HALAMAN PENGESAHAN
LAPORAN AKHIR PENELITIAN DISIEN MUDA

1. Judul Penelitian
 a. Pelaksanaan Benturan dengan Terumbu Aparatur Kimia pada Perangkap Tidur Dawai
 b. Kategori Penelitian
 a. Kegiatan Penelitian
 b. Wadah Ilmu
 c. Skala Penelitian
 d. Fasilitas/Institusi
 e. Dosen Peneliti

2. Komponen
 a. Nama Lengkap & Gelar
 b. Jumlah Koleksi
 c. Coleksi Penelitian
 d. Jumlah Pasien
 e. Jumlah Struktur
 f. Fasilitas/Istirahat
 g. Posisi Peneliti

3. Alamat Keterhubungan
 a. Alamat Kantor
 a. Telepon
 b. Faks
 c. Email
 b. Alamat Rumah
 a. Gedung Timur II No 76 Tulungagung
 b. Semarang

4. Jumlah Anggota Peneliti
 a. Jumlah Anggota Peneliti
 a. Laboratorium Kimia Aparatur
 b. Laboratorium Kimia Aparatur

5. Lokasi Penelitian
 a. Laboratorium Kimia Aparatur

6. Kegunaan, dengan Instansi Lain

7. Luas Penelitian

8. Biaya Penelitian
 a. Biaya yang Diterima
 a. Dnip
 b. Dnip
 c. Dnip
 d. Dnip

Sampul, 1 Desember 2005
Ketua Peneliti

Dipimpin oleh:

Dipimpin oleh:
RINGKASAN

Polarisasi bentonit dilakukan dengan mendispersikan bentonit ke dalam larutan NaCl 1M, larutan dipanaskan pada 70 °C sambil diaduk selama 24 jam. Campuran disaring, disicak, dikeringkan Cari yang akan dilakukan terhadap sampel yang diperoleh didispersikan ke dalam larutan TMACI 1%. Sampel dikaratterisasi dengan difraktometer sinar-X. Pemutihan minyak dilakukan dengan mendispersikan sampel di dalam minyak sawit kemudian dipanaskan pada suhu 50 – 120 °C sambil diaduk dengan kisaran waktu pemanasan 0 – 150 menit, campuran disaring. Residu dikeringkan selanjutnya disambung dengan spektrofotometer infra merah sedangkan minyak yang diperoleh dikaratterisasi dengan spektrofotometer UV-Vis.

Disimpulkan bahwa pemilihan bentonit dengan TMACI meningkatkan jarak antara lapis sebesar 1,205 Å, kondisi optimum pemutihan dicapai pada suhu 95 °C, waktu kontak 2 jam, konentrasi awal TMACI 1% dengan daya pemucat adsorben 97,66%, komponen minyak sawit yang diserap adalah β dan γ karoten, tekoferol dan asam lemak bogor.
PILARIZATION OF BENTONITE BY USING TETRAMETHYLAMMONIUMCHLORIDE AND ITS EFFECT TO BLEACHING POWER ON PALM OIL

Taslimah, Suryanti, 2005, 20

SUMMARY

Bentonite's adsorbent properties, one of it advantages as bleaching agent for palm or soybean oil. Part of properties that has effect on it bleaching power were surface acidity and pore size. Acid treatment on bentonite lead to it surface has acid properties but not much influence on pore size, so that the treatment must be continue for resulting pore with bigger size and by this treatment was expected the bleaching power would be increase. In this research has been done pilation of bentonite to increase pore size and determined it bleaching power on palm oil.

Pilization of bentonite has been carried out by disperse bentonite in to 1 M sodiumchloride solution, the mixture was stirred and heated at 70 °C for 24 hour. The mixture was filtered, residue washed then dried, after that sample was treatment by the same method using 1% TMACl solution, then sample was characterize by X-ray diffractometer. Bleaching was carried out by disperse the sample in to palm oil then stirred and heated at range temperature 50-120 °C, contact time at 0-150 minute, and concentration 0 – 2.5 %. The mixture was separated, residue was characterize by using XRD and infrared was characterized by using UV-Vi spectrometer.

It was concluded that pilization of bentonite using TMACl increase the basal spacing 1.205 A°, optimum condition of bleaching was reached at 95 °C, contact time 2 hours with TMACl 1% and the bleaching power was 97.69%, constituent of palm oil, adsorbed were β and γ caroten, tocopherol and free fatty acid.
PUJIASALKAN

Bapak dan Ibu yang telah memfasilitasi pelaksanaan kegiatan ini, dengan

Pujian dan penghargaan kami yang sebesar-besarnya, terhadap Bapak

1. Direktorat Jenderal Pendidikan Tinggi, Departemen Pendidikan Nasional

2. Lembaga Penelitian Universitas Diponegoro Semarang

3. Bapak Dekan dan Ketua Jurusan Kimia FMIPA-UNDIP

4. Semua staf, laboran dan semua bantuan yang diberikan oleh FMIPA

UNDIP maupun lain yang telah memfasilitasi pelaksanaan kegiatan ini,

Penulis menyerahkan laporan ini semoga bermanfaat, untuk itu, dengan

Semarang, Desember 2005

Tanda penanda
DAFTAR ISI

LEMBAR PENGESAHAN ii
RINGKASAN DAN SUMMARY iii
PRAKATA v
DAFTAR ISI vi
DAFTAR TABEL vii
DAFTAR GAMBAR viii
I. PENDAHULUAN 1
II. TINJAUAN PUSTAKA 3
III. TUJUAN DAN MANFAAT PENELITIAN 5
IV. METODA PENELITIAN 6
V. HASIL DAN PEMBAHASAN 8
VI. KESIMPULAN DAN SARAN 19
DAFTAR PUSTAKA 20
DAFTAR TABEL

Tabel V.1	Jarak antar lapis lempung bentosit	halaman 10
Tabel V.2	Nilai absoberasi, daya penuktatan dan angka asam dari minyak pada variasi waktu penuktatan	halaman 12
Tabel V.3	Nilai absoberasi, daya penuktatan dan angka asam dari minyak pada variasi konsentrasi azel TMA*	halaman 13
DAFTAR GAMBAR

Gambar II.1. Pilarisasi struktur lapis dari bentonit
Gambar V.1. Difrakogram bentonit
Gambar V.2. Spektra UV-Vis minyak sawit
Gambar V.3. Spektra IR adsorben

halaman
3
9
15
17
DAFTAR LAMPIRAN

Lampiran 1. gambar minyak sebelum dan sesudah dipencahkan
Lampiran 2. Personalia Peneliti

halaman
21
22
BAB I
PENDAHULUAN

1.1. LATAR BELAKANG

Bentonit merupakan salah satu jenis mineral yang berada di Indonesia, cukup melimpah, namun nilai ekonominya maju sehingga masyarakat di sektor tambang bentonit relatif mendapatkan kesejahteraan yang memadai dari dampak penambangan bentonit karena barang bahan ini. Untuk meningkatkan nilai ekonomi dan bentonit harus dipulihkan agar meningkatkan kualitas bentonit.

Minyak goreng merupakan salah satu kebutuhan pokok sehari-hari bagi masyarakat Indonesia, minyak goreng yang berekor dihasilkan sangat bermacam kualitasnya, hal ini dapat dihilangkan dengan pencucian minyak tersebut, ada yang berupa cairan jernih pucat, jernih berwarna setingkat keemasan kental yang berwarna kekacauan atau kekacauan yang diketahui dengan minyak cokelat. Minyak goreng dengan kualitas rendah banyak berasal dari peran-peran tradisional atau pedaging-pedaging lokal dimana kesamaan minyak yang mempunyai ekonomi menempat kebawah sedang penggunaan minyak goreng kualitas rendah untuk memasak akan menghasilkan rasa yang tidak enak pada hasil memasaknya dan adanya zat-zat yang berbahaya bagi tubuh seperti senyawa peroksida, asam lemak jenuh yang berlebihan yang dapat memberikan efek samping terhadap kesehatan konsumen. Karena banyak minyak asli yang tidak ada membantu tidak memutuskan cara yang terbaik untuk menggunakan minyak tersebut.

Salah satu jenis minyak goreng yang banyak diproduksi di Indonesia adalah minyak sawit, minyak sawit memiliki berbagai manfaat kesehatan dengan intensitas warna yang kuat sehingga penampakan tidak menarik, karna minyak ini merupakan minyak sawit selalu dianjurkan untuk mengurangi intensitas warna tersebut.

Proses pencucian minyak sawit pada umumnya dilakukan dengan menggunakan bentonit yang telah diaktivasi dengan perlakuan asam, adanya perlakuan asam pada
bentuk tersebut dan dijadikan untuk melaraskan pengontrol pengontrol yang ada dim
merubah gosok alidif panduan dari adorben menjadi bersifat asam saman perilakuan
ini tidak memberikan perubahan yang nyata pada porinya.

1.2. PERUMUSAN MASALAH

Kemampuan bentonit alam sebagai adorben dapat ditingkatkan dengan
perilaum aktivasi asam, adanya perilaum banjir untuk memperbaikan ukuran pori,
dimasukkan dapat meningkatkan daya pemecahan alam adorben, dengan ukuran pori
yang lebih besar diperlukan dapat memetangkup molekul-molekul zat warna yang
lebih banyak. Makaawik berwarna kecoklatan dengan mengunt yang kuat,
setelah bahan panyam warna tersebut memberikan penampakan yang sangat menyokol
sehingga benarang menarik, penelitiabnanya adalah
1. Bagaimana cara memperbesar pori dalam bentonit agar dapat berfungsi sebagai
adorben yang baik?
2. Bagaimana daya pemecahan adorben yang dibuat serta adalak senyawa-senyawa
lain dalam minyak wawit sehut cat warna yang dapat diserap?