Proceedings

CONTRIBUTED PAPERS – Vol. II

The 8th World Conference on Animal Production
June 28 - July 4, 1998
Seoul National University
Seoul, Korea
Organizing Committee of the 8th WCAP

(1) Conference Presidents : Hyun U. Kim and Kil S. Chung

(2) Chairman : Jong K. Ha
(3) Secretary General : Hong L. Choi Secretary : Mr. J. H. Kim

(4) Organizing Subcommittees

Scientific Program
Chairman : I. K. Paik
Vice-Chairman : C. W. Kang

Finance
Chairman : C. W. Kim
Vice-Chairman : D. J. Yoo

Publication
Chairman : J. K. Jung
Vice-Chairman : H. W. Lee

Home Stay Program
Chairman : Y. J. Choi
Vice-Chairman : T. S. Koh

Special & Social Program
Chairman : N. H. Lee
Vice-Chairman : Y. S. Son

Program Coordinating
Chairman : H. T. Lee
Vice-Chairman : C. K. Han

Tour & Transportation
Chairman : B. D. Cho
Vice-Chairman : H. Y. Park

Animal Life Science Exhibition
Chairman : K. M. Chung
Vice-Chairman : J. T. Yoon, H. H. Im, Y. S. Shin, Y. C. Kim, K. B. Lim

Publication Subcommittee

Chairman : J. K. Jung
Vice-Chairman : H. W. Lee

Editorial Remark : All the contributed papers were photocopied from original manuscripts submitted to Publication Subcommittee without editing except those exceeding 2 pages. Some of authors did not observe Guidelines for Abstract Preparation, in which exact format and style of abstract were described. Thus, style and format of abstracts in this volume are not consistent.
Section 3 : Environment (PE1)

PE1-1 J. H. Ma, J. H. Lim and H. U. Kim (Korea) Studies on lactic acid bacteria of swine house environment .. 442
PE1-2 R. Trevor Wilson (UK) The yak-life support in cold climates .. 444
PE1-3 T. Tanaka, Y. Murayama, Y. Eguchi and T. Yoshimoto (Japan) Studies on the visual acuity of pigs under low light intensity ... 446

Section 4 : Feed Technology (PF1)

PF1-1 A. A. Aganga and S. M. Malebye (Botswana) Chemical composition and digestibility of four indigenous botswana browse ... 450
PF1-3 J. Y. Lee and S. J. Ohh (Korea) Chemobiological evaluation of extracted plant steroid as a potential feed nutraceuticals .. 452
PF1-4 K. B. Kwon, I. H. Kim, E. J. Kim, C. S. Kim, J. O. Kang, H. B. Seok and J. W. Kim (Korea) Evaluation of sodium sulfate as an extrusion aid for processing dry extruded whole soybeans (DEWS) in early-weaned pigs ... 454
PF1-6 La Van Kinh, Vu Van Do and Dang Duc Phuong (Vietnam) Chemical composition of cashew apple and cashew apple waste ensiled with poultry litter ... 458
PF1-7 Zhongle Li, Minghao Shen and Shilian Bai (China) Study on toxicology of wangling maifaine .. 460
PF1-8 O. Enishi, A. Purnomoadi, K. Kakiuchi and F. Terada (Japan) Prediction of protein fraction of tropical grass by near infrared reflectance spectroscopy ... 462
PF1-9 P. Jiang and Z. Y. Liu and A. P. Luo (China) Observation of the growth of lactobacteria and yeasts on some food-by-products ... 464
PF1-10 R. Valizadeh (Iran) The utilization of Saffron leaves as an animal feedstuff ... 466
PF1-11 H. J. Jung, I. S. Shin and In K. Han (Korea) Study on the fatty acids composition of major feed ingredients and some animal origin food ... 468
PF1-12 J. Jin, X. S. Piao, B. J. Chae, J. H. Kim and In K. Han (Korea) Effects of extrusion condition of barley on the performance, nutrient digestibility and nutrient excretion in growing pigs ... 470
PF1-13 B. J. Chae, In K. Han, J. H. Kim, J. D. Hancock and I. H. Kim (Korea) Effects of particle size and extrusion of corn and sorghum on ileal digestibility and growth performance of early-weaned pigs ... 472
PF1-14 Chantaraj Nongyao, W. Kalayanavong, P. Umroong and M. Umroog (Thailand) Change in cell structure and nutrient digestibility of corn stem treated with selected fungi ... 474
PF1-15 W. Kalayanavong, Chantaraj Nongyao and S. Kittipongpsal (Thailand) Change in nutrients composition of water hyacinth after treated with selected fungi ... 476
PF1-16 S. H. Ko, Y. B. Kim, N. H. Lee and C. Ahn (Korea) Isolation and identification of feather-degrading bacteria ... 478
PF1-17 S. H. Ko, Y. B. Kim, N. H. Lee and C. Ahn (Korea) Characterization and
Introduction

The nutritive value of feed protein for the ruminant varies inversely with the extent of solubility and degradability of protein in the rumen. Because of ruminal microbes do not provide enough protein for maximum milk production, it is necessary to provide escape ruminal degradation protein (Chalupa, 1996). Therefore, feeding for high levels of milk production must consider the protein fraction. Since, there are few reports of protein fraction in Japan, this investigation was done. Meanwhile near infrared reflectance spectroscopy (NIRS) was been used as analytical method in the field due to the rapid, accurate and no laborious methods, that provides rapid determination of feed composition. Prediction of protein fraction by NIRS will be useful to estimate nutritive value of feed protein for supporting high producing dairy cow.

The object of this study was to examine the possibility of NIRS to determine protein fraction of tropical grass which was widely cultivated in southwest of Japan.

Materials and methods

The experimental grass were guineagrass (Panicum maximum Jacq. var. maximum), rhodes grass (Chloris gayana Kunth.) and sudangrass (Sorghum sudanense Stapf.). All 53 samples of tropical grass were dried forced-air oven at 60°C for 24h followed by milling through a 1mm screen. Grass samples for this study were collected in form of fresh cutting, hay and silage. These processed samples were chemical analyzed to determine crude protein (CP), soluble intake protein (SIP), Degradable intake protein (DIP) and binding protein (BP) that is acid detergent insoluble protein (Licita, 1996). Near infrared spectra were collected using spectrophotometer (NIRECO 6500). The samples were scanned over the range 1100-2500nm. The spectral data were collected at wavelength intervals of 2 nm, and the second derivative of these values were used to derive relationships with the protein fraction. Thirty-one samples chosen randomly from the 53 samples above were then used as a standard sample to develop a NIRS calibration equation. This equation was used to predict the nitrogen fraction of the remaining 17 samples. The calibration was done with a maximum of four wavelengths.

Results and Discussion

The means (min.-max.) of CP, SIP, DIP and BP for the standard samples are 11.4 (5.2-15.8), 4.0 (0.8-7.2), 8.2 (3.5-11.3) and 1.0 (0.6-1.4) respectively, and these for prediction samples are 11.1 (6.3-15.1), 4.5 (3.0-6.4), 8.2 (4.8-11.4) and 1.1 (0.5-1.8) respectively. Regarding the range of protein fraction, values of the standard samples were slightly wider than those of the prediction samples except BP.

Wavelengths observed for calibration of standard samples are shown in Table 1. With respect to CP, SIP and DIP, the 1st to 4th absorbance wavelengths were found at 1234, 2326, 1980 and 2296nm respectively. The first absorbance was close to 1215nm which is thought to be hemicellulose. The 2nd wavelength was in the 2305nm and 2326nm region, considered to be cellulose. The 3rd and 4th
wavelength was thought to be crude protein. Meanwhile the 1st to 4th absorbance wavelengths of BP were 1358, 1684, 1820 and 2148 nm. The 1st wavelength was 1358 nm which is close to hemicellulose. The 2nd wavelength was close to 1685 nm, aromatic structure which thought to be lignin. The 3rd wavelength was 1820 nm which is thought to be cellulose. The 4th wavelength was close to 2050 nm which is thought to be protein.

Table 1. Wavelength used and correlation coefficients of each constituent of standard and prediction of unknown of tropical grass.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Wavelength</th>
<th>Standard</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
</tr>
<tr>
<td>CP</td>
<td>1234</td>
<td>2326</td>
<td>1980</td>
</tr>
<tr>
<td>SIP</td>
<td>1234</td>
<td>2326</td>
<td>1980</td>
</tr>
<tr>
<td>DIP</td>
<td>1234</td>
<td>2326</td>
<td>1980</td>
</tr>
<tr>
<td>BP</td>
<td>1358</td>
<td>1684</td>
<td>1820</td>
</tr>
</tbody>
</table>

R: Multiple correlation coefficient.
r: Simple correlation coefficient
SeC: Standard error of standard.
SeP: Standard error of Prediction
CP: Crude protein.
SIP: Soluble intake protein.
DIP: Degradable intake protein.
BP: Binding protein.

Correlation coefficients (R) between the values obtained by chemical analysis and those obtained by NIRS for protein fraction in the standard samples were observed to be more than 0.90 except SIP and BP. The prediction equation obtained from the standard samples was used to determine the protein fraction of 22 prediction samples. The simple correlation coefficient (r) and standard errors (SeP) of BP were lower than those of the standard samples. The wavelengths appropriate for BP were somewhat different from that observed for CP, SIP and DIP. The 2nd and 3rd wavelengths observed here shows that BP was closely related to fiber. Meanwhile Abrams (1988) reported that accuracy was higher in the measurement of nitrogen solubility when it was expressed as insoluble nitrogen rather than soluble nitrogen. If nitrogen fraction of tropical grass were expressed as soluble nitrogen, it may increase accuracy.

It is concluded from this experiment that there is potential for NIRS to evaluate protein fraction of tropical grass. Although it is considered that additional research is necessary in BP.

References

