LAPORAN PENELITIAN

KORELASI KREATININ DENGAN RENOGRAM DAN DESKRIPSI TEST DIAGNOSTIK UIV & USG
PADA PENDERITA GANGGUAN FUNGSI GINJAL DI RUMAH SAKIT DOKTER KARIADI SEMARANG

OLEH:

JUNITA IL. SIAHAAN
G3E. 097071

PEMBIMBING:

Dr. H. DJOKO UNTUNG T, SpRad
Dr. SUSATYO PRANOTO, SpKd

BAGIAN / SMF RADIOLOGI
FK UNDIP / RS Dr. KARIADI
SEMARANG
2000
KORELASI KREATININ DENGAN RENOGRAM DAN BESKRIPSI
TEST DIAGNOSTIK UIV & USG
PADA PENDERITA GANGGUAN FUNGSI GINJAL
DI RUMAH SAKIT DOKTER KARIADI SEMARANG

Oleh
Dr. JUNITA INTAN LS

Pembimbing
Dr. H. Djoko Untung T. SpRad
NIP. 130 354 863

Dr. Sugarto Pranoto, SpKN
NIP. 140 112 060

Mengetahui
Ketua Program Studi Radiologi
FK Undip / RSDK Semarang

Mengetahui
Ketua Bagian SMF Radiologi
FK Undip / RSDK Semarang

Dr. Eddy Sudijanto, SpRad
NIP. 140 151 550

Dr. H. Djoko Untung T. SpRad
NIP. 130 354 863
KATA PENGANTAR

Puji syukur kami utapkan ke hadirat Tuhan Yang Maha Esa atas rahmat dana kareuniNya sehingga kami dapat menyelenggarakan laporan penelitian dengan jauh.

"KORELASI KREATININ DENGAN RENOGRAM DAN DISKRIPSI TEST DIAGNOSTIK UV & USG PADA PENDERITA GANGGUAN FUNGSI GINJAL DI RUMAH SAKIT DOKTER KARIADI SEMARANG."

Laporan penelitian ini disusun sebagai salah satu persyaratan dalam menyelenggarakan Program Pendalikan Dokter Spesialis I di bidang Radiologi pada Fakultas Kedokteran Universitas Diponegoro / RSUP Dr. Kariadi Semarang.

Kami menyadari bahwa tulisan ini masih jauh dari kesempurnaan, walaupun kami telah berusaha semaksimal mungkin. Hal ini senata-mata karena ketidaksampuan kami, amun karena dorongan keluarga, teman-teman dan bimbingan dari guru-guru kami tulisan ini dapat terwujud.

Oleh karena itu, pada kesempatan ini perkenankanlah kami menghaturkan rasa hormat dan terima kasih yang sebesar-besarnya dan tulus kepada:

1. Dr. H. Djoko Untung Trihardi SpRad dan Dr. Susatyo Pratoto, SpKN telah penimbangan yang telah memberikan bimbingan, petunjuk dan sarana kepada penulis dengan pernah kesabaran dalam proses pembuatan penelitian ini.

2. Dr. Eddy Sedyanto SpRad selaku Ketua Program Studi PPDS-I Radiologi FK Undip / RSDK Semarang yang telah banyak memberi masukan baik secara teknis maupun non teknis.

[Signature]
3. Para senior spesialis Radiologi, Dr. Soenadjoto, SpRad, Dr. Abubakar, SpRad, Dr. Adj Soeroso SpRad, Dr. Y. Suwito, SpRad, Dr. FX Hartono, SpRad, Dr. Eko Kuncoro SpRad, Dr. Nazirun Zulkarnain, SpPad, Dr. Boyanto, SpRad, Dr. F. Mardiana SpRad, dan Dr. SR Subandini, SpRad.

4. Rekan-rekan residen radiologi, interna dan patologi klinik atas kerja sama yang baik selama ini.

7. Suami dan kedua anak saya tercipta yang selalu mendorong dan telah rela bermakan.

Semoga Tuhan Yang Maha Esa selalu berkenan memberikan rahmat dan karunia Nya kepada kita semua.

Semarang, Maret 2001

Penulis
DAFTAR ISI

Judul penelitian ... i

Halaman pengesahan ... ii

Kata pengantar ... iii

Daftar isi ... v

BAB I PENDAHULUAN ... 1

1.1. Latar belakang masalah ... 1
1.2. Rumusan masalah ... 4
1.3. Tujuan penelitian ... 4
1.4. Manfaat penelitian ... 5

BAB II TINJAUAN PUSTAKA ... 6

2.1. Anatomi ... 6
2.1.a. Struktur makroskopis .. 6
2.1.b. Struktur mikroskopis ginjal 7
2.2. Fisiologis ... 8
2.2.a. Filtrasi glomerulus ... 8
2.2.b. Reabsorpsi dan sekresi tubulus 9
2.2.c. Konsep bersih plasma .. 9
2.3. Patofisiologi dan Etiologi ... 11
2.3.a. GGA ... 12
2.3.b. GGK ... 12
BAB III KERANGKA TEORI DAN KONSEPTUAL
3.1. Kerangka teori .. 21
3.2. Kerangka konseptual 21
3.3. Hipotesa ... 21

BAB IV METODE PENELITIAN
4.1. Jenis penelitian ... 22
4.2. Populasi dan sampel penelitian 22
4.3. Variabel penelitian 22
4.4. Analisis data ... 24
4.5. Cara kerja .. 24
4.6. Alur penelitian .. 25

BAB V HASIL PENELITIAN .. 26

BAB VI PEMBAHASAN .. 32

BAB VII KESIMPULAN DAN SARAN 35
Daftar pustaka ... 36
Lampiran
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 1</td>
<td>Distribusi umur</td>
<td>26</td>
</tr>
<tr>
<td>Tabel 2</td>
<td>Keluhan responden</td>
<td>27</td>
</tr>
<tr>
<td>Tabel 3</td>
<td>Tabel silang kreatinin dengan renogram</td>
<td>27</td>
</tr>
<tr>
<td>Tabel 4</td>
<td>Tabel silang USG ginjal kanan dengan UIV ginjal kanan</td>
<td>29</td>
</tr>
<tr>
<td>Tabel 5</td>
<td>Tabel silang USG ginjal kiri dengan UIV ginjal kiri</td>
<td>29</td>
</tr>
<tr>
<td>Tabel 6</td>
<td>Tabel silang USG ginjal kanan dengan renogram kanan</td>
<td>30</td>
</tr>
<tr>
<td>Tabel 7</td>
<td>Tabel silang USG ginjal kiri dengan renogram kiri</td>
<td>30</td>
</tr>
<tr>
<td>Tabel 8</td>
<td>Tabel silang UIV ginjal kanan dengan renogram kanan</td>
<td>31</td>
</tr>
<tr>
<td>Tabel 9</td>
<td>Tabel silang UIV ginjal kiri dengan renogram kiri</td>
<td>31</td>
</tr>
</tbody>
</table>

DAFTAR GRAFIK

<table>
<thead>
<tr>
<th>Grafik 1</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grafik 1</td>
<td>Distribusi jenis kelamin</td>
<td>26</td>
</tr>
<tr>
<td>Grafik 2</td>
<td>% fungsi terhadap kreatinin</td>
<td>28</td>
</tr>
</tbody>
</table>
BAB I
PENDAHULUAN

1.1. Latar belakang penelitian

Evaluasi penderita dengan penyakit ginjal dimaksudkan untuk memastikan apa -
kah seorang penderita dengan keluhan dan gejala tertentu betul menderita suatu penyakit.
Kemudian dicari apa penyebabnya, derajat berat penyakitnya, bagaimana fungsi
ginjalnya, dll. Langkah awal pendekatan diagnosis penyakit ginjal dimulai dengan
menggolongkan gejala penderita ke dalam salah satu atau lebih sindroma tertentu.

Sindroma gagal ginjal dibagi menjadi dua kategori yang luas, yaitu akut dan
chronik. Gagal ginjal akut (GGA) berkembang dalam beberapa hari atau beberapa minggu.
Sebaliknya, gagal ginjal kronik (GGK) merupakan perkembangan gagal ginjal yang
progresif dan lambat, biasanya berlangsung beberapa tahun. Pada kedua kasus tersebut,
ginjal kehilangan kemampuannya untuk mempertahankan volume dan komposisi cairan
tubuh.

Di negara yang sudah mapan, angka kejadian GGA didapat selama perawatan
di rumah sakit (hospital acquired acute renal failure) berhubungan erat dengan
tingginya frekvensi tindakan bedah beresiko tinggi. Angka kejadian ini mencapai 4-5 %
dan hampir 60 % mempunyai hubungan dengan tindakan bedah terutama bedah jantung,
toraks, vaskuler, abdomen (Beck, 1994). Sebaliknya di negara berkembang terutama
daerah tropika, umumnya GGA didapat di masyarakat (community acquired acute renal
failure) masih merupakan masalah dengan angka kejadian yang cukup tinggi. Umumnya
sebagai akibat lanjut dari sindrom sepaisa, gastroenteritis akut, perdarahan terutama pada
wanita masa nifas, infeksi virus, leptospirosis dan malaria tropika. Meskipun demikian hospital acquired acut renal failure tidak jarang ditemukan dengan angka kematian cukup tinggi. Penelitian selama 5 tahun dari 3 rumah sakit terkenal di Bandung (RS Hasan Sadikin, RS Advent dan RS Boromeus) ditemukan 81 (34%) dari 236 pasien di ruang rawat intensif. Fasca bedah abdomen 59,3% dan urologi 28,4% merupakan penyebab penting.3

GGK merupakan pemasanah bidang nefrologi dengan angka kejadiannya masih cukup tinggi, etiologi luas dan kompleks, sering tanpa keluhan maupun gejala klinis kecuali sudah terjun ke stadium terminal (gagal ginjal terminal).3

Di Amerika Serikat, insidens didiagnosisnya penderita gagal ginjal terminal (GGT), berkisar 50-100 kasus per juta penduduk pertahun.4 Laporan stadi epidemiologi klinis di Indonesia ternyata GGT menempati urutan pertama dari seruan penyakit ginjal, khususnya bidang nefrologi.3 Di Jawa Tengah dengan penduduk sekitar 20 juta, paling sedikit akan didapatkan 400 penderita GGT per tahun. Di Semarang dari angka-angka catatan medik didapatkan bahwa di RS Dr. Kariadi rata-rata 100 penderita GGK per tahun (1979 sd Juni 1983) dan di RS Telagorejo rata-rata 50 penderita GGK per tahun (1982 sd 1986).5

Penderita penyakit ginjal biasanya datang pada dokter dengan keluhan akibat langsung kelainan ginjalnya atau suluran kemih, biasanya bersifat dramatis dan terlihat dini dalam perjalanan penyakitnya dan akibat gangguan fisiologis ginjalnya yang belum akan timbul keluhan dan gejala nyata sebelum 90% jaringan ginjal mengalami kerusakan sehingga sering ketahuan penyakitnya secara kebetulan.3,4 Meningkat hal tersebut di atas maka perlu dilakukan pemeriksaan yang teliti. Pemeriksaan ini meliputi anamnese.
pemeriksaan fisik, urinalisis, pemeriksaan darah dan pencegahan ginjal (renal imaging). Pencitraan ginjal mempunyai peranan yang penting dalam hal diagnostik dan evaluasi penyakit ginjal.1,2

Pengukuran serum kreatinin dengan atau tanpa BUN (blood urea nitrogen), telah disarankan oleh American College of Physicians dalam menyarankan asas perawatan pada orang dewasa. Sensitivitas serum kreatinin dalam mendeteksi insufisieny renal yang ringan tidak terlalu tinggi. Meskipun begitu, karena pemeriksaan fungsi renal yang lebih baik seperti lotalumate dan kliens kreatinin lebih sulit dan memerlukan biaya, maka serum kreatinin masih tetap digunakan dalam menilai fungsi ginjal baik dalam klinik ataupun dalam penelitian.6

Pemeriksaan dengan radiofarmaka dapat memberikan informasi terutama mengenai fungsi ginjal baik secara kualitatif maupun kuantitatif, disamping informasi tentang anatomis ginjal. Dibandingkan dengan pemeriksaan fungsi ginjal menggunakan zat non radioaktif (Inulin dan PAH), pemeriksaan dengan radiofarmaka mempunyai keunggulan yaitu dapat menilai fungsi ginjal secara terpisah (kanan dan kiri), waktu pemeriksaan lebih singkat dan prosedur pemeriksaan lebih sederhana.7,8

Keterbatasan dari renogram adalah pemeriksaan ini tidak spesifik. Jelas bahwa diagnosis yang akurat mengenai kelainan ginjal, khususnya fungsi ginjal, tidak bisa hanya didasarkan pada renogram saja. Tapi jika kelainan renogram diintepresikan benamaan dengan gejala klinis, pemeriksaan biokimia, gambaran urografi, dan ultrasond maka akan didapatkan informasi penting mengenai kelainan saluran kemih.9,10

Penelitian ini akan membahas mengenai pemeriksaan serum kreatinin pada gangguan fungsi ginjal yang dikonfirmasikan dengan renogram dan deskripsi test
diagnostik urografi intravena (UIV) dan ultrasonografi (USG) untuk meningkatkan ketepatan dan ketajaman.

1.2. Perumusan masalah

Berdasarkan latar belakang masalah di atas, maka masalah penelitian ini dapat dirumuskan sebagai berikut: “Seberapa jauh kesesuaian fungsi ginjal pada pemeriksaan serum kreatinin dengan renogram ?”

1.3. Tujuan penelitian

1.3.1. Tujuan umum

Mengetahui kesesuaian fungsi ginjal pada pemeriksaan serum kreatinin dengan renogram.

1.3.2. Tujuan khusus

a. Membuktikan seberapa jauh kesesuaian pemeriksaan serum kreatinin dengan renogram.

b. Menyajikan data deskriptif test diagnostik UIV dan USG serta menganalisa derajat gangguan fungsi ginjal berdasarkan serum kreatinin yang dikonfirmasikan dengan renogram.

1.4. Manfaat

1.4.1. Manfaat untuk pelayanan

Hasil penelitian ini akan dapat meningkatkan kualitas pelayanan diagnostik.

1.4.2. Manfaat untuk pendidikan
Hasil penelitian ini dapat memberikan gambaran kesesuaian antara pemeriksaan serum kreatinina dengan rengam.
BAB II
TINJAUAN KEPUSTAKAAN

2.1. ANATOMI

Ginjal terletak di kedua sisi voluma vertebralis, di sebelah belakang abdomen atas, di belakang peritoneum, di depan dua costa terakhir dan tiga otot utama, yaitu: m.transversus abdominis, m.quadratus lumborum dan m.psoas mayor. Ginjal kanan sedikit lebih rendah dibandingkan dengan ginjal kiri, karena terletak di bawah oleh luma.

Kutub atas ginjal kiri terletak setinggi costa ke-XII, sedangkan kutub atas ginjal kiri terletak setinggi Costa ke-X. Ginjal dipertolakkan dalam posisi tersebut oleh bantal lemak yang tebal. Kelenjar adrenal terletak di atas kutub masing-masing ginjal.

Kezra ureter merupakan saluran dengan panjang sekitar 25 - 35 cm, terbentang dari ginjal sampai kandung kemih. Fungsinya menyalurkan urin ke kandung kemih.

Kandung kemih adalah muat kantong berotot yang dapat mengempis dengan kapasitas 400-500 ml, terletak di belakang simfisis pubis dan mengapung tiga muara dua muara ureter dan satu muara urethra. Fungsinya sebagai tempat penyimpanan urin sebelum meninggalkan tubuh, dan dilansu urethra berfungsi mendorong urine ke luar tubuh. Urethra adalah saluran kecil yang dapat mengembang, berjalan dari kandung kemih sampai ke luar tubuh. Panjangnya, pada wanita 5 cm dan pada laki-laki sekitar 15 cm. Muas urethra ke luar tubuh dinamaikan meatus urinaries.5,9,11

2.1.1. Struktur makroskopik ginjal

Pada orang dewasa ginjal panjangnya 12 sampai 13 cm, lebar 6 cm, tebal sekitar 4 cm dan beratnya intima 120 sampai 150 gram. Permukaan anterior dan posterior, kutub
atas dan bawah serta pinggir lateral ginjal berbentuk konvex, sedangkan pinggir medialnya berbentuk konvex karena adanya hilus.

Pembentukan urine dimulai dalam korteks dan berakhir dengan mengalirnya materi tersebut melalui tubulus dan ductus koligen. Urine yang terbentuk kemudian mengalir ke dalam duktus papilis Bellini, masuk kaliks minor, kaliks mayor, pelvis ginjal dan akhirnya meninggalkan ginjal melalui ureter menuju kandung kemih.2,11,12

2.1.b. Struktur mikroskopik ginjal

Unit basis fungsional dari ginjal adalah nefron yang jumlahnya lebih dari satu juta pada setiap ginjal, yang pada dasarnya mempunyai struktur dan fungsi yang sama. Dengan demikian, pekerjaan ginjal dapat dianggap sebagai jumlah total dari fungsi seluruh nefron tersebut. Setiap nefron terdiri dari kapsula Bowman, yang mengikat rambu
kapiler glomerular, tubulus kontortus proksimal, lengkung Henle, dan tubulus kontortus distal, yang mengosongkan diri ke ductus kolijen.2.12

2.2. FISIOLOGI GINJAL

Fungsi dasar nefron adalah untuk membersihkan atau menjerumuskan plasma darah dari zat-zat yang tidak dikehendaki ketika mengalir melalui ginjal tersebut.

Mekanisme utama nefron tersebut membersihkan plasma dari zat-zat yang tidak dikhendaki adalah: (a) menyingat sebagian besar plasma, biasanya kint-kint seperti darah dari jala dan plasma, melalui membran glomerulus ke dalam tubulus nefron (b) kemudian, ketika cairan yang difiltrasi ini mengalir melalui tubulus tersebut, zat-zat yang tidak dikhendaki tidak direabsorpsi, sedangkan zat yang dikhendaki direabsorpsi kembali ke dalam plasma kapiler peritubulus.

Mekanisme kedua nefron membersihkan plasma dari zat-zat yang tidak dikhendaki adalah dengan sekresi, yaitu zat-zat disekresikan dari plasma langsung ke dalam sel-sel epitel yang melapisi tubulus dan masuk ke dalam cairan tubulus tersebut.2.12

2.2.a. Filtrasi glomerulus

dalam kapiler glomerulus mempermudah filtrasi dan kekuatan ini dilawan oleh tekanan osmotik koloid darah dan tekanan di dalam kapsula Bowman. Tekanan kapiler glomerulus diperkirakan kurang lebih sekitar 50 mmHg, sedangkan tekanan intrakapsula sekitar 10 mmHg. Tekanan osmotik koloid sekitar 30 mmHg. Dengan demikian tekanan filtrasi bersih dari glomerulus besarnya sekitar 10 mmHg. Filtrasi glomerulus tidak hanya dipengaruhi oleh kekuatan-kekuatan fisik ini, tapi juga dipengaruhi oleh permeabilitas dinding kapiler. Jumlah filtrat glomerulus yang dibentuk setiap menit dalam semua nefron kedua ginjal disebut laju filtrasi glomerulus. Normal rata-rata 125 ml/menit.3,6,12

2.2.b. Reabsorpsi dan sekresi tubulus

Langkah kedua dalam proses pembentukan urin sudah filtrasi adalah reabsorpsi selektif zat-zat yang sudah difiltrasi. Kabanyakan dari zat-zat yang difiltrasi direabsorpsi melalui pori-pori kecil yang terdapat dalam tubulus sehingga akhirnya zat-zat tersebut kemudian ke dalam kapiler peritubular yang mengecil menjadi tubulus. Kecuali itu, beberapa zat tersebut disekresi dari pembuluh darah yang mengelilingi peritubular tersebut ke dalam tubulus. Proses reabsorpsi dan sekresi ini berlangsung baik melalui mekanisme transport aktif maupun pasif.3,12

2.2.c. Konsep bersihkan plasma (Clearance)

Istilah “bersihkan plasma” digunakan untuk menyatakan kemampuan ginjal membersihkan atau menjemihkan plasma dari berbagai zat. Jadi, jika plasma yang mengalir melalui ginjal mengandung 0,1 gram suatu zat dalam tiap 100 ml, dan 0,1 gram zat ini juga mengalir ke dalam urine tiap menit, maka 190 ml plasma tersebut dibersihkan atau dijemihkan dari zat tersebut per menit. Plasma bersihkan untuk zat apapun dapat dihitung dengan rumus di bawah ini:
Bersih plasma (ml/ menit) = Jumlah urine (ml/ menit) x konentrasi dalam urine
Konsentrasi dalam plasma

Konsep bersih plasma penting karena merupakan suatu ukuran yang sangat baik untuk
fungsi ginjal. Bersih plasma banyak zat dapat dientukan dengan hanya menganalisa
konsentrasi zat tersebut secara serentak di dalam plasma dan didalam urine sementara
juga mengukur kecepatan pembentukan urine. Inulin merupakan zat yang hanya difiltrasi
oleh glomerulus, tidak disekresi atau direabsorpsi oleh tubulus, sehingga Inulin dalam
filtrat glomerulus konsentrasiya sama dengan di dalam urine. Berarti seluruh plasma
darah yang lewat glomerulus dibersihkan dari Inulin. Jadi plasma klirens per menit dari
Inulin sama dengan GFR. Uji klirens Inulin tidak rutin untuk setiap pasien, karena
masalah teknis dan biaya. Uji klirens kreatinin lebih sering dilakukan di klinis, karena
mudah dan cukup murah. Akurasi uji klirens kreatinin lebih rendah dari uji klirens Inulin.
2.3. PATOFISIOLOGI DAN ETIOLOGI

2.3.1. Gagal Ginjal Akut 2,3,14,15

GGA dikenal sebagai kemunduran akut dari fungsi ginjal yang mengakibatkan penimbunan sisa-sisa nitrogen dalam plasma dan / atau kegagalan ginjal dalam mengelurkan volume atau komposisi cairan ekstraseluler, biasanya dimanifestasikan oleh penurunan pengeluaran urine sampai kurang dari 400 ml/hari. Secara klinis, pembagian kausa GGA adalah pre renal, intra renal dan post renal.

Gagal ginjal akut pre renal

GGA pre renal disebabkan oleh semua keadaan yang menyebabkan berkurangnya aliran darah ke ginjal sehingga menimbulkan keadaan iskemia atau hipoperfusi ginjal. Penyebab ini dapat berupa penurunan volume intravascular akibat kehilangan darah (perdarahan), plasma (luka bakar), dan cairan ekstraseluler, penurunan cuah jantung (kegagalan pompa jantung), maupun pada infark jantung dan penyakit koroner.

Gagal ginjal akut renal

Pada GGA renal sudah terjadi kerusakan organik pada ginjal seperti : glomerulonefritis akut, pielonefritis akut, nekrosis ginjal. Selain itu pada semua penyebab GGA pre renal merupakan potensi untuk dapat terjadinya GGA renal. Pada dasarnya dapat disebabkan oleh karena infeksi, bahan-bahan racun baik dari hewani atau tumbuhan serta bahan kimia / obat seperti golongan aminoglikosida, NSAID, logam berat.

Gagal ginjal akut post renal

Keadaan ini disebabkan adanya obstruksi saluran kencing bilateral atau unilateral dimana salah satu ginjal sudah tidak berfungsi sebelumnya. Penyebab obstruksi bisa berupa batu, gumpalan darah, tumor, striktur pada saluran kencing. Selain itu keadaan di
luar saluran kemih yang dapat menyebabkan sumbatan, misalnya pada hipertrofi prostat, tumor. Jadi gagal ginjal terjadi akibat stasis urine dan infeksi sekunder.

2.3.2. Gagal ginjal kronik

GGK adalah penurunan faal ginjal yang menahun dan progresif, umumnya selalu tidak reversible dan cukup lanjut. Fungsi ginjal pada beberapa GGK dapat berkembang menjadi buruk, bila diperbaiki oleh infeksi, obstruksi, kerusakan metabolik dan nefrotoxik, atau mendapat obat nefrotoxic.

Etiologi GGK adalah multiple. Banyak penyakit ginjal dengan mekanisme patofisiologi yang bervariasi memperlihatkan kerusakan nefron yang progresif. Dua kelompok utama yang sering menyebabkan GGK adalah:

Penyakit parenkim ginjal:

A. Penyakit ginjal primer; glomerulonefritis, pielonefritis, ginjal pelikistik, tuber - kulosis ginjal.

B. Penyakit ginjal sekunder; nefritis lupus, nefropati hipertensi, nefropati diabetik, amiloidosis ginjal.

Penyakit ginjal obstruktif:

- Pembesaran prostat, batu saluran kencing, reflukus ureter.

Perjalanan umum penyakit ginjal progresif dapat dibagi menjadi tiga stadium:

Stadium I (Penurunan cadangan ginjal)

Selama stadium ini serum kreatinin dan kadar nitrogen urea darah (BUN) normal dan pasien asimptomatik.

Stadium II (Insufisiensi ginjal)
Lebih dari 75% janin yang berfungsi telah rusak (GFR besarnya 25% dari normal). Pada stadium ini, serum kreatinina dan kadar BUN di atas normal.

Stadium III (Stadium akhir atau uremia)

Ini terjadi apabila sekitar 90% dari massa nefron telah hancur atau hanyalah sekitar 200.000 nefron saja yang masih utuh.

2.4. PEMERIKSAAN PENUNJANG

2.4.1. Pemeriksaan Serum Kreatinin

Kreatinina dihasilkan dari konversi kreatine otot dan dikeluarkan melalui urin. Ekskresi kreatinin oleh ginjal secara kasar sendiri sendiri dengan produksinya, sehingga kreatinin plasma relatif konstan dan berkisar antara 0,7 sampai 1,5 mg per 100 ml (nilai ini pada pria lebih tinggi 10 % dari wanita, karena jumlah otot pria lebih banyak). Kreatinin dihakemi dengan proses filtrasi glomerulus, tetapi kreatinin tidak direabsorpsi oleh tubulus. Sejumlaah kecil disekresi oleh tubulus, terutama bila kadar kreatinin serum tinggi.

Menurut Ahlacen yang dikutip oleh Alfrey bahwa waktu rata-rata yang diperlukan dari gagal ginjal untuk berkembang menjadi GGT seolah kreatinin serum
mengingat sampai 5 mg/dl adalah 6 bulan untuk pasien dengan nefropati, 10 bulan untuk pasien dengan pielonefritis, dan 14 bulan untuk pasien dengan pielonefritis yang tidak obstruksi. Pada saat kreatinin serum melebihi 2 mg/dl biasanya, malah terjadi progresivitas dan penurunan fungsi ginjal cepat terjadi.

Beberapa penelitian menunjukkan bahwa koncentrasi serum kreatinin tidak melewat batas normal sampai fungsi ginjal berkurang hingga 50%. Meskiun teknik ini sulit untuk mendeteksi renal insuffisiensi yang ringan, serum kreatinin tetap digunakan dalam monitor pasien dengan penyakit ginjal.

Cara pemeriksaan:

Kreatinin diperiksa dengan menggunakan alat Autoanalizer Hitachi 7050.

Kreatinin + asam pikrat → Kreatinin - asam pikrat kompleks.

Dalam larutan basa kreatinin membentuk kompleks "yellow-orange" dengan pikrat. Intensitas warna secara langsung menunjukkan konsentrasi kreatinin yang dianalisis dengan fotometri.

2.4.2. RENOGRAM

Pemeriksaan dengan metoda kedokteran teknik untuk ginjal dinjakkan pada fungsi apa yang akan diperiksa, yaitu fungsi glomerulus, fungsi tubulus atau kedua peregangan ginjal. Kejadian pemeriksaan tersebut membuka radiofarmaka yang berbeda-beda.

Di RS Dr Kartadi (RSDK) Semarang yang dipakai adalah 7c-99m-DTPA untuk pemeriksaan fungsi glomerulus dan Iodine-131-Ortho-hippurate (I-131-OIH) untuk fungsi tubulus.
Cara memanfaatkan radiofarmaka

Renogram adalah suatu pemeriksaan fungsi ginjal dengan menggunakan radiofarmaka yang dideteksi oleh suatu alat kemudian ditampilkan dalam bentuk grafik. Pemeriksaan ini pada saat sekrang sudah menempakan bentuk pemeriksaan dasar untuk mengetahui fungsi ginjal, selain bentuk pemeriksaan lainnya. Renografi, sangat bermanfaat untuk menilai kelainan unilateral lateral ginjal dan untuk penderita-penderita yang sensitive terhadap media kontras.

Cara pemeriksaan:

Isotop yang dipakai adalah I-131 orthohippurate dan Tc-99m-DTPA intravena dengan dosis ½ μCi per kg berat badan, memasokar radiasi gamma 364 kev. Dipakai kolimator, dual rate-meter dan kertas pencatat yang mulai mencatat 30 detik sebelum disuntikkan, beri tanda pada kertas pencatat pada waktu penyuntikan dimulai. Teruskan pencatatan sampai 30 menit setelah suntikan atau sampai aktivitas tinggal 50% di ginjal. Renogram dapat dibuat dengan menentukan count dari ginjal kanan, ginjal kiri, vesika
urinaria dan background kemudian diolah sesuai program komputer yang ada sehingga akan keluar kurva renogram.

Penilaian: 9
Dalam kondisi normal kurva renogram terdiri, yaitu:

1. Fase pertama (AB), dimana komponen vascular sangat berperan, grafik sangat curam menanjak. Dalam waktu 15-20 detik setelah penyuntikan zat radioaktif, dengan cepat terdeteksi pada daerah ginjal, dalam 20-40 detik kemudian, konsentrasi meningkat. Perfusion ginjal memberikan pengaruh pada fase awal ini, sehingga fase pertama ini juga disebut sebagai "vascular spike" atau "radioaktivitas vascular".

2. Fase kedua (BC), grafik kurang menanjak dalam waktu 3-5 menit, dimana komponen filtrasi dan sekresi berperan. Di sini menggambarkan akumulasi nefron dari kemiringan grafik ("slope") menggambarkan kecepatan akumulasi. Gambarnya slope arahnya menunjukkan selama diuresis, tetapi arahnya akan menurun pada kegagalan tubulus ginjal.

3. Titik puncak (C), umumnya berterus tajam, karena kecepatan perpindahan pada keseluruhan nefron secara bersamaan. Bentuk puncak menjadi tidak tajam bila perpindahan tersebut tidak secara bersamaan, misalnya pada penyakit parenkim ginjal atau penyakit vascular difus.

16

Sangat penting untuk menetapkan T1max, sebagai terjadinya konsentrasi maksimum, dan menilai bentuk slope terutama fase kedua dan ketiga; serta T1/2 max, sebagai waktu tercapainya konsentrasi seengah dari konsentrasi maksimum. Harga normal T1/2 max = sekitar 3-5 menit, dan untuk harga normal T1max = sekitar 5-14 menit.
<table>
<thead>
<tr>
<th>Grade</th>
<th>Sisa fungsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>> 70 %</td>
</tr>
<tr>
<td>Mild</td>
<td>50 – 70 %</td>
</tr>
<tr>
<td>Moderate</td>
<td>25 – 50 %</td>
</tr>
<tr>
<td>Severe</td>
<td>10 – 25 %</td>
</tr>
<tr>
<td>Terminal</td>
<td>0 – 10 %</td>
</tr>
</tbody>
</table>

2.4.3. Urografi Intravena (UIV) \(^{20,21,22,23,24}\)

UIV adalah satu pemeriksaan saluran kemih yang menggunakan bahan kontras yang memberikan informasi mengenai gambaran anatomii dengan sangat baik dan dapat melihat fungsi ginjal secara kasar melalui kepematan aliran kontras.\(^{20}\)

Jumlah kontras yang dibebani kervariasi, tergantung pada metode penggunaan nya. Dosis 200 mg Iodine / l,at BB merupakan dosis ram-rama pada orang dewasa, kecuali pada pasien yang sangat besar. Ginjal yang gagal mengkonsentrasi kontras ke dalam sistem kecemasnya agar dapat terdeteksi secara radiografik disebabkan nonvisualisasi kidney.\(^{22,22}\)

Banyak variasi waktu untuk mengambil foto yang dapat diterima. Pengambilan foto yang dilakukan di RSDK terdiri dari : foto polos, foto injeksi kontras 5 menit, foto injeksi kontras 15 menit, foto fase lambat, foto pas miki. Lamanya pereaksiun terkisar antara 30 menit sampai dengan 4 jam.\(^{23}\)

Dalam keadaan normal, bahan kontras diekskresikan secara cepat dan kulitnya sudah dapat terlihat pada kedua ginjal dalam waktu 5 menit. \(^{24}\) Adanya perbedaan dalam kedua kedua ginjal menunjukkan keadaan yang patologi dimana fungsi ginjal sudah menurun.\(^{20}\) Tespilan lambat dapat dilakukan 1 - 4 jam setelah penyuntikan kontras.\(^{21}\)

Penggunaan kontras harus ditingkatkan dosisnya pada jepang ginjal untuk mendapatkan visualisasi yang cukup baik. Pada keadaan demikian biasanya terdapat peningkatan sementara kadar BUN dan creatinin. Secara umum, semakin tinggi kadar creatinin, urograph semakin tidak bermanfaat untuk dilihatkan, walaupun seruan creatinin tidak selalu merupakan barometer kualitas urograft karena kadarnya dipengaruhi oleh massa otot, keadaan hidrasi, dll. Sebagai patokan, urograft mungkin tidak akan bermanfaat pada pasien dengan kadar creatininnya di atas 4,0 mg/dl.

1.4.4. USG

USG merupakan metode untuk melihat jaringan lunak. Pemeriksaan ultrason sound pada traktus urinarius aman untuk dilaksanakan dan gampang untuk mengjaksannya, tidak teras sikat, non invasive, cepat, tidak mahal dan tidak memerlukan kontras atau radiasi. Indikasi pemeriksaan USG dalam urologi adalah: uropathi obstruksi, untuk menilai kiste, tumor, hidronefroisis, ginjal yang tidak terlihat dengan UIV, dan pencitramnya menunjukkan fungsi ginjal yang jelek.

Ginjal yang normal terdiri dari dua struktur echo yang berbebas. Dengan scanner yang konvensional, parenkim renal agak hiperekoik dibandingkan dengan liver, dan renal
sinus tampak sangat hiperekoik relatif terhadap liver. Akan tempi dengan scanner yang modern, struktur parenkim renal string ekoikoik terhadap liver.

Gambaran abnormal dari ginjal terhit pada beberapa 'medical renal disease'.

Pada pasien dengan medical renal disease yang akut, ginjal bisa membesar dan struktur parenkim meningkat. Sebelumnya, penyakit ginjal medis dibagi atas 3 derajat:

Grade I : parenkim ekoikoik terhadap liver.

Grade II : parenkim lebih ekoikoik dari liver tapi kurang ekoikoik biasa dibandingkan dengan sinus renal.

Grade III : ekoikoik parenkim sama dengan sinus renal.

Dengan scanner modern, renai parenkim norma bisa ekoikoik terhadap, dan hanya grade II dan III biasa yang dilihat. Penyakit radang seperti aku goiter dan neoplasma bisa memajukan grade II dan III. Derajat peningkatan ekoikoik dari parenkim renal sering berhubungan dengan tingkat keparahan prosesi pada ginjal. Penyakit yang menipis secara difusi biasa menjadi lebih ekoikoik dan tampak sama dengan sinus renal.
BAB III
KERANGKA KONSEPTUAL DAN HIPOTESA

3.1. KERANGKA TEORI

Etiologi
Anatomi ↔ Fisologi
 ↓ Patofisiologi
 ↓ Gangguan fungsi ginjal
 ↓ Creatinin → Renogram

3.2. KERANGKA KONSEPTUAL

Gangguan fungsi ginjal
 ↓ Cr
 ↓ mg % ↔ Sisa fungsi (%)
 ↓ Renogram

3.3. HIPOTESA

Ada kesesuaian pada pemeriksaan fungsi ginjal dengan kreatinin dan renogram.

21
BAB IV
METODOLOGI PENEULITIAN

4.1 Jenis penelitian

Jenis penelitian ini adalah deskriptif analisis dengan pendekatan "cross sectional study".

4.2. Populasi dan sampel

4.2.1. Populasi

Populasi diambil dari seluruh penderita yang datang ke RSDK Semarang untuk melakukan pemeriksaan renografi dan kreatinin.

4.2.2. Sampel

Cara pengambilan sampel

Sampel diambil secara "purposive sampling" dari seluruh penderita yang berasal ke bagian Kesokatan Nukil RSDK Semarang mulai tanggal 1 Juli 1999 sampai tanggal 31 Juli 2000 dengan:

a. Kriteria inklusi
 - Telah melakukan pemeriksaan kreatinin dan renogram
b. Kriteria eksklusi
 - Pemeriksaan tidak lengkap

4.3. Variabel penelitian

IV.3.2. Variabel bebas

Variabel bebas dalam penelitian ini adalah gangguan fungsi ginjal.

Definisi konseptual

Gangguan fungsi ginjal adalah ginjal kehilangan kemampuannya untuk memper-
terkait volume dan komposisi cairan tubuh.

Definisi operational

Penentuan fungsi ginjal berdasarkan laboratorium : GFR (N : 125 ml / menit), kreatinin plasma (N : 0,7 – 1,5 mg / 100 ml), BUN (N : 10 – 50 mg / 100 ml), dll

IV.3. b. Variabel terikat

Variabel terikat dalam penelitian ini adalah kreatinin dan renogram.

Renogram

Definisi konseptual

Renogram adalah suatu pemeriksaan fungsi ginjal dengan menggunakan radioisotop nukle yang dideteksi oleh suatu alat kemudian ditampilkan dalam bentuk grafik.

Definisi operasional

Renogram dibuat dengan menggunakan alat Kaniera Gamma (SPECT), bahan 131I Hipperan, dan dibuat foto serial (fase perfusi, parenkim, transpor intra renal, fa se exksresi /eliminasi).

Kreatinin

Definisi konseptual

Kreatinin adalah konversi kreatine otot pada hati dan dikeluarkan melalui urin.

Definisi operasional

Kreatinin diperiksa dengan menggunakan alat Autoanalizer – Hitachi 7050.

Kreatinin + picric acid \rightarrow \text{Kreatinin – picric acid complex.}

Dalam tanutan basa Kreatinin membentuk kompleks yellow-orange dengan picrate. Intensitas warna secara langsung menunjukkan konentrasi kreatinin yang diukur dengan photometrically.
4.4. Analisis Data

Data hasil penelitian disajikan dalam bentuk tabel dan grafik. Deskripsi didahului dengan membentuk tabel silang masing-masing variable penelitian. Dari uji Kolmogorov - Smirnov didapatkan distribusi data kreatinin tidak mengikuti grafik distribusi normal sehingga korelasi antara kreatinin dengan renogram digunakan uji non-parametrik Kendall’s tau - b. Taraf signifikansi yang diterima apabila nilai $p < 0.05$.

Semua analisis dilakukan dengan bantuan komputer menggunakan program SPSS 10.01 for Windows.

4.5. Cara kerja

Renogram

Pemeriksaan dilakukan berdasarkan rujukan / konstatasi dari dokter. Persiapan penderita dengan hidrasi 10 ml air/kg bb 30 menit sebelum pemeriksaan, kemudian dilakukan maksi pre test. Alat yang digunakan adalah Gamma Kamera (SPECT). Semantara bahan yang digunakan adalah 197 Hipaque (10 MBq) dan 99m Tc - DTPA (150 MBq).

Pemeriksaan kreatinin

Pemeriksaan dilakukan oleh analis laboratorium. Pembaruan / pelaksana dilakukan oleh residen dengan supervisi dokter spesialis Patologi Klinik.

4.6. Alur penelitian

```
\begin{center}
\begin{tikzpicture}
  \node (A) {Pasien};
  \node (B) [below of=A] {Anamnesis
  Pemeriksaan fisik};
  \node (C) [below of=B] {Lab};
  \node (D) [below of=C] {DS : Gangguan fungsi ginjal};
  \node (E) [below of=D] {Rujuk ke K.Nuklit}
  \node (F) [below of=E] {Renogram};

  \draw[->] (A) -- (B);
  \draw[->] (B) -- (C);
  \draw[->] (C) -- (D);
  \draw[->] (D) -- (E);
  \draw[->] (E) -- (F);
\end{tikzpicture}
\end{center}
```
BAB V
HASIL PENELITIAN

Dalam penelitian ini berhasil dikumpulkan 40 responden yang memenuhi kriteria inklusi. Bila kita lihat berdasarkan distribusi umur, pemeriksaan renogram paling banyak pada usia 45 - 54 tahun, dengan usia termuda 13 tahun dan tertua 71 tahun. (Tabel 1)

Tabel 1. Pemeriksaan renogram berdasarkan distribusi umur

<table>
<thead>
<tr>
<th>No</th>
<th>Umur</th>
<th>Jumlah</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><14</td>
<td>1</td>
<td>2,5</td>
</tr>
<tr>
<td>2</td>
<td>15 - 24</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>25 - 34</td>
<td>1</td>
<td>7,5</td>
</tr>
<tr>
<td>4</td>
<td>35 - 44</td>
<td>11</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>45 - 54</td>
<td>13</td>
<td>67,5</td>
</tr>
<tr>
<td>6</td>
<td>55 - 64</td>
<td>10</td>
<td>92,5</td>
</tr>
<tr>
<td>7</td>
<td>65 - 74</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Grafik 1. Jenis kelamin responden
Berdasarkan jenis kelamin didapatkan wanita (22 = 55 %) lebih banyak daripada laki-laki (18 = 45 %). (Grafik 1)

Tabel 2. Keluhan responden

<table>
<thead>
<tr>
<th>No</th>
<th>Keluhan</th>
<th>Frekwensi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hematuri</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Nyeri pinggang</td>
<td>18</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Mual-muntah</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Bangkak</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Massa intra abd.</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

Dari seluruh responden didapatkan penderita paling banyak dengan keluhan nyeri pinggang (45%). (Tabel 2)

Tabel 3. Tabel zile naratif kreatinin dengan renogram

<table>
<thead>
<tr>
<th>Kategori renogram</th>
<th>Normal</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>Terminal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreatinin (mg %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1,5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>1,5 - 5</td>
<td></td>
<td></td>
<td>7</td>
<td>3</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5 - 10</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>> 10</td>
<td></td>
<td></td>
<td>2</td>
<td>7</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>7</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Pada kreatinin >1,5 mg %, > 5 mg %, >10 mg %, tidak dijumpai renogram yang normal dan hanya 2 yang ringan. (Tabel 3)
Dari grafik 2 dapat dilihat nilai kreatinin mulai meningkat setelah fungsi ginjal menurun hingga 40-50% (Grafik 2). Dari data didapatkan 3 sampel dengan fungsi ginjal 0% dengan nilai serum kreatinin 6,10, 15,83, dan 17,06 mg%. Sementara itu didapatkan pula 1 sampel dengan fungsi ginjal 7,40% pada serum kreatinin 25,70 mg%.

Setelah diukukan uji korelasi dengan Kendall's tau-b, didapat adanya korelasi negatif yang signifikan (p value = 0,000) antara kreatinin dengan renogram dengan koefisien korelasi sebesar 0,595. Hal ini berarti peningkatan kreatinin akan behubungan dengan menurunnya hasil renogram.

Tabel 4. Tabel silang USG ginjal kanan dengan UIV ginjal kanan

<table>
<thead>
<tr>
<th>USG</th>
<th>Tak dilakukan</th>
<th>Normal</th>
<th>Menurun</th>
<th>Non visualized</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ginjal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kanan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menisip</td>
<td>5</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Hiperektoik</td>
<td>15</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>40</td>
</tr>
</tbody>
</table>

Dari 40 responden didapatkan 1 orang tak menikukan USG maupun UIV. Pada UIV normal, tak didapatkan gambaran USG menisip maupun hiperektoik. (Tabel 4)

Tabel 5. Tabel silang USG ginjal kiri dengan UIV ginjal kiri

<table>
<thead>
<tr>
<th>USG</th>
<th>Tak dilakukan</th>
<th>Normal</th>
<th>Menurun</th>
<th>Non visualized</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ginjal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kiri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menisip</td>
<td>5</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Hiperektoik</td>
<td>11</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>40</td>
</tr>
</tbody>
</table>
Dari USG normal tak didapatkan gambaran UIV yang non visualized, pada yang memisahkan di didapatkan UIV normal dan non visualized, sedangkan pada yang hiperekoik tak didapatkan USG yang normal. (Tabel 5)

Tabel 6. Tabel silang USG gigi kanan dengan renogram kanan

<table>
<thead>
<tr>
<th>Renogram kanan</th>
<th>Tak dilakukan</th>
<th>Normal</th>
<th>Memisah</th>
<th>Hiperekoik</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>3</td>
<td>5</td>
<td>_</td>
<td>_</td>
<td>8</td>
</tr>
<tr>
<td>Mild</td>
<td>1</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>1</td>
</tr>
<tr>
<td>Moderate</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Severe</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Terminal</td>
<td>_</td>
<td>_</td>
<td>4</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>13</td>
<td>6</td>
<td>12</td>
<td>40</td>
</tr>
</tbody>
</table>

Pada USG normal didapatkan semua hasil renogramnya juga normal, sementara pada 12 yang hiperekoik 6 di antaranya adalah terminal. (Tabel 6)

Tabel 7. Tabel silang USG gigi kiri dengan renogram kiri

<table>
<thead>
<tr>
<th>Renogram kiri</th>
<th>Tak dilakukan</th>
<th>Normal</th>
<th>Memisah</th>
<th>Hiperekoik</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>2</td>
<td>3</td>
<td>_</td>
<td>_</td>
<td>5</td>
</tr>
<tr>
<td>Mild</td>
<td>2</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>3</td>
</tr>
<tr>
<td>Moderate</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Severe</td>
<td>_</td>
<td>2</td>
<td>2</td>
<td>_</td>
<td>5</td>
</tr>
<tr>
<td>Terminal</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>_</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>13</td>
<td>6</td>
<td>12</td>
<td>40</td>
</tr>
</tbody>
</table>
Pada 3 orang dengan USG normal, semua hasil renogramnya juga normal. Semen-
tan dari 12 sample dengan keperekolir, 7 diantaranya adalah terminal. (Tabel 7).

<table>
<thead>
<tr>
<th>Kategori renogram kanan</th>
<th>Normal</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>Terminal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>UJV</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>ginjal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kanan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Menurun</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Non visualized</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>12</td>
<td>11</td>
<td>40</td>
</tr>
</tbody>
</table>

Dari 11 orang dengan renogram yang terminal, tidak satupun yang melakukan
UJV. Sementara pada renogram normal, semua hasil UJV nya juga normal. (Tabel 8)

<table>
<thead>
<tr>
<th>Kategori renogram kiri</th>
<th>Normal</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>Terminal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>UJV</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>ginjal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kiri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Menurun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non visualized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>14</td>
<td>40</td>
</tr>
</tbody>
</table>

Dari 14 dengan renogram terminal, 11 diantaranya tidak melakukan UJV,
sementara 3 yang melakukan UJV semua nya not visualized. (Tabel 9)
Pada penelitian ini dicari angka peningkatan renogram yang dihitung dari penelitian menunjukkan bahwa angka terbesar GGN pada umur antara 45 - 54 tahun. Ditemukan pula bahwa wanita lebih banyak daripada laki-laki, sedangkan penelitian Imam Parsadi menunjukkan bahwa laki-laki lebih banyak dari wanita. (Grafik 1) Kenaikan karena jumlah sampel yang kurang besar selangka disebabkan kesehatan wanita lebih baik dari laki-laki. Kemudian yang terbanyak adalah nara pengguna, yaitu 45 %. (Tabel 2)

Pada creatinin >1,5 mg %, > 5 mg %, > 10 mg %, tidak ditemukan renogram yang normal & hanya 2 yang ringan (Tabel 3). Dari data didapatkan 1 sampel dengan nara pengguna ginjal, 0 % dengan nilai serum kreatinin 6,10 , 15,83 , 17,06 mg %. Sementara itu didapatkan pula 1 sampel dengan nara pengguna ginjal 7,10 % pada serum kreatinin 25,70 mg %. Diketahui bahwa beberapa faktor seperti obat sirup dan bisa meningkatkan kadar kreatinin. Dari grafik 2 dapat dilihat nilai kreatinin mulai meningkat sejak saat ginjal manur mengalami 40 - 50 % (% fungs). Disebabkan bahwa sensitivities serum kreatinin dalam mendeteksi renal insufficiency yang ringan tidak terlalu tajam. Beberapa penelitian menunjukkan bahwa konategories serum kreatinin tidak melebihi batas normal sampai fungs ginjal tinggal 50 %. Sementara dari referensi (3) menggambarkan grafik seperti ini :
Dari grafik di atas dapat dilihat nilai kreatinin mulai meninggi setelah fungsi ginjal menurun hingga 25 %. Grafik pada penelitian ini (grafik 2) tampak mirip dengan grafik di atas.

Untuk monitoring ginjal yang sudah kurang dapat dilakukan dengan melihat nilai serum kreatinin tapi untuk menilai insufisiensi renal yang ringan, renografi lebih sensitif. Pengukuran kreatinin tidak bisa dipakai untuk menentukan fungsi atau ron fungsi serta tidak bisa dipakai untuk menentukan perlu atau tidaknya dialisa.

Setelah dilakukan uji korelasi dengan Kendall's tau b, diperoleh nilai korelasi negatif yang signifikan (p value = 0,000) antara kreatinin dengan renografin dengan koefisien korelasi sebesar 0,595. Hal ini berarti peningkatan kreatinin akan berhubungan.
dengan memeriksa renogram. Kreatinin tidak berkorelasi dengan renogram bila fungsi ginjal normal atau menurun ringan.

Pada responden yang dilakukan UIV dengan hasil normal, pemeriksaan USGnya juga normal. Sedangkan 12 penderita dengan hasil USG yang hiperekoik pada ginjal kanan, 16 orang tidak dilakukan UIV, 2 yang dilakukan UIV, 1 dengan fungsi menurun dan 1 dengan non visualized. Tidak diperoleh hasil UIV yang normal pada gambaran USG ginjal yang hiperekoik (Tabel 4 & 5) Pada renogram yang normal, tidak didapatkan hasil USG yang menipis maupun yang hiperekoik, sementara pada renogram yang terminal, kebanyakan hasil USGnya adalah hiperekoik (Tabel 6 & 7) Menurut teori (11), bahwa pada ginjal normal memal parentimnya adalah hiperekoik, dan dengan pemikiran fisiologi dari renal parentim berhubungan dengan tingkat keparahan proses yang terjadi di ginjal. Kebanyakan penderita dengan hasil USG yang hiperekoik tidak dilakukan UIV.

Pada 11 penderita dengan renogram terminal pada ginjal kanan, tidak satu pun yang dilakukan UIV. Sementara pada ginjal kiri, 14 orang dengan hasil renogram yang terminal, hanya 3 orang yang dilakukan UIV dengan semua hasilnya adalah non visualized (Tabel 7 & 8). Diatakan bahwa urografi mengalami tidak dikenal bermanfaat pada pasien dengan kreatinin di atas 4.0 mg/dl.21

Dari 13 hasil USG yang normal baik pada ginjal kiri dan kanan, didapatkan juga hasil renogram yang moderate, severe dan terminal (Tabel 6 & 7). Dari 2 orang yang dilakukan UIV dengan hasil normal pada ginjal kanan, 5 orang diancamnya menunjukkan hasil renogram yang normal, 1 yang ringan, 1 moderate dan 1 yang berat. Sementara UIV dengan hasil normal pada ginjal kiri, 4 orang renogramnya normal, 2 yang mild, dan 2 yang moderate, (Tabel 8 & 9).
BAB VII
KESIMPULAN DAN SARAN

KESIMPULAN:

2. Pemeriksaan renografi dapat dilakukan untuk menentukan perlu atau tidak dilakukan dialisa.
3. Pemeriksaan renografi mempunyai keunggulan yaitu dapat menilai fungsi ginjal secara tepat.

SARAN:

1. Pemeriksaan renografi tepat dilakukan karena sensitivitas serum kreatinin dalam mendeteksi renal insuffisiensi yang ringan tidak terlalu ringan, dan kreatinin baru meningkat setelah fungsi ginjal menurun hingga 50% serta untuk menentukan perlunya dialisa atau tidak.
2. Perlu penelitian lagi dengan jumlah sample yang lebih banyak
3. Perlu penelitian yang sama dengan tempat yang berbeda.
DAFTAR PUSTAKA

23. Bagian / SMF Radiologi, Standard pelayanan medis Rumah Sakit Dr Kariadi, Semarang, 2000

37
27. Edelman CM, Bernstein J, Chemical and Laboratory evaluation of renal
USA, 1978: 465
KORELASI KREATININ DENGAN RENOGRAM PADA PENDERITA GANGGUAN FUNGSI GINJAL DI RUMAH SAKIT DOKTER KARIADI SEMARANG

IDENTITAS:
NAMA:
UMUR:
JENIS KELAMIN:
TEMPAT TINGGAL:

ANAMNESE:
□ Heranaturi:
□ Nyeri pinggang:
□ Mual/muntah:
□ Bengkok:
□ Massa intra abd.:

PEM. PENUNJANG:
Creatinin (mg %):
□ < 1,5
□ > 1,5
□ > 5
□ > 16
- USG
 - Kanan
 - Kiri
 - Normal
 - Menipis
 - Hiperekzek

- IVP
 - Kanan
 - Kiri
 - Normal
 - Menurun
 - Non visualized

- Renogram
 - Kanan
 - Kiri
 - Sisa fungsi
 - (%)

[Signature]
Correlations

<table>
<thead>
<tr>
<th></th>
<th>Creatinin</th>
<th>Rate-rata renogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kendall tau-b</td>
<td>Correlation Coefficient</td>
<td>Sig. (2-tailed)</td>
</tr>
<tr>
<td>Creatinin</td>
<td>1.00b</td>
<td>.000</td>
</tr>
<tr>
<td>Rate-rata renogram</td>
<td>.590**</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Correlation is significant at the .01 level (2-tailed).

Descriptives

<table>
<thead>
<tr>
<th>Rate-rata renogram</th>
<th>Statistics</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>32.3451</td>
<td>4.2580</td>
</tr>
<tr>
<td>95% Confidence</td>
<td>Lower Bound</td>
<td>24.1371</td>
</tr>
<tr>
<td>Interval for Mean</td>
<td>Upper Bound</td>
<td>40.5531</td>
</tr>
<tr>
<td>5% Trimmed Mean</td>
<td>36.4501</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>28.0526</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>655.694</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>25.6548</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>98.90</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>98.90</td>
<td></td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>35.5121</td>
<td>.374</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.227</td>
<td>.733</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>.819</td>
<td>.733</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Creatinin</th>
<th>Statistics</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6.0288</td>
<td>.6472</td>
</tr>
<tr>
<td>95% Confidence</td>
<td>Lower Bound</td>
<td>4.1108</td>
</tr>
<tr>
<td>Interval for Mean</td>
<td>Upper Bound</td>
<td>7.9427</td>
</tr>
<tr>
<td>5% Trimmed Mean</td>
<td>5.4937</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>3.5350</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>16.890</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>5.9909</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>.70</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>25.70</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>6.6300</td>
<td>.374</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.479</td>
<td>.733</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1.526</td>
<td>.733</td>
</tr>
</tbody>
</table>
Tests of Normality

<table>
<thead>
<tr>
<th></th>
<th>Kolmogorov-Smirnov *</th>
<th>Savage *<sup>1</sup> *<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>Rate-rata-renogram</td>
<td>0.132</td>
<td>40</td>
</tr>
<tr>
<td>Creatinin</td>
<td>0.187</td>
<td>40</td>
</tr>
</tbody>
</table>

* This is an upper bound of the true significance.
*¹ Savage Significance Correction

USG ginjal Kanan * IVP Ginjal Kanan Crosstabulation

<table>
<thead>
<tr>
<th></th>
<th>Tak dilakukan</th>
<th></th>
<th></th>
<th>Non</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Menurun</td>
<td>Visualized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ginjal Kanan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Manis</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Hipersekolk</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>8</td>
<td>6</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

USG Ginjal Kiri * IVP ginjal Kiri Crosstabulation

<table>
<thead>
<tr>
<th></th>
<th>Tak dilakukan</th>
<th></th>
<th></th>
<th>Non</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Menurun</td>
<td>Non</td>
<td>Visualized</td>
<td></td>
</tr>
<tr>
<td>USG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ginjal Kiri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Manis</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Hipersekolk</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>40</td>
</tr>
</tbody>
</table>