LAPORAN KEGIATAN

Eksperimen dan Pemodelan Kesetimbangan Fasa
Proses Ekstraksi Asam Lemak Bebas dari
Crude Palm Oil dengan Pelnarut Metanol

Oleh:
SILVIANA, ST,MT
IR.NUR ROKHATI, MT
AJI PRASETYANINGRUM, ST,MT

Disiapai oleh Proyek Pengkajian dan Penebian Ilmu Pengetahuan dan Teknologi,
Direktorat Jenderal Pendidikan Tinggi, Departemen Pendidikan Nasional, selesai dengan
Surat Perjanjian Pelaksanaan Penelitian Dasar

FAKULTAS TEKNIK
UNIVERSITAS DIPONEGORO
NOPEMBER, 2004
LEMBAR IDENTITAS DAN PENGESAHAN LAPORAN AKHIR
HASIL PENELITIAN DASAR

1. Judul Penelitian:
 Eksporimmen dan Pemodelan Kenetimbangan Fasa Proses Ekstraksi Asam Lemak Bebas dari Crude Palm Oil dengan Pelanat Metanol

2. Ketua Peneliti:
 a. Nama Lengkap dan Gelar: Silviana, ST.MT
 b. Jenis Kelamin: P
 c. Pangkat/Golongan/NIP: Penata Muda/IIa
 d. Jabatan/Deskripsi: Asisten Ahli
 e. Fakultas/Jurusan: Teknik / Kimia
 f. Universitas/Institusi/Sekolah Tinggi:
 g. Pusat Penelitian:

3. Jumlah Tim Peneliti:
 2 orang

4. Lokasi Penelitian:
 Jurusan Teknik Kimia, FT Undip

5. Kerja sama dengan institusi lain:
 a. Nama Instansi:
 b. Alamat:

6. Masa Penelitian:
 9 bulan

7. Biaya yang dipерlukan:
 Rp. 15.000.000,00
 (Lima belas juta rupiah)

Semarang, 11 November 2004
Ketua Peneliti,

Silviana, ST. MT
NIP. 132 281 751

Mengetahui,
Direktur Universitas Diponegoro

Sri Eko Wahyuni, MS NIP. 960 938 000

Dekan Fakultas Teknik Undip

NIP. 130 329 454

UPT-PUSTAK-UNDIP

No. 117\1\00\000}
RINGKASAN
EKSPERIMENT DAN PEMODELAN KESETIMBANGAN FASA PROSES
EKSTRAKSI ASAM LEMAK BEBAS DARI CRUDE PALM OIL
DENGAN PELARUT METANOL
Silviana, Nur Rohfati, Aji Prasetyoartangrum
(2004, 44)

1. Permasalahan Penelitian

2. Tujuan Penelitian
Secara khusus, tujuan dari penelitian ini adalah sebagai berikut:
1. Mengukur data kestetimbangan cair-cair sistem minyak nabati-asam lemak bebas-metanol untuk memperoleh koefisien distribusi dan faktor separasi.
2. Mengkaji perhitungan model CPO komposisi kestetimbangan cair-cair yang didasarkan pada teori termodinamika dengan menggunakan metode UNIFAC.
3. Menghitung jumlah tahap dan kebutuhan pelarut minimum dalam proses ekstraksi asam lemak bebas dengan pelarut metanol hingga berkadar 0,5% berat.

3. Metode Penelitian
Penelitian dilakukan dalam tiga tahap. Tahap pertama berupa pengukuran data kestetimbangan cair-cair dan tie line di laboratorium dengan menggunakan alat kestetimbangan pada temperatur 40 – 50 °C. Data tie line dikorelasikan dengan persamaan Othmer Tobias. Tahap kedua dilakukan perhitungan kestetimbangan cair-cair menggunakan model CPO dengan metode UNIFAC. Deviasi antara data perhitungan terhadap data eksperimen dilakukan dengan jalan
interpolasi data komposisi perhitungan untuk menghasilkan data yang sama dengan data eksperimen. Tahap ketiga dilakukan perhitungan jumlah tahap dan kebutuhan pelarut minimum yang diperlukan untuk mengekstrak asam lemak bebas dengan metanol secara komputasi dengan dasar perhitungan ekstraksi multi tahap berlawanan arah.

4. Hasil dan Kesimpulan

1. Diperolehnya data kesetimbangan cair-cair sistem minyak nabati-asam lemak bebas-netanol dengan suhu optimum pada 50°C dengan ditunjukkan koefisien distribusi rata-rata sebesar 1,65 dan faktor separasi 18,27.

2. Model CPO yang memberikan deviasi terendah adalah model A (versi IV) dengan persentasi kesalahan sebesar 56,72% (VLE) dan model B dan D (versi I) dengan persentasi kesalahan sebesar 52,4% (LLE).

3. Jumlah tahap yang diperlukan adalah 4 (empat) buah untuk dapat menurunkan kadar asam lemak bebas hingga 0,5% berat dengan kebutuhan pelarut minimum sebesar 197 kg/jam dengan umpan sebesar 1000 kg/jam.

Jurusan Teknik Kimia, Fakultas Teknik, Perguruan Tinggi Universitas Diponegoro
SUMMARY

PHASE EQUILIBRIUM MODELLING AND EXPERIMENT OF FREE FATTY ACID EXTRACTION PROCESS FROM CRUDE PALM OIL WITH METHANOL

Silviana, Nur Ruhdiati, Aji Prasetyoaniagram
(2004, 44)

1. Research Problem

This is a fundamental research that conducting thermodynamic theory for determining activity coefficient, separation factor, and equilibrium composition in free fatty acid extraction process with methanol. For design and process evaluation were needed the calculation of mathematic model for liquid-liquid equilibrium, number of stages calculation, and solvent necessity. Calculation of liquid-liquid equilibrium model was reliable if it was developed based on thermodynamic theory.

2. Research Objectives

The goals of this research are:

1. To measure liquid-liquid equilibrium of Crude Palm Oil-Oleic Acid-Methanol system to obtain optimum temperature with distribution coefficient and separation factor.
2. To study calculation of CPO model on liquid-liquid equilibrium composition which based on thermodynamic theory using UNIFAC method.
3. To calculate number of stages and solvent necessity minimum in free fatty acid extraction process with methanol.

3. Research Method

The research was conducting in three sections. In first section, it was measurement liquid-liquid equilibrium data and tie line composition using equilibrium device (Smith Bonner Cell) at 40°C - 50°C. Tie line data were correlated with Othmer Tobias equation. In second section, it was conducted calculation of liquid-liquid equilibrium using CPO mathematic model with UNIFAC method. Reliability UNIFAC method in this system was showed by deviation between measurement equilibrium data and its calculation. The last
section, to calculate number of stages and minimum solvent necessity by computation based on counter current multi stages extraction.

5. Result and Conclusion

1. Obtaining liquid-liquid equilibrium data of CPO-Oleic Acid-Methanol system with optimum temperature at 50°C and mean distribution coefficient 1.65 respectively and separation process about 18,27.

2. CPO model which have minimum deviation is model A (fourth version) with deviation value about 56,72% (with VLE parameter) and model B and D (first version) with deviation valu about 52,4% (LLE parameter).

3. Number of stages which was required is one stage to decrease free fatty acid content until 0.5% weight with minimum solvent necessity are 4 stages with 197 kg/h solvent demand (feed basis 1000 kg/h).

Chemical Engineering Department, Faculty of Technic, Diponegoro University
No. Kontrak: Nomor 68/P2IPT/DPPM/PID/II/2004 Date: 1, Month: March, Year: 20004

Pada dasarnya penelitian ini lebih difokuskan pada tahap perhitungan berupa penyesuaian persamaan-persamaan non linier untuk melihat kemampuan metode UNIFAC dan perhitungan jumlah stage secara komputasi. Secara keseluruhan penelitian yang berupa pengukuran (ekspimen) ini dilaksanakan di Laboratorium Penelitian di Jurusan Teknik Kimia Undip yang berlangsung selama kurang lebih 6 (enam) bulan kemudian dilanjutkan tahap perhitungan dengan menggunakan komputer dan pengolahan data secara keseluruhan.

Penulis berharap laporan kegiatan penelitian ini dapat memberikan informasi yang bermanfaat bagi khalayak dunia penelitian dan industri tentunya.
<table>
<thead>
<tr>
<th>Tabel</th>
<th>Konten</th>
<th>Hal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Asam lemak utama dalam minyak nabati</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>Kelarutan asam lemak dalam metanol</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameter R dan parameter Q</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Parameter interaksi grup-grup VLE (δ_{m} dalam Kelvin)</td>
<td>26</td>
</tr>
<tr>
<td>4.3</td>
<td>Parameter interaksi grup-grup LLE (δ_{m} dalam Kelvin)</td>
<td>27</td>
</tr>
<tr>
<td>5.1</td>
<td>Hasil pengukuran komposisi jewah sistem aseton-air-benzin pada T= 30 °C dan 45 °C</td>
<td>34</td>
</tr>
<tr>
<td>5.2</td>
<td>Komposisi Tie Line, D, dan S pada 40 °C</td>
<td>34</td>
</tr>
<tr>
<td>5.3</td>
<td>Komposisi Tie Line, D, dan S pada 45 °C</td>
<td>35</td>
</tr>
<tr>
<td>5.4</td>
<td>Komposisi Tie Line, D, dan S pada 45 °C</td>
<td>35</td>
</tr>
<tr>
<td>5.5</td>
<td>Konstanta Persamaan Ostmer-Tobias sistem CPO-Asam Oleat-MeOH</td>
<td>38</td>
</tr>
<tr>
<td>5.6</td>
<td>Devisasi data prediksi UNIFAC dengan Model CPO Parameter VLE</td>
<td>40</td>
</tr>
<tr>
<td>5.7</td>
<td>Devisasi data prediksi UNIFAC dengan Model CPO Parameter LLE</td>
<td>40</td>
</tr>
<tr>
<td>L.1</td>
<td>Model A Sistem Oleopalmitysteerin (1) / Asam Oleat (2) / Metanol (3) VLE (VERS1 I)</td>
<td>47</td>
</tr>
<tr>
<td>L.2</td>
<td>Model A Sistem Oleopalmitysteerin (1) / Asam Oleat (2) / Metanol (3) VLE (VERS1 II)</td>
<td>47</td>
</tr>
<tr>
<td>L.3</td>
<td>Model A Sistem Oleopalmitysteerin (1) / Asam Oleat (2) / Metanol (3) VLE (VERS1 III)</td>
<td>47</td>
</tr>
<tr>
<td>L.4</td>
<td>Model A Sistem Oleopalmitysteerin (1) / Asam Oleat (2) / Metanol (3) VLE (VERS1 IV)</td>
<td>48</td>
</tr>
<tr>
<td>L.5</td>
<td>Model B Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi I)</td>
<td>48</td>
</tr>
<tr>
<td>L.6</td>
<td>Model B Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi II)</td>
<td>48</td>
</tr>
<tr>
<td>L.7</td>
<td>Model B Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi III)</td>
<td>48</td>
</tr>
<tr>
<td>L.8</td>
<td>Model B Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi IV)</td>
<td>49</td>
</tr>
<tr>
<td>L.9</td>
<td>Model C Sistem Oleostearatolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi I)</td>
<td>49</td>
</tr>
<tr>
<td>L.10</td>
<td>Model C Sistem Oleostearatolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi II)</td>
<td>49</td>
</tr>
<tr>
<td>L.11</td>
<td>Model C Sistem Oleostearatolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi III)</td>
<td>49</td>
</tr>
</tbody>
</table>
Tabel L.12 Model C Sistem Oleostearatoolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi IV) 50
Tabel L.13 Model D Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi I) 50
Tabel L.14 Model D Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi II) 50
Tabel L.15 Model D Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi III) 50
Tabel L.16 Model D Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) VLE (Versi IV) 51
Tabel L.17 Model E Sistem Oleodistearin (1) / Asam Oleat (2) / Metanol (3) VLE (Versi I) 51
Tabel L.18 Model E Sistem Oleodistearin (1) / Asam Oleat (2) / Metanol (3) VLE (Versi II) 51
Tabel L.19 Model E Sistem Oleodistearin (1) / Asam Oleat (2) / Metanol (3) VLE (Versi III) 51
Tabel L.20 Model E Sistem Oleodistearin (1) / Asam Oleat (2) / Metanol (3) VLE (Versi IV) 52
Tabel L.21 Model F Sistem Oleosteratoolein (1) / Asam Oleat (2) / Metanol (3) LLE (Versi I) 52
Tabel L.22 Model F Sistem Oleosteratoolein (1) / Asam Oleat (2) / Metanol (3) LLE (Versi II) 52
Tabel L.23 Model F Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) LLE (Versi I) 52
Tabel L.24 Model F Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) LLE (Versi II) 53
Tabel L.25 Model C Sistem Oleostearatoolein (1) / Asam Oleat (2) / Metanol (3) LLE (Versi I) 53
Tabel L.26 Model C Sistem Oleostearatoolein (1) / Asam Oleat (2) / Metanol (3) LLE (Versi II) 53
Tabel L.27 Model D Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) LLE (Versi I) 53
Tabel L.28 Model D Sistem Triolein (1) / Asam Oleat (2) / Metanol (3) LLE (Versi II) 54
Tabel L.29 Model E Sistem Oleodistearin (1) / Asam Oleat (2) / Metanol (3) LLE (Versi I) 54
Tabel L.30 Model E Sistem Oleodistearin (1) / Asam Oleat (2) / Metanol (3) LLE (Versi II) 54
Tabel L.31 Parameter Interaksi Group VLE (Versi I & II) 54
Tabel L.32 Parameter Interaksi Group VLE (Versi II & IV) 55
Tabel L.33 Parameter Interaksi Group LLE (Versi I & II) 55
| Gambar 2.1 | Diagram terner tipe I, pada tekanan dan temperatur tertentu. | Hal
8 |
<p>| Gambar 2.2 | Diagram terner tipe II, pada tekanan dan temperatur tertentu. | 9 |
| Gambar 2.3 | Kurva Kelarutan Asam Oleat vs Temperatur | 10 |
| Gambar 2.4 | Pengaruh Temperatur pada Kurva Binodal | 11 |
| Gambar 2.5 | Skema sederhana ekstraksi satu tahap (Single stage) | 13 |
| Gambar 2.6 | Profil komposisi dalam diagram terner | 14 |
| Gambar 2.7 | Skema proses ekstraksi multi tahap secara | 15 |
| Gambar 2.8 | Skema proses ekstraksi multi tahap berlawanan arah | 15 |
| Gambar 2.9 | Ekstraksi multi tahap berlawanan arah | 16 |
| Gambar 2.10 | Perhitungan pelarut minimum, ekstraksi multi tahap berlawanan arah | 17 |
| Gambar 4.1 | Diagram Alir Metodologi Penelitian | 20 |
| Gambar 4.2 | Rangkaian Alat Perrobaan | 22 |
| Gambar 4.3 | Profil Titrasi Diagram Terner | 23 |
| Gambar 4.4 | Algoritma perhitungan komposisi kesetimbangan cair- cair | 29 |
| Gambar 5.1 | Kurva binodal sistem aseton-air-benzol pada temperatur 30 °C | 33 |
| Gambar 5.2 | Kurva binodal sistem aseton-air-benzol pada temperatur 45 °C | 33 |
| Gambar 5.3 | Plot Koeisien distribusi asam oleat vs fraksi berat asam oleat dalam fasa rafinat (D1 vs W1) | 35 |
| Gambar 5.4 | Plot Faktor separasi vs fraksi berat asam oleat dalam fasa rafinat (S vs W1) | 36 |
| Gambar 5.5 | Diagram Terner Sistem CPO-Asam Oleat-MeOH | 36 |
| Gambar 5.6 | Tie Line 40 °C | 37 |
| Gambar 5.7 | Tie Line 45 °C | 37 |
| Gambar 5.8 | Tie Line 50 °C | 37 |
| Gambar 5.9 | Plot Ottmer – Tobias pada 40 °C | 38 |
| Gambar 5.10 | Plot Ottmer – Tobias pada 45 °C | 39 |
| Gambar 5.11 | Plot Ottmer – Tobias pada 50 °C | 39 |
| Gambar 5.12 | Diagram selektivitas pada temperatur eksperimen | 41 |
| Gambar L.3.1 | Dokumentasi Percobaan | 56 |
| Gambar L.5.1 | Keluaran Program untuk Data Kesetimbangan | 61 |
| Gambar L.5.2 | Keluaran Program Perhitungan Jumlah Tahap | 61 |
| Gambar L.5.3 | Keluaran Program Hasil perhitungan Jumlah Tahap dan Pelarut Minimum | 62 |</p>
<table>
<thead>
<tr>
<th>Lampiran</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lampiran 1</td>
<td>Karakteristik bahan</td>
<td>45</td>
</tr>
<tr>
<td>Lampiran 2</td>
<td>Grup sekunder dan parameter interaksi</td>
<td>47</td>
</tr>
<tr>
<td>Lampiran 3</td>
<td>Dokumentasi</td>
<td>56</td>
</tr>
<tr>
<td>Lampiran 4</td>
<td>Program perhitungan komposisi kesetimbangan</td>
<td>57</td>
</tr>
<tr>
<td>Lampiran 5</td>
<td>Hasil Keluaran Program perhitungan jumlah tahap dan Kebutuhan Pelatar Minimum</td>
<td>61</td>
</tr>
<tr>
<td>Lampiran 5</td>
<td>Biografi peneliti</td>
<td>65</td>
</tr>
</tbody>
</table>
BAB I
PENDAHULUAN

Industri minyak nabati dan industri oleokimia dapat dihubungkan melalui dua jalan, yaitu konversi minyak nabati menjadi metil ester asam lemak dan konversi minyak nabati menjadi asam lemak. Produksi utama minyak yang dapat digolongkan dalam oleokimia dasar (basic oleochemicals) adalah asam lemak, metil ester asam lemak, lemak alkohol, asam amino, dan gliserin.

Minyak nabati umumnya mengandung 5–8% berat asam lemak bebas. Pasaran dunia mensyaratkan maksimum 4% berat (Setiadi, 1999) dan Standar Nasional Indonesia maksimum 5% berat (SNI, 1992). Untuk menghindari deaktivasi katalis dalam proses konversi minyak nabati menjadi metil ester asam lemak, asam lemak bebas dalam minyak nabati harus disingkirkan lebih dahulu hingga mencapai kadar 0,5% berat. Salah satu cara yang dipilih adalah ekstraksi asam lemak bebas dengan pilarat tertentu.

Penelitian ini merupakan penelitian fundamental untuk menerapkan teori termodinamika guna menghasilkan koefisien aktifitas dan komposisi keseimbangan. Selain itu, juga untuk mengetahui kemampuan pilarat yang digunakan dalam mengembalikan asam lemak bebas dalam minyak nabati dan untuk mengetahui kondisi operasi proses ekstraksi asam lemak bebas pada CFO.

Penelitian dilakukan dalam dua tahap yaitu pengukuran (eksperimen) untuk menghasilkan data keseimbangan fasa dan tahap pemodelan dengan komputasi menggunakan metode UNIFAC untuk menghasilkan data keseimbangan fasa juga. Keberhasilan alternatif ini sangat tergantung pada kemampuan pilarat melekatkan asam lemak bebas dalam minyak nabati. Schubung dengan hal tersebut, pengukuran data keseimbangan cair-cair sistem terner perlu dilakukan. Sebagai tambahan, untuk pencucian dan evaluasi proses ekstraksi, maka diperlukan perhitungan model matematik keseimbangan cair-cair, perhitungan jumlah talap dan kebutuhan pelat, Perhitungan model keseimbangan cair-cair dapat dikatakan handal, jika model matematik keseimbangan cair-cair dikombangkan berdasarkan teori-teori termodinamika.

Penelitian Datur, 2004