. Ekstrak daun kirinyuh pada konsentrasi 0,25 % (b/v) juga mampu menghambat pertumbuhan ulat dan fekunditas seangka ulat jagung tersebut (Hadi, dkk, 2001). Hasil pengujian kualitatif fiokimia ekstrak etanol daun Kirinyuh terhadap beberapa senyawa kimia yang diduga berkandung didalamnya dan diperoleh ditariik oleh petani etanol, positif mengandung beberapa senyawa bioaktif yaitu alkaloid, flavonoid, terpenoid, kuinin dan tanin, sementara terhadap saponin memberi hasil negatif.

Senyawa-senyawa bioaktif inilah yang diduga mampu memberi pengaruh negatif atau menghambat beberapa parameter yang dijelaskan yaitu toksisitas, anti makan, penurunan dan perkembangan ulat dan usus, serta fekunditas seangka H. armigera yang diperlakukan (Hadi, dkk, 2001). Ekstrak kirinyuh tersebut pada konsentrasi 0,25 % (b/v) tidak berpengaruh terhadap perkembangan dan pertumbuhan lima tanaman inang ulat H. armigera yang disahkan sebagai organisme non target (bukan sasaran) (Hadi, 2003).

Perumusan Masalah

Penggunaan inseksisida kimia telah menimbulkan resistensi hama, resurgensi hama dan ledakan hama sekunder serta pencemaran lingkungan. Oleh karena itu perlu dicari suatu inseksisida alternatif yang aman dan tidak menimbulkan resistensi hama, antara lain menggunakan material tumbuhan sebagai bahan aktifnya. Salah satu jenis tumbuhan yang berpotensi sebagai bahan inseksisida botani adalah E. odoratum (Asteraceae) (Grainge & Ahmad, 1988; Hadi, 2001).

Dari urian di atas maka akan dilakukan dalam pendirian ini untuk melihat potensi ekstrak daun tumbuhan Kirinyuh E. odoratum sebagai bahan inseksisida alternatif dan pengaruhnya terhadap salah satu hama pertanian penting, yaitu ulat Agrotis sp., cakuk melengkapi data potensi ekstrak uji sebagai bahan inseksisida alternatif setelah diuji terhadap ulat jagung H. armigera. Permasalahan yang muncul adalah apakah ekstrak daun Kirinyuh tersebut juga berpotensi
sebagai insektisida alternatif terhadap hama-hama pertanian penting lainnya salah ulat H. armigera, seperti ulat Agratis sp. Permasalahan selanjutnya adalah belum diketahui pengaruh ekstrak daun Kirinyyah terhadap ulat Agratis sp sebagai organisme target tersebut, dan pada tingkat konsekuensi berupa ekstrak daun Kirinyyah tersebut mampu berpengaruh secara efektif.


Ulat Spodoptera sp atau sering disebut sebagai ulat goryak adalah salah satu hama tanaman pangan di Indonesia. Ulat ini biasa menyerang sebanyak sekolah olah menjadi tanduk dalam jumlah besar dan bergolak dari petak ke petak dalam waktu yang relatif singkat. Hama ini termasuk hama migran, karena biasanya akan berpindah dari tempat serangan satu tempat bergerak dari satu daerah ke daerah (Unang dan Baharua, 1983).

Ulat Spodoptera sp umumnya bersifat polifag yang mampu memakan banyak jenis tanaman. Bagian yang paling disukai adalah bagian daun sehingga apabila menyerang tanaman maka muda dan daun akan terlihat habis. Ulat ini mengalami stadia elumur 3 hari, stadiun larva selama 21 hari, kemudian pupa sampai imago memakan waktu selama 14 hari. Sedangkan imago akan mati setelah berumur 10 hari (Reissig, 1986; Sari, 1995)