Estimasi Arah *Strike* menggunakan Metode Resistivitas Konfigurasi Persegi

Agung Cahyono, Gatot Yuliyanto

Laboratorium Geofisika Jurusan Fisika Universitas Diponegoro

Abstract

The sounding square array resistivity method had been used to estimate strike orientation in a sub surface anomaly model. The advantage of square array are more sensitif in an anisotropic medium such as strike than inline array. Strike is an important factor to placed an array configuration in resistivity method. The array commonly lay down paralel or perpendicular with a strike depend on anomaly structure. The mapping square array was used to detect the model anomaly. The sounding square array were measured by rotating array with azimuth $0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}$ and 180° . The sounding square array had an electrode spacing 1 m, 1,4 m, 2 m and 2,8 m. Azimuthal apparent resistivity was obtained by calculation and then was plotted into Rossete diagram. The estimation of strike orientation was determined perpendicularly from maximum azimuthal apparent resistivity. The mapping square array used 10 m array spacing with 1 m electrode spacing. The Wenner array used 5 m with 0,5 m electrode spacing. Strike orientation was estimated on N 90 E. This estimation was based on result each electrode spacing on the sounding square array. The existing model anomaly were detected on 5 m until 7 m on mapping square array. The result of Wenner array modeling showed that anomaly model was detected on 2,5 m until 3,5 m on N 40 W. This result showed that the sounding square array can be applied to determine strike orientation which usually exist on geological structure *Keywords: square array resistivity, strike,azimuth*

Intisari

Metode resistivitas konfigurasi persegi sounding telah digunakan untuk memperkirakan arah strike pada sebuah model anomali di bawah permukaan bumi. Keuntungan konfigurasi persegi yaitu lebih sensitif dalam perlakuan medan anisotropik di bawah permukaan seperti strike. Strike merupakan salah satu faktor penting untuk meletakkan konfigurasi bentangan dalam metode resistivitas. Bentangan umumnya diletakkan sejajar atau memotong arah strike bergantung pada struktur anomali yang akan diteliti. Konfigurasi persegi mapping digunakan untuk mengetahui adanya respon anomali model pada lintasan pengukuran. Pengukuran konfigurasi persegi sounding dilakukan dengan memutar bidang persegi dengan azimuth 0°, 45°, 90°, 135° dan 180°. Jarak elektroda yang digunakan 1 m, 1,4 m, 2 m dan 2,8 m. Nilai resistivitas semu azimuth yang diperoleh melalui perhitungan selanjutnya diplot pada diagram Rossete. Arah strike ditentukan tegak lurus dari nilai resistivitas semu azimuth maksimum pada diagram Rossete. Konfigurasi persegi mapping menggunakan jarak bentangan 10 meter dengan jarak elektroda 1 meter. Konfigurasi Wenner menggunakan jarak bentangan 5 meter dengan jarak elektroda 0,5 meter. Arah strike diperkirakan pada arah N 90 E. Perkiraan ini berdasarkan hasil yang diperoleh dari tiap jarak elektroda pada konfigurasi persegi sounding. Adanya respon anomali model diketahui pada jarak 5 meter sampai dengan 7 meter pada konfigurasi persegi. Hasil pemodelan inversi konfigurasi Wenner menunjukkan model anomali berada pada jarak 2,5 meter sampai dengan 3,5 meter pada lintasan N 40 W. Hasil yang diperoleh konfigurasi persegi sounding menunjukkan bahwa konfigurasi ini dapat diterapkan untuk menentukan arah strike yang terdapat pada suatu struktur geologi.

Katakunci: resistivitas bentangan persegi, strike, azimut

Pendahuluan

Penggunaan metode resistivitas dalam penyelidikan anomali bawah permukaan telah banyak dilakukan dalam eksplorasi geofisika. Meskipun demikian, penggunaan metode resistivitas sampai saat ini masih mengunakan lima konfigurasi segaris pada pengukuran di lapangan^[1]. Lima konfigurasi segaris tersebut adalah Schlumberger, Wenner, Pole-Pole, Dipole-Dipole dan Pole-Dipole. Menurut Reynolds^[2], setiap tipe dan cara elektroda dalam metode konfigurasi resistivitas mempunyai keuntungan, kerugian dan sensitivitas tertentu. Faktor efektivitas dan ketersediaan ruang bagi eksplorasi menjadi pertimbangan dalam pemilihan tipe konfigurasi bentangan. Kedua faktor tersebut menjadi pertimbangan meletakkan untuk konfigurasi dan menentukan efektifitas kerja dari tiap-tiap konfigurasi. Faktor lain yang juga penting untuk diperhatikan adalah sensitifitas pada arah lateral terhadap ketidakhomogenan suatu medium dan kedalaman penetrasi. Menurut Lane dkk^[3], konfigurasi persegi lebih sensitif dalam perlakuan medan anisotropik di bawah permukaan dan membutuhkan luas daerah pengukuran yang lebih kecil daripada konfigurasi segaris. Keutamaan lainnya, menurut Watson and Barker^[4], vaitu bahwa konfigurasi bentangan persegi ini dapat mengukur dua arah saling tegak lurus dalam satu kali pengambilan data di lapangan. Konfigurasi ini sesuai untuk survei skala kecil dengan pemisahan elektroda hanya pada kisaran beberapa meter. Konfigurasi ini memiliki nilai tersendiri dalam pemetaan tiga dimensi, misalnya untuk penyelidikan arkeologis dangkal. Dengan menghitung rata-rata dua arah saling tegak lurus tersebut maka pengukuran untuk menentukan resistivitas semu dengan dua arah saling tegak lurus dapat ditentukan dalam satu konfigurasi saja^[1]. Hal ini akan mengakibatkan survei lebih efisien. Konfigurasi persegi ini menunjukkan nilai sensitifitas yang besar pada pengukuran anisotropik seperti dip dan *strike*^[3]. Respon anomali yang dihasilkan lebih sensitif pada medan yang memiliki struktur geologi seperti dip atau bedding yang memiliki kecenderungan strike tertentu. Strike merupakan suatu garis maya yang terbentuk melalui perpotongan pada struktur geologi seperti lipatan (fold), patahan (fault) atau rekahan (fracture). Struktur geologi seperti tersebut

di atas merupakan target anomali yang menjadi tujuan pada eksplorasi geofisika. Untuk dapat mendefinisikan struktur geologi tersebut maka konfigurasi elektroda diletakkan dengan memotong atau sejajar arah *strike*. Oleh sebab itu *strike* merupakan salah satu faktor penting untuk meletakkan konfigurasi bentangan dalam metode resistivitas.

Metode Penelitian

Pada penelitian penenytuan arah dengan menggunakan strike metode resistivitas konfigurasi persegi ini Model anomali berupa sebuah lempeng yang ditanam di bawah permukaan bumi dengan kedalaman sekitar 1,5 meter. Spesifikasi sumber anomali adalah panjang 62.3 ± 0.2 cm, lebar 55,1 \pm 0,2 cm, tebal 0,95 \pm 0,2 cm, dan kemiringan (dip) 45°. Sebelum dilakukan pengukuran arus dan beda potensial terlebih dahulu dilakukan orientasi medan untuk mendapat data yang benar-benar akurat dan informatif. Orientasi medan penting dilakukan untuk meminimalkan pengaruh anomali lain yang tidak dikehendaki masuk dalam daerah model anomali. Orientasi medan meliputi penentuan lintasan ukur vang akan digunakan untuk mengambil data. Konfigurasi persegi mapping dan konfigurasi Wenner menggunakan lintasan ukur N 40 W dan N 50 W. Konfigurasi persegi *depth* sounding terletak pada perpotongan antara lintasan ukur N 40 W dan lintasan ukur N 50 W. Penentuan dua lintasan ukur ini untuk meminimalisasikan pengaruh anomali lain di sekitar model. Topografi medan yang digunakan pada penelitian ini cenderung datar dan tidak mempengaruhi lintasan ukur yang dengan digunakan. Untuk mapping konfigurasi persegi menggunakan jarak elektroda 1 meter sedangkan pada konfigurasi Wenner menggunakan jarak elektroda 0.5 meter untuk memperjelas struktur model. Pengukuran lapangan penelitian ini terdiri dari tiga bagian utama dengan meliputi pengambilan data

Berkala Fisika

Vol 10., No.1, Januari 2007, hal 45-51

konfigurasi persegi *mapping*, konfigurasi persegi *depth sounding* dan konfigurasi Wenner. Konfigurasi persegi *mapping* menggunakan jarak elektroda 1 meter dengan lebar bentangan 10 meter pada lintasan N 40 W sedangkan pada lintasan N 50 W menggunakan jarak elektroda 1 meter dengan lebar bentangan 5 meter. Konfigurasi persegi *depth sounding* terdiri dari empat bidang persegi dengan jarak elektroda (*a*) yang berbeda, terpisah oleh rotasi tiap 45° dari titik pusat lintasan ukur. Jarak elektroda diperluas dari 1 meter sampai dengan 2,8 m dengan kenaikan $a \cdot (2)^{\frac{1}{2}}$ tiap pengukuran *sounding* ^[3].

Hasil dan Pembahasan Respon Model Terhadap Konfigurasi Persegi *Mapping*

Gambar 1. Grafik respon anomali model konfigurasi persegi mapping dengan jarak elektroda (a) 1 meter pada lintasan N 40 W

Gambar 2. Grafik respon anomali model konfigurasi persegi mapping dengan jarak elektroda (a) 1 m pada lintasan N 50 W

Konfigurasi persegi mapping dilakukan untuk mengetahui adanya respon model yang tertanam di bawah permukaan terhadap jarak lintasan ukur. Model yang tertanam di bawah permukaan tanah menunjukkan adanya respon terhadap konfigurasi persegi mapping. Respon anomali model dapat dilihat melalui grafik respon model terhadap konfigurasi persegi mapping pada gambar 1. Pengukuran yang dilakukan pada lintasan N 40 W dengan lebar jarak (a) satu meter menunjukkan respon anomali pada jarak 5 meter sampai dengan 7 meter dari pangkal lintasan (gambar 1). Respon anomali ini memiliki nilai resistivitas semu antara 19,53 Ω m24,98 Ω m yang dihasilkan oleh bentangan α. Respon anomali yang dihasilkan oleh bentangan β berkisar antara 16,29 Ω m -30 Ω m. Bentangan β memiliki puncak anomali sebesar 30 Ω m. Pada bentangan α maupun pada bentangan β , keduanya menghasilkan resistivitas dibawah 35 Ω m. Nilai resistivitas ini masuk dalam nilai resistivis besi (iron) menurut Telford et al (1976) berkisar antara 0,1 Ω m – 300 Ω m. Nilai resistivitas semu pada jarak 1 m – 4 m menunjukkan nilai yang resistivitas semu tinggi, yaitu pada kisaran 31 Ω m untuk bentangan α dan 21 Ω m untuk bentangan β . Pada jarak 8 meter sampai dengan 10 meter nilai resistivitas yang dihasilkan cenderung stabil untuk kedua bentangan yaitu pada kisaran 26 Ω m untuk bentangan α dan pada kisaran 20 Ω m untuk bentangan β . Respon adanya anomali model juga ditunjukkan pada konfigurasi persegi Lintasan N 50 W pada gambar 2. Konfigurasi persegi pada lintasan N 50 W menghasilkan respon anomali dengan nilai resistivitas semu berkisar 2.81 Ω m - 23.75 Ω m untuk bentangan β . Hasil yang diperoleh menggunakan konfigurasi persegi mapping lintasan N 50 W ditunjukkan pada gambar 2. Pada konfigurasi persegi lintasan N 50 W dengan bentangan α nilai resistivitas semu yang dihasilkan antara 16,74 Ω m-19.67 Ωm . Respon anomali vang dihasilkan oleh bentangan β memiliki nilai resistivitas semu 2.81 Ω m-23.75 Ω m. Anomali pada konfigurasi bentangan persegi ini terletak pada jarak 5-7 meter. Nilai resistivitas semu pada konfigurasi lintasan ini memiliki persegi nilai resistivitas terendah 2,81 Ω m. Nilai resistivitas yang rendah ini dimungkinkan ketebalan lapisan penutup karena (overburden) yang berpengaruh khususnya pada konfigurasi persegi dengan bentangan β . Pada sebagian besar data hasil

pengukuran lapangan bentangan β memiliki nilai potensial diri (self potential) yang sangat besar dibandingkan konfigurasi persegi dengan bentangan α . Hasil yang diperoleh pada konfigurasi persegi mapping lintasan N 40 W dan N 50 W memberikan indikasi pengaruh anomali model berada pada jarak 5 m – 7 m.

Respon Model terhadap Konfigurasi Persegi Sounding

Hasil yang diperoleh dari data pengukuran di lapangan menunjukkan perbedaan nilai resistivitas semu untuk berbagai arah bentangan. Resistivitas semu terukur untuk berbagai arah bentangan $(0^\circ, 45^\circ, 90^\circ, 135^\circ)$ dan 180°) disajikan dengan lengkap pada table 1. Resisistivitas semu azimuth pada berbagai arah bentangan tiap jarak elektroda disajikan pada tabel 1. Resistivitas semu yang dihasilkan dari berbagai arah bentangan menghasilkan resistivitas semu azimuth yang diperoleh melalui perhitungan dengan menggunakan persamaan (2.30). Pada jarak elektroda 1 meter nilai resistivitas maksimumnya 45,433 Ω m yang diperoleh pada arah 90°. Pada jarak elektroda 1,4 meter nilai resistivitas maksimumnya 45,935 Ω m yang diperoleh pada arah 180°. Pada jarak elektroda 2 meter nilai resistivitas maksimumnya 42,802 Ωm yang diperoleh pada arah 0° . Pada jarak elektroda 2,8 meter nilai resistivitas maksimumnya 42,053 Ω m yang diperoleh pada arah 180°. Data yang telah disajikan pada tabel.1 tersebut kemudian diplot pada diagram Rossete, merupakan data hasil penghitungan dari data pengukuran lapangan yang dimulai dari jarak elektroda (a) terpendek 1 meter sampai dengan jarak elektroda terbesar 2,8 meter. Prinsip penentuan arah strike menurut Lane et al (1995) yaitu arah strike berada tegak lurus dari arah nilai resistivitas semu azimuth maksimum yang diperoleh pada jarak elektroda (*a*) yang sama.

Berkala Fisika

Vol	10.,	N0.1,	Januari	2007,	nal 45-51	

Tabel 1. Resistivitas semu (ρ_a) azimuth untuk konfigurasi persegi sounding pada jarak elektroda (a) dari 1 meter-2,8 meter

Spasi			azimuth (Ω m)				
A (m)	K	ρ_{a}	0°	45 °	90 °	135 °	180 °
1	10.73	33.133	21.144	37.978	45.433	39.952	21.160
1.4	15.02	35.553	45.649	24.967	19.618	41.596	45.935
2	21.45	38.909	42.802	34.939	39.135	35.741	41.927
2.8	30.03	41.706	41.115	42.000	41.628	41.735	42.053

Estimasi Arah Strike Model

Diagram Rossete merupakan diagram untuk plot data resistivitas semu azimuth pada tabel 1. Tiap jarak elektroda menghasilkan satu diagram Rossete. Estimasi arah strike menggunakan diagram Rossete untuk semua jarak elektroda disajikan dengan lengkap pada lampiran C. Hasil plot diagram Rossete pada gambar 3 menunjukkan bahwa strike model dominan N 90 E. Arah strike ini pada arah dihasilkan pada jarak elektroda 1,4 meter, 2 meter dan 2,8 meter seperti ditunjukkan pada gambar 3. Pada jarak elektroda 1,4 meter nilai resistivitas maksimumnya 45,935 Ω m yang diperoleh pada arah 180°. Pada jarak elektroda 2 meter nilai resistivitas maksimumnya 42,802 Ωm yang diperoleh pada arah 0° . Pada jarak elektroda 2,8 meter nilai resistivitas maksimumnya 42,053 Ω m yang diperoleh pada arah 180°. Estimasi arah strike yang menunjukkan arah N 90 E sesuai dengan model yang ditanam di bawah permukaan bumi seperti yang terlihat pada gambar 4. Arah strike model ditunjukkan pada arah Barat-Timur.

Gambar 4. Arah *strike* model ditunjukkan pada arah Barat-Timur.

Respon Model terhadap Konfigurasi Wenner

Konfigurasi Wenner memiliki respon anomali dengan resolusi ke arah horisontal yang tinggi^[2]. Meskipun hanya mengukur pada satu arah lintasan saja (segaris) namun konfigurasi Wenner dapat memetakan model anomali dengan melalui pemodelan menggunakan paket program Res2Dinv. Penampang lintang dua dimensi model menggunakan hasil inversi Res2Dinv lintasan N 40 W ditunjukkan pada gambar 4. Jarak elektroda pendek pada konfigurasi Wenner ini (0,5 meter) digunakan untuk lebih memperjelas struktur model. Hasil yang didapatkan pada konfigurasi Wenner lintasan N 40 W menunjukkan bahwa anomali model memiliki nilai resistivitas $5.40 \Omega m$ -15,5 Ω m. Anomali model terlihat pada jarak 2,5 m – 3 m. Pada konfigurasi Wenner dapat terlihat anomali pada kedalaman 0,9 meter-1,2 meter. Pada kedalaman 0,1 meter sampai dengan 0,6 meter terlihat masih adanya pengaruh lapisan penutup di atas anomali model dengan resistivitas 26.2 Ω m sampai dengan 44,4 Ωm. Pada lintasan N 50 W hasil yang diperoleh menunjukkan adanya respon anomali model pada jarak 5 meter sampai dengan 5,5 meter sedangkan kedalaman sumber anomali model terletak pada 0,8 meter sampai dengan 0,9 meter dari permukaan. Hasil yang diperoleh pada kedua lintasan (N 40 W dan N 50 W) menunjukkan adanya anomali yang terletak pada kedalaman 0,6 m - 1,2 m. Penampang lintang dua dimensi hasil

inversi model menggunakan Res2Dinv pada lintasan N 50 W ditunjukkan pada gambar 5. Melalui grafik respon anomali yang dihasilkan oleh konfigurasi Wenner terlihat bahwa respon anomali model berada jarak 1,75 meter pada lintasan ukur N 40 W seperti yang terlihat pada gambar 6.

Pada lapisan pertama nilai resistivitas semu yang dihasilkan tidak stabil. Hal ini dapat dikarenakan bahwa pada lapisan pertama masih menggunakan jarak antar elektroda 0,5 meter. Jarak elektroda rapat ini dapat mengakibatkan potensial diri yang besar yang dapat mempengaruhi nilai resistivitas tanah pada lapisan pertama. Pada lapisan kedua, keempat menghasilkan ketiga, dan resistivitas yang cukup stabil. Respon anomali model dimungkinkan terjadi pada lapisan kelima yang nampak dari data lintasan ukur 1,75 meter. Nilai resistivitas pada lintasan 1,75 meter ini dapat diduga sebagai respon anomali model dengan nilai resistivitas sekitar 80m. Pada lintasan N 50 W, dengan jarak bentangan 10 meter, menunjukkan respon anomali model berada pada jarak 4,5 meter-5,5 meter pada lintasan pengukuran seperti yang terlihat pada gambar 7. Pada lapisan pertama, hasil yang diperoleh tidak jauh berbeda seperti yang dihasilkan oleh lintasan N 40 W yaitu menghasilkan resistivitas semu yang tidak stabil. Respon anomali model diduga dihasilkan pada lapisan keempat yang memiliki nilai berkisar 7 Ωm. Respon anomali ini cenderung sama seperti yang konfigurasi dihasilkan oleh Wenner lintasan N 40 W dengan resistivitas semu 8 Ωm .

Kesimpulan

Berdasarkan penelitian yang telah dilakukan maka dapat disimpulkan sebagai berikut:

1. Hasil plot diagram *Rossete* menunjukkan bahwa s*trike* model diperkirakan pada arah N 90 E.

- 2. Interpretasi kualitatif dari hasil respon anomali konfigurasi *mapping* dan konfigurasi Wenner didapatkan :
 - Konfigurasi persegi mapping lintasan N 40 W menghasilkan respon anomali model dengan nilai resistivitas semu antara 19,53 Ωm - 24,98 Ωm yang dihasilkan oleh bentangan α. Respon anomali yang dihasilkan oleh bentangan β berkisar antara 16,29 Ωm - 30 Ωm. Anomali model berada pada jarak 5 m-7 m pada lintasan ukur.
 - Konfigurasi persegi *mapping* lintasan N 50 W menghasilkan respon anomali model dengan nilai resistivitas semu antara 16,74 Ω m - 19,67 Ω m yang dihasilkan oleh bentangan α . Respon anomali yang dihasilkan oleh bentangan β berkisar antara 2,81 Ω m - 23,75 . Anomali model berada pada jarak 5 m-7 m pada lintasan ukur.
 - Melalui pemodelan inversi, respon anomali yang dihasilkan konfigurasi Wenner lintasan N 40 W menunjukkan bahwa anomali model terlihat pada jarak 2,5 m – 3 m, dengan letak kedalaman anomali 0,4 m-0,9 m. Pada lintasan N 50 W menunjukkan bahwa anomali model terlihat pada jarak 5 m-5,5 m, dengan letak kedalaman anomali 0,6 m-1,2 m.

Daftar Pustaka

- [1] Tsokas, G.N., P.I. Tsourlos, and J.E. Szymansky, 1997, Square Array Resistivity Anomalies and Inhomogeneity Ratio Calculated by the Finite-Element Method, Geophysics, Volume 62, page 426-435.
- [2] Reynolds, M.J, 1997, An Introduction to Applied and Environmental

Berkala Fisika

Vol 10., No.1, Januari 2007, hal 45-51

Geophysics, John Wiley & Sons, United Kingdom.

[3] Lane, J.W., F.P. Haeni, and W.M. Watson, 1995, Use of a Square-Array Direct-Current Resistivity Method to Detect Fractures in Crystalline Bedrock in New Hampshire, Ground Water, Volume 33, page 476-485.

 [4] Watson, K.A. and R.D Barker, 1999, Differentiating Anisotropy and Lateral Effect using Azimuthal Resistivity Offset Wenner Soundings, Geophysics, Volume 64, page 739-745.