ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI RASA PERCAYA KONSUMEN PADA KLAIM KESEHATAN UNTUK MENINGKATKAN INTENSITAS PEMBELIAN

(STUDI KASUS PRODUK BERAS HERBAL PONNI TAJ MAHAL DI KOTA SEMARANG)

TESIS

Diajukan untuk memenuhi sebagian syarat guna memperoleh derajad sarjana S-2 Magister Manajemen Program Studi Magister Manajemen Universitas Diponegoro

Disusun oleh:

Eveline Rani Kusuma. S NIM. C4A005041

PROGRAM STUDI MAGISTER MANAJEMEN PROGRAM PASCA SARJANA UNIVERSITAS DIPONEGORO SEMARANG

2006

Sertifikat

Saya, Eveline Rani Kusuma S, yang bertanda tangan dibawah ini menyatakan bahwa tesis yang saya ajukan ini adalah hasil karya saya sendiri yang belum pernah disampaikan untuk mendapatkan gelar pada program Magister Manajemen ini ataupun pada program lainnya. Karya ini adalah milik saya, karena itu pertanggungjawabannya sepenuhnya berada di pundak saya.

Eveline Rani Kusuma Subandrio

13 November 2006

Pengesahan Tesis

Yang bertanda tangan di bawah ini menyatakan bahwa draft tesis berjudul:

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI RASA PERCAYA KONSUMEN PADA KLAIM KESEHATAN UNTUK MENINGKATKAN INTENSITAS PEMBELIAN (STUDI KASUS PRODUK BERAS HERBAL PONNI TAJ MAHAL DI KOTA SEMARANG)

Yang disusun oleh Eveline Rani Kusuma S, NIM C4A005041 Telah dipertahankan di depan Dewan Penguji Pada tanggal 20 November 2006.

Pembimbing Utama

Pembimbing Anggota

Drs. Daryono Rahardjo, MM

Dra. Hj. Utami Tri Sulistyorini, MBA

Semarang November 2006 Universitas Diponegoro Program Pascasarjana Program Studi Magister Manajemen Ketua Program

Prof. Dr. Suyudi Mangunwihardjo

ABSTRACT

Nowadays, local food and beverage companies compete to create innovative product desired by consumers. Most of those companies put various kinds of health claim on the front panel of the package. According to Puspa (2002), companies are able to promote the function or added value of their products through health claim, thus will increase the selling volume of products. Object used in this research is health rice Herbal Ponni Taj Mahal.

Verification of reference group and health claim campaign are several ways which can be used to increase consumer trust toward health claim. The purpose of this research are: to analyze the effect of verification of reference group toward consumers trust of health claim, the effect of health claim campaign toward consumers trust of health claim, and the effect of consumers trust of health claim toward purchase intention.

The main question in this research is how to increase consumers trust of functional foods health claim which will cause increasing purchase intention. Based on this question, a theoretical model and 3 hypothesis are proposed to be assessed using SEM. Samples of this research are 151 consumers of Herbal Ponni Taj Mahal rice in the city of Semarang.

The result of SEM analysis fulfills the criteria of *Goodness of Fit Index*: X^2 (*chi- square*) 62.352, probability 0.113 (\geq 0.05), RMSEA 0.041 (\leq 0.08), GFI 0.935 (\geq 0.90), AGFI 0.898 (\geq 0.90), TLI 0.992 (\geq 0.95), CFI 0.994 (\geq 0.985).

These results show that purchase intention is possible to be increased through increasing consumers trust of health claim, which can be increased in two ways: (1) through verification of famous, international, and independent health institution which have the appropriate expertise and (2) campaign, in the form of "campaign to cure certain disease", "commercial of certain diseases medicines", and exhibition.

Key words: health claim, verification of health claim, health claim campaign, trust, purchase intention.

ABSTRAKSI

Dewasa ini, perusahaan produk makanan dan minuman lokal saling bersaing untuk menghasilkan produk yang inovatif dan disukai konsumen. Diantara produk-produk tersebut, banyak diantaranya mencantumkan klaim kesehatan dalam kemasannya. Menurut Puspa (2002), melalui klaim ini, perusahaan dapat mempromosikan fungsi/nilai tambah dari produk tersebut sehingga penjualan produknya dapat meningkat. Dalam penelitian ini, objek yang digunakan adalah beras kesehatan Herbal Ponni Taj Mahal.

Verifikasi kelompok referensi dan kampanye klaim kesehatan merupakan beberapa cara yang dapat dilakukan untuk meningkatkan rasa percaya konsumen pada klaim kesehatan. Tujuan penelitian ini adalah: Menganalisis pengaruh verifikasi kelompok referensi terhadap peningkatan rasa percaya konsumen pada klaim kesehatan, pengaruh kampanye klaim kesehatan terhadap peningkatan rasa percaya konsumen pada klaim kesehatan, dan pengaruh tingkat rasa percaya konsumen pada klaim kesehatan terhadap intensitas pembelian.

Masalah dalam penelitian ini adalah bagaimana cara meningkatan rasa percaya konsumen pada klaim kesehatan dalam makanan fungsional yang berdampak pada peningkatan intensitas pembelian. Atas dasar ini diajukan model teoritis dan 3 hipotesis untuk diuji dengan metode SEM. Sampel penelitian ini adalah 151 konsumen beras Herbal Ponni Taj Mahal di kota Semarang.

Hasil analisis SEM memenuhi criteria *Goodness of Fit Index*; X^2 (*chi- square*) 62.352, probability 0.113 (\geq 0.05), RMSEA 0.041 (\leq 0.08), GFI 0.935 (\geq 0.90), AGFI 0.898 (\geq 0.90), TLI 0.992 (\geq 0.95), CFI 0.994 (\geq 0.985).

Hasil penelitian ini menunjukkan bahwa intensitas pembelian dapat ditingkatkan melalui peningkatan rasa percaya konsumen pada klaim kesehatan, dimana rasa percaya ini dapat ditingkatkan dengan dua cara, yaitu: (1) verifikasi klaim kesehatan dari lembaga kesehatan yang terkenal, internasional, independen, dan memiliki bidang keahlian yang sesuai dan (2) kampanye berupa kampanye penyembuhan penyakit tertentu, iklan obat pencegah/penyembuh penyakit, dan pameran.

Kata kunci : klaim kesehatan, verifikasi klaim kesehatan, kampanye klaim kesehatan, rasa percaya, intensitas pembelian

KATA PENGANTAR

Puji syukur kepada Tuhan karena atas berkat-Nya, tesis ini dapat diselesaikan dengan baik. Tesis ini disusun untuk memenuhi sebagian syarat dalam memperoleh derajad sarjana S-2 Program Studi Magister Manajemen Universitas Diponegoro. Judul penelitian yang diajukan adalah "Analisis Faktor-Faktor yang Mempengaruhi Rasa Percaya Konsumen pada Klaim Kesehatan Untuk Meningkatkan Intensitas Pembelian (Studi Kasus Produk Beras Herbal Ponni Taj Mahal di Kota Semarang)".

Dalam penulisan tesis ini, penulis telah banyak mendapatkan bantuan secara moril maupun materiil dari berbagai pihak. Oleh karena itu, pada kesempatan ini penulis ingin mengucapkan terimakasih kepada berbagai pihak yang khususnya kepada :

- Prof. Dr. Suyudi Mangunwihardjo, sebagai Direktur Program Pasca Sarjana Magister Manajemen.
- 2. Drs. Daryono Rahardjo, MM sebagai pembimbing utama dalam penelitian ini.
- 3. Dra. Hj. Utami Tri Sulistyorini, MBA sebagai pembimbing anggota dalam penelitian ini.
- 4. Para responden dalam pelaksanaan dan penyelesaian penelitian ini.
- 5. Para dosen S-2 Magister Manajemen yang telah memberikan banyak ilmu serta masukan bagi penulisan tesis ini.
- 6. Kedua orang tua yang telah memberikan dorongan moril maupun materiil.
- 7. Rekan-rekan mahasiswa S-2 Magister Manajemen angkatan XXIV yang banyak membantu dalam penyelesaian tesis ini.
- 8. Dan berbagai pihak yang telah membantu dan tidak dapat disebutkan satu per satu.

Penulis menyadari bahwa tesis ini tidak sempurna, oleh karena itu segala saran, kritik dan masukan akan diterima dengan lapang dada. Akhir kata, penulis berharap tesis ini dapat bermanfaat bagi semua pihak yang berkepentingan.

Semarang, 13 November 2006

Penulis

Eveline Rani Kusuma S

DAFTAR TABEL

Tabel 1. Ringkasan Hasil Penelitian Ford et al. (1996)	7
Tabel 2. Ringkasan Hasil Penelitian Keller et al. (1997)	7
Tabel 3. Ringkasan Hasil Penelitian Roe et al. (1999)	8
Tabel 4. Ringkasan Hasil Penelitian Garretson dan Burton (2000)	9
Tabel 5. Ringkasan Hasil Penelitian Bhaskaran dan Hardley (2002)	10
Tabel 6. Ringkasan Hasil Penelitian Kozup et al. (2003)	10
Tabel 7. Ringkasan Hasil Penelitian Everard dan Galletta (2006)	11
Tabel 8. Rancangan Inti Pertanyaan Kuesioner	32
Tabel 9. Model Pengukuran	37
Tabel 10. Tabel data deskriptif penelitian	45
Tabel 11. Hasil perhitungan Reliabilitas dan Validitas Kuesioner	46
Tabel 12. Sample Covariance – Estimates	51
Tabel 13. Indeks Pengujian Confirmatory Factor Analysis Konstruk	
Eksogen	52
Tabel 14. Regression Weights Confirmatory Factor Analysis Konstruk	
Eksogen	53
Tabel 15. Indeks Pengujian Confirmatory Factor Analysis Konstruk	
Endogen	55
Tabel 16. Regression Weights Confirmatory Factor Analysis Konstruk	
Endogen	56
Tabel 17. Indeks Pengujian Kelayakan Structural Equation Model	57
Tabel 18. Regression Weights Structural Equation Model	58
Tabel 19. Descriptive Statistics	61
Tabel 20. Assessment of Normality	63
Tabel 21. Evaluasi Kriteria Goodness of Fit Index	65
Tabel 22. Standardized Residual Covariances	66
Tabel 23. Estimasi Parameter Regression Weights	69
Tabel 24. Implikasi Teoritis	80
Tabel 25. Implikasi Kebijakan Manajerial	84

DAFTAR GAMBAR

Gambar 1. Kerangka Pemikiran Teoritis	23
Gambar 2. Variabel Verifikasi Kelompok Referensi	24
Gambar 3. Variabel Kampanye Klaim Kesehatan	26
Gambar 4. Variabel Rasa percaya terhadap Klaim Kesehatan	27
Gambar 5. Variabel Intensitas pembelian	28
Gambar 6. Diagram Alur Penelitian	36
Gambar 7. Confirmatory Factor Analysis Konstruk Eksogen	52
Gambar 8. Confirmatory Factor Analysis Konstruk Endogen	55
Gambar 9. Structural Equation Model	57
Gambar 10. Proses Meningkatkan Intensitas Pembelian Melalui	
Verifikasi Kelompok Referensi	77
Gambar 11. Proses Meningkatkan Intensitas Pembelian Melalui	
Kampanye Klaim Kesehatan	77
Gambar 12. Framework proses meningkatkan Intensitas	
Pembelian Produk Makanan Fungsional	85

DAFTAR LAMPIRAN

Lampiran 1 : Kuesioner	92
Lampiran 2 : Data Mentah	96
Lampiran 3A : Output Grafis Konstruk Eksogen	99
Lampiran 3B : Output Tabel Konstruk Eksogen	100
Lampiran 4A : Output Grafis Konstruk Endogen	112
Lampiran 4B: Output Tabel Konstruk Endogen	113
Lampiran 5A : Output Grafis SEM	125
Lampiran 5B : Output Tabel SEM	126

DAFTAR ISI

Halamar	ı Judul	i
Surat Pe	rnyataan keaslian tesis	ii
Halamar	ı Pengesahan tesis	iii
Abstract		iv
Abstraks	si	V
Kata Per	ngantar	vi
Daftar T	abel	viii
Daftar G	ambar	ix
Daftar L	ampiran	X
DADI	DENID A HITH TI ANI	
DAD I.	PENDAHULUAN	
	r Belakang Penelitian	
1.2 Peru	ımusan Masalah	5
1.3 Tuji	ıan Penelitian	6
1.4 Man	faat penelitian	6
	TELAAH PUSTAKA DAN PENGEMBANGAN MODEL litian rujukan	
2.2 Tela	ah Pustaka dan Rumusan Hipotesis	13
2.2.1	Perkembangan Klaim Kesehatan di Berbagai Negara	13
2.2.2	Klaim Kesehatan dan Rasa Percaya Konsumen	16
2.2.3	Verifikasi Kelompok Referensi dan Rasa Percaya Konsumen pad	la
	Klaim Kesehatan	18
2.2.4	Kampanye Klaim Kesehatan dan Rasa Percaya Konsumen pada	
	Klaim Kesehatan	20
2.2.5	Pengaruh Rasa percaya Konsumen pada Klaim Kesehatan terhad	lap
	Intensitas Pembelian Produk	21
2.3 Peng	embangan Model Penelitian	23
2.3.1	Kerangka Pemikiran Teoritis	23
	nisi dan Dimensi Variabel Operasional	
2.4.1	Verifikasi Kelompok Referensi	24

2.4.2 Kampanye Klaim Kesehatan	25
2.4.3 Rasa Percaya terhadap Klaim Kesehatan	26
2.4.4 Intensitas Pembelian	27
BAB III. METODE PENELITIAN	
3.1 Objek dan Jenis Data Penelitian	29
3.2 Populasi dan Sampel Penelitian	29
3.2.1 Populasi	29
3.2.2 Sampel	30
3.2.3 Metode Pemilihan Sampel	31
3.3 Teknik Pengumpulan Data	31
3.3.1 Wawancara	31
3.4 Metode Analisis Data	34
BAB IV. ANALISIS DATA DAN PEMBAHASAN	
4.1 Gambaran Umum Penelitian	44
4.2 Analisis Kualitatif	46
4.2.1 Verifikasi Kelompok Referensi dan Rasa Percay	a pada Klaim
Kesehatan	46
4.2.2 Kampanye Klaim Kesehatan dan Rasa Percaya p	oada Klaim
Kesehatan	47
4.2.3 Rasa Percaya pada Klaim Kesehatan dan Intensi	tas Pembelian 48
4.3 Proses Analisis Data dan Pengujian Model Penelitian .	49
4.3.1 Langkah 1: Pengembangan Model Berdasarkan	Teori 50
4.3.2 Langkah 2: Menyusun Diagram Alur (Path Diag	gram) 50
4.3.3 Langkah 3: Persamaan Struktural dan Model Per	ngukuran50
4.3.4 Langkah 4: Memilih Matriks Input dan Teknik F	Estimasi 52
4.3.4.1 Confirmatory Factor Analysis Konstruk	Eksogen53
4.3.4.2 Confirmatory Factor Analysis Konstruk	Endogen 55
4.3.5 Menilai Problem Identifikasi	59
4.3.6 Evaluasi atas Asumsi-asumsi SEM	60
4.3.6.1 Asumsi-asumsi SEM	60
4.3.6.1.1 Ukuran Sampel	60

4.3.6.1.2 <i>Outlier</i>	
4.3.6.1.2.1 <i>Univariate Outlier</i>	
4.3.6.1.2.2 MultivariateOutlier61	
4.3.6.1.3 Uji Normalitas Data	
4.3.6.1.4 Evaluasi atas Multikolinearitas dan	
Singularitas	
4.3.6.2 Uji Kesesuaian: Goodness of Fit	
4.3.7. Langkah 7: Interpretasi dan Modifikasi Model	
4.4. Uji Reliabilitas dan <i>Variance Extract</i>	
4.4.1. Uji Reliabilitas	
4.4.2. Variance Extract	
4.5. Kesimpulan Pengujian Hipotesis	
BAB V. KESIMPULAN DAN IMPLIKASI KEBIJAKAN	
5.1. Ringkasan Penelitian 72	
5.2. Kesimpulan Pengujian Hipotesa Penelitian	
5.2.1. Verifikasi Kelompok Referensi dan Rasa Percaya pada	
Klaim Kesehatan	
5.2.2. Kampanye Klaim Kesehatan dan Rasa Percaya pada	
Klaim Kesehatan	
5.2.3. Rasa Percaya pada Klaim Kesehatan dan Intensitas Pembelian 77	
5.3. Kesimpulan dari Masalah Penelitian	
5.4. Implikasi Teoritis	
5.5. Implikasi Manajerial	
5.6. Keterbatasan Penelitian dan Agenda Penelitian Mendatang	
5.6.1. Keterbatasan Penelitian	
5.2.2. Agenda Penelitian Mendatang	
Daftar Referensi 89	
Lampiran 92	<u>)</u>
Daftar Riwayat Hidup15	50

BAB I

PENDAHULUAN

1.1. Latar Belakang

Produk makanan dan minuman sekarang ini sangat beragam jenisnya. Perusahaan produk makanan dan minuman lokal saling bersaing untuk menghasilkan produk yang inovatif dan disukai konsumen. Munculnya produk mancanegara juga membuat persaingan semakin ketat, karena kualitasnya yang terjamin, jenisnya yang beragam dan inovatif. Saat ini banyak dipopulerkan bahan pangan yang mempunyai fungsi fisiologis tertentu di dalam tubuh, misalnya untuk menurunkan tekanan darah, menurunkan kadar kolesterol, menurunkan kadar gula darah, meningkatkan penyerapan kalsium, dan lain-lain (Astawan, 2003).

Konsep produk makanan dan minuman yang demikian disebut sebagai konsep makanan fungsional (*functional foods*), yang akhir-akhir ini sangat populer di kalangan masyarakat dunia. Menurut badan POM, makanan fungsional ini tidak berbentuk kapsul, tablet, atau bubuk yang berasal dari senyawa alami, dan dibedakan dari suplemen makanan dan obat berdasarkan penampakan dan pengaruhnya terhadap kesehatan. Obat fungsinya terhadap penyakit bersifat kuratif, namun makanan fungsional hanya bersifat membantu pencegahan suatu penyakit.

Diantara produk-produk tersebut, banyak diantaranya mencantumkan klaim kesehatan dalam kemasannya. Menurut Puspa (2002), melalui klaim ini, perusahaan dapat mempromosikan fungsi/nilai tambah dari produk tersebut sehingga penjualan produknya dapat meningkat. Secara internasional (Codex Allimentarius dalam Puspa, 2002) klaim kesehatan digolongkan menjadi empat golongan, yaitu : (1) klaim nutrisi, klaim tentang kandungan nutrisi suatu produk, (2) klaim kandungan nutrisi, klaim

tentang tinggi rendahnya nutrisi suatu produk, (3) klaim struktur/fungsi, klaim tentang peranan nutrisi tertentu terhadap fungsi organ tubuh dalam keadaan normal, dan (4) klaim kesehatan, klaim tentang hubungan nutrisi-bahan tertentu dari produk makanan dan minuman dengan kesehatan tubuh dan penyakit (pencegahan dan pengobatan). Penggunaan klaim no 1-3 tidak diatur secara spesifik, produk makanan dan minuman dapat mencantunkan klaim tersebut untuk pesan komunikasinya, sedangkan klaim no 4 yaitu klaim kesehatan tidak boleh digunakan begitu saja. Penggunaan klaim kesehatan ini membutuhkan pembuktian secara ilmiah. Pemanfaatan fungsi/nilai tambah yang tidak didasari dengan fakta-fakta ilmiah yang benar akan merugikan masyarakat pengguna bahan pangan tersebut. Klaim dari fungsi tambahan juga harus dikomunikasikan dengan benar, jelas (tidak menyesatkan), dan tidak berlebihan (Puspa, 2002).

Di Amerika, pendaftaran bahan pangan fungsional ini diatur oleh *Food and Drug Administration* (FDA) dan penggunaan klaim diatur dalam *Nutrition and Labelling Education Act* (NLEA). FDA telah mengeluarkan 15 klaim generik yang dapat dipakai sebagai klaim standar makanan fungsional yang penggunaannya tidak memerlukan data penelitian klinis tambahan.

Di Jepang, perkembangan makanan fungsional juga didorong oleh pemerintah Jepang yang gigih memperbaiki mutu kesehatan para manula yang jumlahnya terus meningkat. Karena tidak ada pengaturan yang jelas tentang penggunaan klaim kesehatan untuk makanan fungsional pada waktu itu, maka banyak terjadi penyalahgunaan klaim. Perusahaan dengan mudahnya mengklaim produknya berguna bagi kesehatan atau dapat mencegah penyakit tertentu tanpa dasar penelitian ilmiah. Klaim yang sembarangan ini membuat masyarakat pengguna atau konsumen bingung

dan berpandangan negatif terhadap industri makanan dan minuman secara keseluruhan.

Di Indonesia sendiri telah banyak dijumpai produk-produk makanan dengan beragam klaim kesehatan. Namun demikian kebenaran klaim masih diragukan dan perlu diteliti lebih lanjut. Penggunaan klaim produk makanan dan minuman masih belum diatur dalam undang-undang. Maka dari itu perusahaan dapat menggunakan klaim dengan relatif bebas (Puspa, 2002). Belajar dari pengalaman negara Jepang, ketidakjelasan peraturan mengenai penggunaan klaim kesehatan oleh perusahaan makanan di Indonesia akan menimbulkan kebingungan dan hilangnya rasa percaya konsumen pada perusahaan makanan dan minuman, serta pada klaim itu sendiri.

Perusahaan makanan yang mencantumkan klaim kesehatan pada produknya dengan benar (telah melakukan penelitian ilmiah sebelumnya) tentu mengharapkan konsumen mempercayai kebenaran klaim produk mereka dan tidak ingin terkena imbas dari klaim produk lain yang berlebihan atau tidak berdasar ilmiah. Menurut Bhaskaran dan Hardley (2002), Wansink dan Cheney (2005), ada beberapa cara yang dapat dilakukan perusahaan makanan untuk meningkatkan rasa percaya konsumen terhadap klaim kesehatan produk mereka, diantaranya adalah dengan verifikasi dari sumber independen yang dipercaya (kelompok referensi) dan kampanye klaim kesehatan yang dilakukan perusahaan makanan. Sumber independen yang dimaksud adalah perorangan atau lembaga yang tidak berkaitan dengan kepentingan perusahaan makanan dan dapat memberikan verifikasi yang objektif tentang kebenaran klaim kesehatan (Bhaskaran dan Hardley, 2002). Sedangkan kampanye klaim kesehatan mengambil contoh kampanye pendidikan yang dilakukan Kellog's pada tahun 1984 tentang hubungan konsumsi serat dan pencegahan kanker, untuk mendukung klaim kesehatan yang dicantumkan dalam produk serealnya (Wansink dan Cheney, 2005).

Penelitian Ford et al. (1996) menyebutkan bahwa keberadaan klaim kesehatan akan mempengaruhi persepsi konsumen terhadap tingkat kesehatan produk secara positif, begitu pula terhadap sikap, dan harapan mereka terhadap nutrisi produk makanan tersebut. Konsumen yang merasa informasi dalam klaim kesehatan sudah cukup akan menghentikan pencarian informasi tambahan, misalnya keterangan pada panel fakta nutrisi (Roe et al., 1999). Rasa percaya konsumen pada klaim kesehatan ini, akan berpengaruh positif terhadap intensitas pembelian konsumen. Hal ini terlihat dalam hasil penelitian Everard dan Galletta (2006) yang menunjukkan bahwa rasa percaya konsumen mempengaruhi intensitas pembelian konsumen secara positif. Hasil ini juga didukung oleh pernyataan Gefen (2000), yang menganalisis hubungan antara familiaritas dan rasa percaya pada *electronic commerce* dan menemukan bahwa rasa percaya adalah prediktor yang baik bagi intensitas pembelian, serta Donney dan Cannon (1997) yang menyatakan bahwa rasa percaya (*trust*) adalah *order qualifier* untuk keputusan pembelian, dimana supaya konsumen melakukan pesanan, mereka harus mempercayai penjualnya terlebih dahulu.

Walau demikian, tampaknya klaim kesehatan dan/atau nutrisi pada label produk dapat juga memacu pencarian informasi, dimana beberapa konsumen bergantung sepenuhnya pada informasi pada kemasan sedangkan yang lainnya juga memeriksa panel fakta nutrisi. Sehingga, dapat dikatakan bahwa beberapa konsumen menggunakan panel fakta sebagai sebuah alat legitimasi dalam mengevaluasi klaim kesehatan. Keller et al. (1997) menggunakan kerangka aksesibilitas/pendiagnosisan (Alba et al., 1991; Feldman dan Lynch, 1998) yang menyatakan bahwa panel fakta nutrisi merupakan alat diagnosis bagi konsumen untuk mengevaluasi produk dan, karena itu mengurangi ketergantungan pada klaim kesehatan pada kemasan produk. Berdasarkan uraian tersebut dapat dikatakan bahwa konsumen tidak sepenuhnya

mempercayai kebenaran klaim kesehatan sehingga harus mencari konfirmasi kebenarannya dari sumber lain, diantaranya yang termudah adalah informasi dari panel fakta nutrisi.

Dalam penelitian ini akan dibahas mengenai pengaruh verifikasi kelompok referensi dan kampanye klaim kesehatan terhadap peningkatan rasa percaya konsumen pada klaim produk beras kesehatan "Herbal Ponni Taj Mahal", serta pengaruh rasa percaya konsumen pada klaim produk ini terhadap intensitas pembelian. Produk beras ini dipilih sebagai objek penelitian karena merupakan produk makanan fungsional yang belum lama masuk ke Indonesia (tahun 2001) dan harus bersaing dengan produk beras biasa yang sudah banyak dikenal konsumen serta lebih murah harganya. Beras ini memiliki beberapa klaim, yaitu dapat menyembuhkan diabetes dan melangsingkan tubuh, karena kandungan mineralnya yang tinggi dapat mengontrol gula darah. Selain itu, strategi pemasarannya dilakukan dengan jalur edukasi konsumen, seperti seminar, arisan ibu-ibu, pameran di mal, dan artikel di media massa, dengan merujuk pada uji klinis yang dilakukan *Australia International Diabetes Institute* (AIDI) (Marketing, edisi 19/III 2004).

Menurut Arnould et al. (2005), negara-negara berkembang termasuk Indonesia memiliki distribusi pendapatan konsumen yang sangat timpang, dimana tercipta segmen kecil konsumen yang sangat kaya dan segmen besar konsumen yang sangat miskin, yang disebut sebagai distribusi pendapatan rangkap. Harga beras "Herbal Ponni Taj Mahal saat ini adalah Rp 100.000,00 per kemasan 5 kg, harga ini sangat mahal bila dibandingkan dengan harga beras biasa. Oleh karena itu tentunya segmen pasar dari beras ini adalah segmen konsumen yang berpendapatan menengah dan tinggi.

1.2. Perumusan Masalah

Latar belakang penelitian ini, seperti telah dijelaskan di atas, adalah adanya kontradiksi dalam hal rasa percaya konsumen pada klaim kesehatan. Penelitian Bhaskaran dan Hardley (2002) menyebutkan bahwa responden dalam penelitian mereka tidak mempercayai dan bersikap skeptis terhadap klaim kesehatan, namun secara kontradiktif, mereka juga berharap dapat mempercayai kebenaran klaim bahkan mereka sering membeli produk-produk makanan fungsional.

Oleh karena itu, berdasarkan *research gap* di atas, masalah dalam penelitian ini adalah bagaimana cara meningkatan rasa percaya konsumen pada klaim kesehatan dalam makanan fungsional yang berdampak pada peningkatan intensitas pembelian.

Berdasarkan masalah penelitian dan uraian literatur yang berkaitan di atas, analisis masalah penelitian dirumuskan dalam beberapa pertanyaan penelitian berikut:

- 1. Apakah verifikasi kelompok referensi mampu meningkatkan rasa percaya konsumen pada klaim kesehatan produk makanan fungsional ?
- 2. Apakah kampanye klaim kesehatan mampu meningkatkan rasa percaya konsumen pada klaim kesehatan produk makanan fungsional ?
- 3. Apakah peningkatan rasa percaya konsumen pada klaim kesehatan produk makanan fungsional mampu meningkatkan intensitas pembelian konsumen?

1.3. Tujuan Penelitian

Tujuan penelitian ini adalah:

- Menganalisis pengaruh verifikasi kelompok referensi terhadap peningkatan rasa percaya konsumen pada klaim kesehatan produk makanan fungsional
- 2. Menganalisis pengaruh kampanye klaim kesehatan terhadap peningkatan rasa percaya konsumen pada klaim kesehatan produk makanan fungsional

3. Menganalisis pengaruh tingkat rasa percaya konsumen pada klaim kesehatan produk makanan fungsional terhadap intensitas pembelian.

1.4. Manfaat Penelitian

Secara teoritis, penelitian ini diharapkan menyumbangkan dukungan positif pada hubungan antara rasa percaya pada klaim kesehatan produk makanan fungsional terhadap intensitas pembelian konsumen.

Secara manajerial, penelitian ini diharapkan bermanfaat bagi perusahaan produk makanan yang mencantumkan klaim kesehatan (dengan dasar penelitian ilmiah yang jelas) untuk mengetahui cara yang efektif untuk meningkatkan rasa percaya konsumen pada klaim kesehatan. Pengetahuan ini akan bermanfaat untuk menyusun strategi pemasaran produk makanan berklaim kesehatan yang efisien dan efektif, dan juga akan lebih meningkatkan perkembangan makanan fungsional di Indonesia, yang pada akhirnya akan memperbaiki kualitas kesehatan bangsa.

BAB II

TELAAH PUSTAKA DAN PENGEMBANGAN MODEL

2.1. Penelitian Rujukan

Penelitian ini mengambil tujuh penelitian rujukan yang dipublikasikan dalam jurnal ilmiah. Hasil penelitian rujukan ini merupakan dasar atau landasan yang cukup kuat bagi pengembangan kerangka pemikiran teoritits untuk menjawab permasalahan yang ada. Hasil penelitian rujukan disusun secara ringkas dalam tabel-tabel berikut ini.

Tabel 1.

Ringkasan Hasil Penelitian Ford et al. (1996)

Peneliti/penulis &	Gary T. Ford, Manoj Hastak, Anusree Mitra, Debra Jones					
tahun	Ringold (1996)					
Judul	Can Consumers Interpret Nutrition Information in the					
penelitian/artikel	Presence of a Health Claim? A Laboratory Investigation					
Variabel penelitian	Keberadaan klaim kesehatan					
	• Informasi nutrisi					
	Keyakinan tentang kesehatan produk					
	Ambiguitas informasi nutrisi					
	• Favorabilitas informasi nutrisi					
Sampel penelitian	325 mahasiswa S1 dan S2 bisnis pada suatu universitas					
	berukuran sedang di wilayah mid-Atlantik.					
Metode analisis	Uji MANOVA					
Hasil penelitian	Baik klaim kesehatan maupun informasi mempengaruhi					
	keyakinan tentang kesehatan produk. Klaim kesehatan tidak					
	mempengaruhi pemrosesan informasi pada label makanan.					
	Klaim kesehatan dan informasi nutrisi memiliki efek					
	independen terhadap keyakinan konsumen.					

Tabel 2. Ringkasan Hasil Penelitian Keller et al. (1997)

Peneliti/penulis &	Scott B. Keller, Mike Landry, Jeanne Olson, Anne M.					
tahun	Velliquette, Scot Burton, J. Craig Andrews (1997)					
Judul	The Effects of Nutrition Package Claims, Nutrition Facts					
penelitian/artikel	Panels, and Motivation to Process Nutrition Information on					
	Consumer Product Evaluations					
Variabel penelitian	Konsistensi klaim nutrisi dengan informasi nilai nutrisi					

	Evaluasi konsumen tentang kredibilitas perusahaan					
	1					
	• Level nilai nutrisi					
	Sikap terhadap produk					
	• Intensitas pembelian					
	Sikap pada nutrisi produk					
	 Motivasi konsumen untuk memproses 					
Sampel penelitian	Responden merupakan anggota panel penelitian rumah					
	tangga di seluruh negara bagian. Kurang lebih 800 anggota					
	diberi kiriman paket survey.					
Metode analisis	Uji MANOVA dilanjutkan dengan uji univariat.					
Hasil penelitian	Motivasi memoderasi efek nilai nutrisi produk pada evaluasi					
	konsumen. Klaim nutrisi berinteraksi dengan nilai nutrisi					
	produk dalam mempengaruhi persepsi konsumen tentang					
	kredibilitas perusahaan. Dengan adanya level nutrien dalam					
	panel fakta nutrisi di bagian belakang kemasan rekayasa,					
	klaim nutrisi di bagian depan kemasan tidak mempengaruhi					
	evaluasi produk keseluruhan dan intensitas pembelian secara					
	positif.					

Tabel 3. Ringkasan Hasil Penelitian Roe et al. (1999)

Peneliti/penulis &	Drian Dog Alan S. Lavay Dranda M. Darby (1000)					
1	Brian Roe, Alan S. Levy, Brenda M. Derby (1999)					
tahun						
Judul	The Impact of Health Claim on Consumer Search and					
penelitian/artikel	Product Evaluation Outcomes: Results from FDA					
	Experimental Data					
Variabel penelitian	Keberadaan klaim kesehatan					
	Keberadaan klaim kandungan nutrien					
	Pencarian informasi yang terhenti					
	Level kesehatan produk					
	Level keinginan membeli					
	• Level kesimpulan manfaat kesehatan dari pernyataan ulang					
	klaim					
	• Level kesimpulan manfaat benefit non-klaim yang akurat					
	• Efek halo					
	• Efek magic-bullet					
Sampel penelitian	1403 orang primary food shoppers dalam wawancara face-					
	to-face mall-intercept di delapan tempat (Birmingham,					
	Charlotte, Dayton, Houston, Philadelphia, Phoenix, San					
	Jose, dan Wterbury					
Metode analisis	Analisis regresi					
Hasil penelitian	Keberadaan klaim kesehatan dan klaim kandungan nutrien					
_	pada kemasan makanan menghentikan pencarian informasi					
	hanya pada panel depan kemasan. Responden yang					
	menghentikan pencarian informasi atau melihat klaim					
	memberikan penilaian yang lebih positif pada produk dan					

menganggap informasi pada klaim lebih penting daripada informasi pada panel fakta nutrisi. Keberadaan klaim juga dikaitkan dengan efek halo dan efek *magic-bullet*.

Tabel 4.

Ringkasan Hasil Penelitian Garretson dan Burton (2000)

Peneliti/penulis &	Judith A. Garretson, Scot Burton (2000)						
tahun	•						
Judul	Effects of Nutrition Facts Panel Values, Nutrition Claims,						
penelitian/artikel	and Health Claims on Consumer Attitudes, Perceptions of						
	Disease-Related Risks, and Trust Sikap pada brand						
Variabel penelitian	* *						
	Sikap pada nutrisi						
	Intensitas pembelian						
	Kandungan lemak pada fakta nutrisi						
	Kandungan serat pada fakta nutrisi						
	Kemungkinan resiko penyakit yang dirasakan						
	Klaim kesehatan tentang serat						
	Klaim kesehatan tentang lemak						
	• Kesadaran tentang kaitan lemak/serat dengan resiko						
	penyakit						
	Rasa percaya pada klaim						
	Keyakinan pada kredibilitas perusahaan						
Sampel penelitian	382 anggota panel penelitian rumah tangga di seluruh negara						
	bagian.						
Metode analisis	Uji MANOVA dilanjutkan dengan uji univariat						
Hasil penelitian	Informasi tentang lemak dalam fakta nutrisi mempengaruhi						
	evaluasi konsumen dan persepsi tentang resiko penyakit,						
	sedangkan informasi tentang serat tidak. Klaim tidak						
	mempengaruhi evaluasi produk maupun intensitas						
	pembelian, dan ada efek lemah dari penyertaan klaim						
	kesehatan terhadap persepsi penyakit. Konsumen lebih tidak						
	menyadari ketidaksesuaian dalam klaim dan fakta nutrisi						
	tentang serat daripada tentang lemak. Ketidaksesuaian						
	tentang level lemak dalam produk menghasilkan rasa percaya yang lebih rendah pada informasi klaim namun tidak						
	mempengaruhi rasa percaya pada data fakta nutrisi.						
	mempengarum rasa percaya pada data rakta ndurisi.						

Tabel 5.

Ringkasan Hasil Penelitian Bhaskaran dan Hardley (2002)

Peneliti/penulis & tahun	Suku I	Bhaskaran	, Felicity H	ardley	(2002)		
Judul	Buyer	Beliefs,	Attitudes,	and	Behaviour:	Foods	with

penelitian/artikel	Therapeutic Claims
Variabel penelitian	 Pengetahuan dan keyakinan konsumen tentang nutrisi dan hubungan diet-kesehatan Perpindahan ke makanan fungsional Rasa percaya dan keyakinan konsumen pada informasi dan sumber informasi Efektivitas dan implikasi kampanye kesehatan preventatif pemerintah Perilaku pembelian
Sampel penelitian	35 orang yang merupakan <i>primary household grocery</i> shopper.
Metode analisis	Menyimpulkan hasil diskusi grup fokus
Hasil penelitian	Partisipan yang lebih muda lebih tidak mungkin berpindah ke makanan fungsional sebagai inisiatif preventatif penyakit yang utama. Walaupun penjualan makanan fungsional meningkat cepat, konsumen tampak skeptis terhadap klaim perusahaan. Dalam beberapa kasus, muncul paradox bahwa walaupun konsumen bersikap skeptis, mereka mau mempercayai klaim dan sering memilih untuk membeli produk dengan klaim fungsional daripada produk yang tidak memiliki klaim spesifik. Konsumen yang lebih muda menyatakan bahwa harga, rasa, dan penawaran promosi mempengaruhi keputusan pembelian mereka dan perpindahan mereka ke makanan fungsional hanya jika mereka telah memutuskan untuk membeli produk kesehatan.

Tabel 6. Ringkasan Hasil Penelitian Kozup et al. (2003)

Peneliti/penulis &	John C. Kozup, Elizabeth H. Creyer, Scot Burton (2003)
tahun	
Judul	Making Healthful Food Choices: The Influence of Health
penelitian/artikel	Claims and Nutrition Information on Consumers'
	Evaluations of Packaged Food Products and Restaurant
	Menu Items
Variabel penelitian	Klaim kesehatan jantung
	Sikap terhadap produk
	Sikap pada nutrisi
	Intensitas pembelian
	Persepsi resiko penyakit jantung dan stroke
	Informasi nutrisi
	Kredibilitas sumber yang dirasakan
	Kandungan nutrisi menu Konteks nutrisional menu
Sampel penelitian	147 responden untuk studi pertama, dan 145 responden
	untuk studi kedua. Semua responden adalah anggota panel
	penelitian rumah tangga untuk Amerika bagian selatan dan

	berstatus <i>primary food shopper</i> .
Metode analisis	Uji MANOVA dilanjutkan dengan uji univariat
Hasil penelitian	Ketika informasi nutrisi atau klaim kesehatan yang favorabel
	tersedia, konsumen memiliki sikap terhadap produk, sikap
	pada nutrisi, dan intensitas pembelian yang lebih favorabel
	dan mereka menganggap resiko penyakit jantung dan stroke
	lebih rendah. Konteks nutrisional dimana item menu restoran
	disajikan memoderasi efek informasi nutrisi dan klaim
	kesehatan terhadap evaluasi konsumen, yang menyatakan
	bahwa item menu alternatif berperan sebagai kerangka
	referensi terhadap item menu target yang dievaluasi.

Tabel 7. Ringkasan Hasil Penelitian Everard dan Galletta (2006)

D 11.11	1 D 1 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D
Peneliti/penulis &	Andrea Everard, Dennis F. Galletta (2006)
tahun	
Judul	How Presentation Flaws Affect Perceived Site Quality, Trust, and
penelitian/artikel	Intention to Purchase from an Online Store
Variabel penelitian	• Cacat presentasi (<i>style</i> buruk, kekurang lengkapan, <i>error</i>)
	Kualitas toko <i>online</i> yang dirasakan
	Rasa percaya pada toko <i>online</i>
	• Intensi untuk membeli dari toko <i>online</i>
Sampel penelitian	272 mahasiswa S1 dan S2 yang terdaftar pada salah satu universitas besar di daerah timur laut Amerika.
Metode analisis	Uji ANOVA dan regresi
Hasil penelitian	Kualitas website toko online yang dirasakan secara langsung
	berkaitan dengan rasa percaya pengguna pada toko tersebut dan akhirnya berkaitan dengan intensi pengguna untuk membeli dari toko. Hubungan antara faktor-faktor dan kualitas yang dirasakan (perceived quality) dimediasi oleh persepsi kecacatan. Persepsi kecacatan lebih mempengaruhi persepsi kualitas pengguna daripada cacat aktualnya.
Model Penelitian	Presentation Flaws Poor style Incompleteness H1 Perceived quality of Online Store H3 Perceived quality of Online Store H4 Trust in Online Store Intention to purchase from online store

2.2. Telaah Pustaka dan Rumusan Hipotesis

2.2.1. Perkembangan Klaim Kesehatan di Berbagai Negara

Di Amerika sejak tahun 1984, ketika Kellogg pertama kali mengiklankan hubungan antara konsumsi serat dan pencegahan beberapa jenis penyakit kanker, klaim kesehatan telah menjadi hal yang umum dalam kemasan dan iklan makanan. Meskipun beberapa peneliti seperti Calfee (1991); Ippolito dan Mathios, (1990) memuji manfaat dari klaim untuk meningkatkan kesadaran konsumen tentang hubungan diet-penyakit dan untuk pengembangan produk dalam dimensi yang relevan terhadap penyakit, Silverglade (1991) meyakini bahwa konsumen dibahayakan oleh klaim kesehatan yang tidak lengkap, menekankan perbedaan trivial antarproduk, atau menyesatkan ke arah lain.

Karena pertimbangan bahwa konsumen disesatkan oleh klaim kesehatan, pada tahun 1990, Kongres mengesahkan *Nutrition Labeling and Education Act* (Ford et al., 1996). *Nutrition Labeling and Education Act* (NLEA) secara dramatis mengubah label nutrisi pada produk makanan fungsional di supermarket-supermarket Amerika, dan karenanya meningkatkan jumlah informasi nutrisi yang tersedia pada saat pembelian. Peraturan ini mensyaratkan makanan dalam kemasan untuk menampilkan informasi nutrisi secara jelas dalam format label baru, yang bernama panel fakta nutrisi (*nutrition facts*). Peraturan ini juga mengatur takaran penyajian (*serving size*) untuk mencerminkan apa yang sebenarnya dimakan konsumen, klaim kesehatan (*health claims*) yang menghubungkan suatu nutrien dengan penyakit khusus, dan istilah penjelas (*descriptor terms*) seperti "rendah lemak/*low-fat*" pada kemasan makanan (Balasubramanian dan Cole, 2002).

Tujuan utama peraturan ini adalah untuk meningkatkan kesejahteraan konsumen dengan menyediakan informasi nutrisi yang akan "membimbing konsumen

dalam memelihara praktek diet yang sehat" (NLEA, 1990). Harapan yang utama adalah jika konsumen memiliki informasi nutrisi yang dapat dipercaya tersedia pada saat pembelian dan jika mereka memahami bagaimana diet mereka mempengaruhi penyakit berbeda, mereka akan memilih makanan beresiko rendah. Akhirnya, perubahan perilaku ini dapat mengurangi biaya masyarakat untuk merawat kondisi seperti penyakit jantung dan beberapa jenis kanker (Balasubramanian dan Cole, 2002).

Di Jepang, perkembangan klaim kesehatan terjadi seiring dengan perkembangan makanan fungsional. Perkembangan makanan fungsional didorong oleh pemerintah Jepang, untuk memperbaiki mutu kesehatan para manula yang jumlahnya meningkat tajam sepanjang tahun. Banyaknya produk makanan fungsional dengan berbagai klaim kesehatan, serta ketiadaan peraturan yang jelas mengenai penggunaan klaim kesehatan dalam produk makanan fungsional pada waktu itu, menyebabkan perusahaan dengan mudahnya mengklaim produknya berguna bagi kesehatan atau dapat mencegah penyakit tertentu tanpa didasarkan penelitian yang proporsional dan kajian ilmiah lainnya. Karena adanya kekacauan ini, pemerintah Jepang akhirnya mengeluarkan undang-undang khusus untuk bahan pangan fungsional dan dilakukan pendaftaran ulang terutama untuk mendapatkan persetujuan pemerintah yang pelaksanaannya dilakukan oleh *Japan Welfare and Health Ministry* (semacam POM di Indonesia) dan produk dengan klaim yang memenuhi syarat akan mendapatkan logo FOSHU dan secara otomatis produk tersebut dapat dipasarkan sebagai bahan pangan fungsional (Puspa, 2002).

Di Indonesia sendiri telah banyak dijumpai produk-produk makanan dengan beragam klaim kesehatan, seperti misalnya teh yang mengandung pace/mengkudu yang diklaim dapat menjaga daya tahan tubuh terhadap serangan flu dan meningkatkan stamina, atau beras kesehatan yang kandungan *glycemic index*-nya rendah dan mineralnya tinggi, sehingga baik dikonsumsi oleh para penderita diabetes karena dapat mengontrol gula darah, dan sekaligus baik untuk melangsingkan tubuh. Namun demikian kebenaran klaim masih diragukan dan perlu diteliti lebih lanjut. Badan POM telah mendaftar 388 produk yang termasuk dalam makanan fungsional, namun konsekwensi dari penggolongan tersebut masih belum jelas. Penggunaan klaim produk makanan dan minuman masih belum diatur dalam undang-undang. Maka dari itu perusahaan dapat menggunakan klaim dengan relatif bebas. Pemerintah melalui badan POM sedang dalam taraf menggodok peraturan khusus untuk bahan pangan fungsional. Badan POM diharapkan menjadi pelindung konsumen sekaligus merangsang kreativitas dan inovasi industri makanan dan minuman, mengingat Indonesia sangat kaya akan bahan-bahan alam yang berpotensi untuk menjaga kesehatan tubuh (Puspa, 2002).

2.2.2. Klaim Kesehatan dan Rasa Percaya Konsumen

NLEA mengijinkan pabrik-pabrik untuk membuat klaim kesehatan tentang hubungan diet dan penyakit pada kemasan makanan. Industri makanan mengeluarkan biaya yang signifikan, kurang lebih \$2 miliar, untuk menyesuaikan diri dengan peraturan NLEA ini (Andrews, Netemeyer, dan Burton, 1998; Silverglade, 1996). Meskipun konsumen dapat memeriksa informasi klaim kesehatan dan panel fakta nutrisi (*nutrition facts*) serta menggabungkan keduanya, bukti terkini menunjukkan bahwa mereka akan tergantung pada klaim nutrisi visibel yang mudah dan mengabaikan panel fakta nutrisi (Roe et al., 1999). Lebih penting lagi, peraturan nutrisi yang ketat di era paska-NLEA akan mengurangi keinginan konsumen untuk mencari kejelasan klaim dengan memeriksa panel fakta nutrisi.

Walau demikian, tampaknya klaim kesehatan dan/atau nutrisi pada label produk dapat juga memacu pencarian informasi, dimana beberapa konsumen bergantung sepenuhnya pada informasi pada kemasan sedangkan yang lainnya juga memeriksa panel fakta nutrisi. Sehingga, dapat dikatakan bahwa beberapa konsumen menggunakan panel fakta sebagai sebuah alat legitimasi dalam mengevaluasi klaim kesehatan. Keller et al. (1997) menggunakan kerangka aksesibilitas/pendiagnosisan (Alba et al., 1991; Feldman dan Lynch, 1998) yang menyatakan bahwa panel fakta nutrisi merupakan alat diagnosis bagi konsumen untuk mengevaluasi produk dan, karena itu mengurangi ketergantungan pada klaim kesehatan pada kemasan produk. Berdasarkan uraian tersebut dapat dikatakan bahwa konsumen tidak sepenuhnya mempercayai kebenaran klaim kesehatan sehingga harus mencari konfirmasi kebenarannya dari sumber lain, diantaranya yang termudah adalah informasi dari panel fakta nutrisi.

Ada beberapa hal yang menyebabkan ketidak percayaan konsumen terhadap klaim kesehatan. Ippolito dan Mathios (1990, 1991) mengindikasikan bahwa perusahaan adalah penyalur yang bermanfaat untuk informasi tentang diet dan kesehatan. Meski demikian, tampaknya konsumen bersikap skeptis terhadap klaim perusahaan karena adanya klaim dan *counter*-klaim berkaitan dengan hubungan diet dan kesehatan oleh perusahaan lain (Keller et al., 1997; Silverglade, 1996).

Istilah *schemer schemas*, dimana teori tren konsumen atau keyakinan konsumen tentang pemasar, khususnya maksud persuasif dari pemasar (Bousch et al., 1994; Friestad dan Wright, 1994) telah didiskusikan dalam beberapa studi yang meneliti informasi nutrisi dan evaluasi produk konsumen (Keller at al., 1997; Moorman, 1996). Tampaknya banyaknya bukti ilmiah yang bertentangan, peraturan dan informasi pemasaran yang berkaitan dengan hubungan diet dan kesehatan

membuat konsumen sangat skeptis terhadap hubungan antara diet dan kesehatan (Keller et al., 1997; Silverglade,1996). Hal ini sesuai dengan penelitian quasi longitudinal Moorman (1996) pada NLEA yang menggambarkan nilai dari label nutrisi dalam membantu konsumen mencari kejelasan klaim kesehatan. Meski demikian, tampaknya tantangan terhadap klaim-klaim ini oleh kompetitor dan *stakeholder* lainnya akan memperburuk kesalahpahaman konsumen dan penerimaan konsumen tentang label nutrisi sebagai pengesah klaim kesehatan.

Hal lain yang menyebabkan ketidak percayaan konsumen terhadap klaim kesehatan dapat dipelajari dari Negara Amerika dan Jepang. Pada kedua Negara ini, ketiadaan pengaturan yang jelas mengenai penggunaan klaim kesehatan dalam produk makanan fungsional menyebabkan banyak perusahaan dengan mudahnya mencantumkan klaim kesehatan pada produk tanpa adanya dasar penelitian ilmiah yang jelas. Akibatnya, di Amerika, konsumen merasa disesatkan oleh klaim kesehatan yang tidak lengkap dan terlalu menekankan perbedaan trivial antarproduk (Ford et al., 1996). Sedangkan di Jepang, konsumen menjadi bingung dan berpandangan negatif terhadap industri makanan dan minuman secara keseluruhan (Puspa, 2002).

Di Indonesia, hasil pengawasan yang dilakukan badan POM menemukan adanya produk maupun iklan suplemen makanan yang dapat dikategorikan *over claimed*. Hal ini termasuk pelanggaran sehingga produknya harus ditarik dari pasar, sedangkan iklannya harus dihentikan. Dari sisi perusahaan, *over claimed* dapat terjadi karena ketidaktahuan atau disengaja untuk meningkatkan angka penjualan. Namun apapun penyebabnya, hal ini hanya akan menimbulkan kerugian bagi perusahaan. Tidak hanya kerugian karena penarikan produk dari pasar atau penghentian iklan, tetapi kerugian utama adalah hilangnya rasa percaya masyarakat kepada perusahaan

tersebut sebagai akibat tidak terbuktinya klaim yang disampaikan (Republika, 4 November 2003).

2.2.3. Verifikasi Kelompok Referensi dan Rasa Percaya Konsumen pada Klaim Kesehatan

Penelitian Bhaskaran dan Hardley (2002) tentang 'keyakinan, sikap, dan perilaku pembeli produk makanan dengan klaim therapetik' menunjukkan bahwa responden yang mereka wawancarai kebanyakan bersifat skeptis terhadap klaim kesehatan. Perusahaan makanan tentunya sangat tidak mengharapkan skeptisisme maupun ketidak percayaan konsumen akan klaim kesehatan produk mereka. Karena itu, perusahaan makanan harus melakukan suatu upaya supaya konsumen mempercayai klaim tersebut. Partisipan dalam penelitian Bhaskaran dan Hardley (2002) menyatakan, mereka akan lebih mempercayai klaim tersebut bila terdapat verifikasi dari sumber independen yang terpercaya atau disebut sebagai kelompok referensi. Dengan adanya pernyataan tersebut, perusahaan dapat memanfaatkan pernyataan verifikasi dari pihak independen sebagai suatu upaya meningkatkan rasa percaya konsumen terhadap klaim kesehatan produk mereka.

Bhaskaran dan Hardley (2002) menyatakan mayoritas partisipan penelitian mereka menunjukkan bahwa perusahaan merupakan pemicu yang baik untuk penyebaran informasi mengenai hubungan diet-kesehatan, namun mereka memiliki keberatan tentang reliabilitas informasi tersebut. Perasaan bahwa perusahaan dapat membuat klaim yang tidak akurat mengurangi rasa percaya partisipan terhadap informasi yang berasal dari perusahaan. Semua partisipan menunjukkan bahwa sumber yang paling dapat dipercaya mengenai saran tentang nutrisi dan hubungan diet-kesehatan adalah dokter, ahli gizi, institusi pendidikan, dan anggota keluarga.

Partisipan mengatakan bahwa sebagian besar pengetahuan dasar mereka tentang diet dan pola makan sehat berasal dari ibu dan sekolah mereka.

Sebagai tambahan, partisipan menunjukkan bahwa informasi dan akreditasi dari organisasi seperti *The Heart Foundation* meningkatkan reliabilitas dan *trustworthiness* suatu informasi. Secara mengejutkan, badan usaha seperti *Weight Watchers* yang memfokuskan pada diet dan kesejahteraan juga dinilai sebagai sumber informasi gizi yang reliabel. Pendapat partisipan juga menunjukkan bahwa organisasi dan individual yang mempromosikan kesehatan, gizi, dan kesejahteraan (baik pemerintah, badan usaha, maupun asosiasi) dipertimbangkan sebagai sumber informasi yang reliabel dan terpercaya, namun perusahaan makanan dan perusahaan makanan fungsional tidak dinilai sebagai sumber informasi yang reliabel dan terpercaya (Bhaskaran dan Hardley, 2002).

Di Indonesia, mulai dilakukan pencantuman logo lembaga kesehatan independen pada kemasan makanan, seperti produk kacang Garuda yang mencantumkan logo Yayasan Jantung Indonesia untuk memverifikasi bahwa produknya sehat bagi jantung.

Berdasarkan uraian tersebut di atas, penelitian ini merumuskan hipotesis sebagai berikut:

H1: verifikasi kelompok referensi berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan.

2.2.4. Kampanye Klaim Kesehatan dan Rasa Percaya Konsumen pada Klaim Kesehatan

Menurut Wansink dan Cheney (2005) cara lain untuk meningkatkan rasa percaya konsumen terhadap klaim kesehatan adalah dengan kampanye klaim oleh

perusahaan makanan. Dalam literatur ini, Wansink dan Cheney (2005) mengambil contoh kampanye klaim yang dilakukan oleh perusahaan Kellogg dan Quaker Oats. Perusahaan-perusahaan ini sukses menginformasikan manfaat serat dan keberadaan serat dalam sereal mereka kepada konsumen melalui kampanye-kampanye proaktif, yang pada akhirnya, meningkatkan kesadaran konsumen akan manfaat produk mereka bagi kesehatan dan membuat klaim produk mereka berhasil. Selain itu, *National Cancer Institute* yang meminjamkan kredibilitas dan objektivitasnya untuk kampanye pendidikan Kellogg membuat kampanye proaktif ini lebih sukses.

Penelitian Teisl, Levy, dan Derby (1999) tentang 'efek pendidikan dan sumber informasi terhadap kesadaran konsumen tentang hubungan diet-penyakit' menunjukkan bahwa kesadaran konsumen mengenai hubungan diet-penyakit akan lebih tinggi dengan adanya peningkatan aktivitas artikel surat kabar, dibandingkan dengan iklan majalah. Dan juga, level kesadaran kalangan kurang berpendidikan meningkat relatif terhadap kesadaran kalangan berpendidikan dengan adanya peningkatan aktivitas artikel surat kabar. Hal ini dapat menyumbangkan pemikiran bagi perusahaan makanan fungsional dalam memilih jenis kampanye tertulis yang lebih efektif.

Wansink dan Cheney (2005) juga menyebutkan implementasi kampanye pemasaran sosial sebagai salah satu cara untuk lebih menyoroti manfaat kesehatan dari komponen yang diklaimkan, karena aktivitas ini akan menimbulkan publisitas yang favorabel bagi perusahaan pelaksana kampanye sosial. Publisitas yang favorabel ini akan berdampak baik bagi rasa percaya konsumen terhadap perusahaan makanan tersebut dan, tentunya, terhadap klaim kesehatan dalam produk makanannya.

Dalam penelitian Bhaskaran dan Hardley (2002) hampir semua partisipan menunjukkan kesadaran yang tinggi terhadap kampanye gaya hidup dan kesehatan yang dilakukan berbagai organisasi dan badan industri sebagai berikut:

- Life Be In It
- Osteoporosis prevention
- Anti-smoking
- Weight loss
- *Skin cancer prevention*

Promosi-promosi atau kampanye ini dinilai berbeda dengan iklan komersial karena kemunculannya ditargetkan untuk meningkatkan kesehatan dan kesejahteraan komunitas. Meskipun promosi yang semacam itu mempromosikan penggunaan produk tertentu (seperti tabir surya, susu, dll), namun tidak mempromosikan merek produk tertentu dan hal ini dinilai sebagai sifat yang "public good".

Bahkan infomercials seperti kampanye susu oleh Australian Dairy Corporation tidak dianggap sebagai upaya meningkatkan konsumsi susu namun dilihat sebagai mempromosikan kesehatan dan kesejahteraan dengan mendorong individu untuk menerapkan kebiasaan gizi yang lebih baik. Partisipan mengamati bahwa kampanye ini bersifat informatif dan tidak dimaksudkan sebagai iklan (advertisements). Hampir semua partisipan yang memiliki anak menyatakan bahwa kampanye kesehatan menekankan pentingnya diet dan hal ini mempengaruhi perilaku mereka untuk membeli produk yang dinyatakan bermanfaat bagi kesehatan. Hal ini menyatakan bahwa kampanye yang ditargetkan berdampak pada perilaku konsumen dan pembeli.

Kampanye klaim kesehatan yang dilakukan oleh perusahaan makanan fungsional akan menjadi suatu cara yang efektif untuk meningkatkan citra baik

perusahaan, karena perusahaan tersebut dianggap memperhatikan kesehatan dan kesejahteraan konsumen. Hal ini akan berdampak baik pula pada rasa percaya konsumen akan klaim kesehatan dalam produk yang dikampanyekan.

Berdasarkan uraian tersebut di atas, penelitian ini merumuskan hipotesis kedua sebagai berikut:

H2: Kampanye klaim kesehatan berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan.

2.2.5. Pengaruh Rasa percaya Konsumen pada Klaim Kesehatan terhadap Intensitas Pembelian Produk

Efek dari klaim nutrisi atau kesehatan pada penilaian berkaitan dengan kesehatan produk dan perilaku terkait telah mendapatkan banyak perhatian pada tahun-tahun 1990an. Penelitian Ford et al. (1996) menunjukkan bahwa baik klaim kesehatan maupun informasi nutrisi mempengaruhi keyakinan terhadap kesehatan suatu produk. Meski demikian, klaim kesehatan tidak mempengaruhi pemrosesan informasi nutrisi pada suatu label makanan.

Penelitian Ford et al. (1996) juga menyimpulkan, berdasarkan pada studi terhadap mahasiswa, bahwa klaim kesehatan tidak mempengaruhi pemrosesan informasi nutrisi namun meningkatkan ekspektasi konsumen. Roe et al. (1999) menguji 'dampak klaim kesehatan pada pencarian (informasi) konsumen dan hasil evaluasi produk' dan menemukan beberapa bukti bahwa dengan adanya klaim kesehatan konsumen memotong pencarian informasi mereka dan bahwa akan timbul efek halo yang memungkinkan (dimana responden menilai produk lebih tinggi pada fitur kesehatan yang tidak disebutkan dalam klaim). Roe at al. (1999) juga membedakan antara klaim kesehatan dan nutrisi dan menyimpulkan bahwa terdapat

sedikit perbedaan dalam proses evaluasi konsumen dalam membandingkan informasi kesehatan dan nutrisi.

Kedua penelitian tersebut di atas (Ford et al., 1996 dan Roe et al., 1999) merupakan penelitian yang mendukung pendapat bahwa klaim kesehatan dipercayai kebenarannya oleh konsumen dan berpengaruh positif terhadap evaluasi konsumen. Karena rasa percaya pada klaim kesehatan dapat meningkatkan keyakinan konsumen tentang tingkat kesehatan produk dan ekspektasi konsumen (Ford et al., 1996), maka tentunya evaluasi konsumen tersebut terhadap produk akan lebih positif. Pendapat ini didukung oleh penelitian Roe at al. (1999) yang menyatakan bahwa konsumen yang melihat adanya klaim kesehatan (dan mempercayai kebenarannya) akan menilai produk lebih positif. Evaluasi konsumen pada produk ini mencakup intensitas pembelian konsumen pada produk tersebut. Menurut penelitian Everard dan Galletta (2006), rasa percaya konsumen mempengaruhi intensitas pembelian konsumen secara positif. Penelitian lain yang mendukung hal ini dilakukan juga oleh Gefen (2000), serta Donney dan Cannon (1997)

Berdasarkan uraian di atas, penelitian ini merumuskan hipotesis ketiga sebagai berikut:

H3: Rasa percaya konsumen pada klaim kesehatan berpengaruh positif terhadap intensitas pembelian produk makanan berklaim kesehatan

2.3. Pengembangan Model Penelitian

2.3.1. Kerangka Pemikiran Teoritis

Berdasarkan telaah pustaka mengenai rasa percaya konsumen pada klaim kesehatan dan bagaimana klaim kesehatan berpengaruh terhadap intensitas pembelian konsumen, maka dikembangkan sebuah kerangka pemikiran teoritis yang nantinya

diharapkan dapat menjadi suatu acuan dalam penyelesaian masalah. Kerangka pemikiran teoritis dapat dilihat pada Gambar 1.

Gambar 1.

Verifikasi kelompok referensi

H1

Rasa percaya Thd klaim

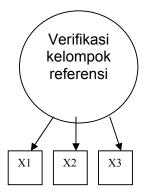
Kampanye Klaim Kesehatan

Kesehatan

Kerangka Pemikiran Teoritis

H3

Intensitas pembelian


Sumber: dikembangkan untuk penelitian ini (2006)

2.4. Definisi dan Dimensi Variabel Operasional

2.4.1. Verifikasi kelompok referensi adalah pernyataan suatu kelompok yang perspektif, sikap, atau perilakunya dianggap sebagai acuan oleh konsumen (Arnould et al., 2005), yang mendukung kebenaran klaim kesehatan. Menurut Bhaskaran dan Hardley (2002), klaim kesehatan perlu diverifikasi oleh sumber independen dan hanya dengan cara ini kemudian konsumen akan percaya. Maka, tampaknya konsumen hanya akan mempercayai klaim perusahaan yang dilegitimasi oleh sumber independen (kelompok referensi). Kelompok referensi yang dicontohkan dalam penelitian ini adalah lembaga-lembaga atau organisasi kesehatan seperti *Australia International Diabetes Institute* (AIDI) dan Yayasan Jantung Indonesia. Dalam penelitian ini, pengaruh dari independensi kelompok referensi dan bidang keahliannya terhadap *trustworthiness* pernyataan verifikasinya juga akan diamati. Indikator dari variabel ini

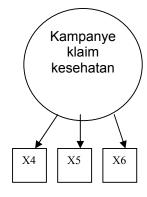
adalah popularitas kelompok referensi, independensi kelompok referensi terhadap perusahaan, dan keahlian kelompok referensi (berkaitan dengan pernyataan verifikasi)

Gambar 2. Variabel Verifikasi Kelompok Referensi

Sumber: dikembangkan untuk penelitian ini (2006)

Keterangan:

X1 : popularitas kelompok referensi


X2 : independensi kelompok referensi terhadap perusahaan

X3 : keahlian kelompok referensi (berkaitan dengan pernyataan verifikasi)

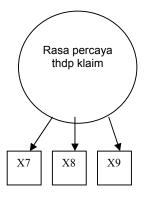
2.4.2. Kampanye klaim kesehatan yang dimaksudkan adalah salah satu bentuk promosi produk yang dilakukan perusahaan dalam bentuk kampanye tentang manfaat produk bagi kesehatan konsumen, berkaitan dengan klaim kesehatan yang dicantumkannya. Beras kesehatan "Herbal Ponni Taj Mahal" yang digunakan sebagai objek penelitian memiliki target spesifik yaitu para penderita diabetes. Oleh karena itu, jika kampanye yang dilakukan adalah berupa kempanye penyembuhan penyakit penderita diabetes maka klaim kesehatan produk ini akan sukses. Selama ini, promosi beras Herbal Ponni Taj Mahal yang merupakan beras kesehatan dilakukan lewat

edukasi konsumen serta artikel-artikel di media massa dan pemasaran produk ini meraih sukses (Marketing, 19/III). Selain itu, di Indonesia sering terdapat kampanye produk yang tidak secara langsung ditujukan pada konsumen, melainkan pada kepentingan masyarakat umum, seperti kampanye pencegahan demam berdarah yang dilakukan oleh BAYGON. Kampanye semacam ini disebut sebagai kampanye pemasaran sosial, dan kampanye semacam ini juga efektif bila digunakan oleh perusahaan beras kesehatan. Berdasarkan uraian di atas, indikator yang dirumuskan untuk variabel ini adalah kampanye penyembuhan penyakit tertentu, kampanye pemasaran sosial, dan kampanye edukasi hubungan diet-kesehatan.

Gambar 3. Variabel Kampanye Klaim Kesehatan

Sumber: dikembangkan untuk penelitian ini (2006)

Keterangan:


X4 : kampanye penyembuhan penyakit tertentu

X5 : kampanye pemasaran sosial

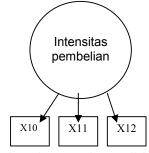
X6 : kampanye edukasi hubungan diet-kesehatan

2.4.3. Rasa percaya terhadap klaim kesehatan menyatakan bahwa konsumen meyakini kebenaran suatu klaim kesehatan dalam produk makanan yang dikeluarkan oleh perusahaan. Keberadaan klaim kesehatan dapat meningkatkan keyakinan konsumen tentang manfaat produk dan ekspektasi konsumen. Atau dengan kata lain, rasa percaya konsumen pada klaim ditandai dengan meningkatnya keyakinan konsumen tentang manfaat produk dan ekspektasi konsumen. Selain itu, konsumen yang mempercayai klaim kesehatan berarti menganggap bahwa informasi dalam klaim tersebut bersifat reliabel atau dapat diandalkan. Dan hal tersebut akan berlanjut dengan adanya penyebarluasan manfaat produk berklaim tersebut pada orang lain dengan maksud supaya orang lain juga ikut merasakan manfaatnya. Berdasarkan uraian studi tersebut indikator yang dirumuskan dari variabel ini adalah reliabilitas informasi klaim kesehatan, harapan akan manfaat, dan penyebarluasan manfaat produk pada orang lain.

Gambar 4. Variabel Rasa percaya terhadap Klaim Kesehatan

Sumber : dikembangkan untuk penelitian ini (2006)

Keterangan:


X7 : reliabilitas informasi klaim kesehatan

X8 : harapan akan manfaat

2.4.4. Intensitas pembelian adalah intensitas yang dibentuk konsumen dalam membeli produk dengan *brand* yang paling disukai (Kottler dan Keller, 2006). Beberapa penelitian tentang intensitas pembelian menggunakan indikator yang berbeda-beda, disesuaikan dengan objek penelitiannya. Dalam penelitian ini, intensitas pembelian akan ditandai, pertama, oleh adanya minat konsumen untuk membeli produk dan seberapa banyak konsumen akan membelinya. Kedua, setelah konsumen membeli produk dan mengkonsumsinya, konsumsi tersebut akan memiliki dua kemungkinan, yaitu berkelanjutan atau berhenti. Perusahaan tentunya mengharapkan konsumen melakukan pembelian ulang atas produknya. Oleh karena itu perlu diketahui seberapa besar minat konsumen untuk membeli ulang produk tersebut. Berdasarkan uraian tersebut, indikator yang dirumuskan untuk variabel ini adalah minat membeli produk, jumlah konsumsi produk, dan minat membeli ulang.

Gambar 5.

Variabel Intensitas pembelian

Sumber: dikembangkan untuk penelitian ini (2006)

Keterangan:

X10: minat membeli produk

X11 : jumlah konsumsi produk

X12 : minat membeli ulang

BAB III

METODE PENELITIAN

Bab ini berisi uraian objek penelitian yang difokuskan untuk memberikan analisis terhadap model mengenai pengaruh verifikasi kelompok referensi dan kampanye klaim kesehatan terhadap rasa percaya konsumen dan pengaruh rasa percaya konsumen terhadap intensitas pembelian konsumen. Pembahasan yang dilakukan mencakup jenis dan sumber data, populasi dan sample, metode pengumpulan data, dan teknik analisa data.

3.1. Objek dan Jenis Data Penelitian

Objek penelitian yang digunakan adalah produk beras kesehatan Herbal Ponni Taj Mahal yang memiliki beberapa manfaat kesehatan, yaitu dapat menyembuhkan diabetes dan dapat melangsingkan tubuh. Data yang digunakan dalam penelitian ini hanyalah data primer, yaitu diperoleh melalui hasil jawaban dari wawancara atau hasil pengisian kuesioner yang diterima dari responden.

3.2. Populasi dan Sampel Penelitian

3.2.1. Populasi

Populasi yang dipilih sebagai responden adalah masyarakat kota Semarang yang telah mengkonsumsi produk beras kesehatan "Herbal Ponni Taj Mahal" dan dapat merupakan *initiator, user, decider* maupun *buyer* atau *purchasing agent* dari beras tersebut. Data mengenai jumlah konsumen beras "Herbal Ponni Taj Mahal" tidak diketahui secara tepat. Namun dengan mempertimbangkan bahwa beras "Herbal Ponni Taj Mahal" telah dipasarkan di kota Semarang selama lima tahun (sejak 2001),

maka diasumsikan bahwa pembeli beras tersebut cukup banyak (lebih dari 100 orang). Selain itu, jika dilihat dari segmen pasar produk ini, Semarang sebagai ibu kota propinsi Jawa Tengah tentunya memiliki porsi segmen konsumen berpendapatan menengah dan tinggi yang cukup besar.

3.2.2. Sampel

Sesuai dengan alat analisis yang digunakan yaitu *Structural Equation Model* (SEM) maka penentuan jumlah sampel minimum yang representatif menurut Hair adalah tergantung pada jumlah indikator dikalikan lima (Ferdinand, 2002). Jumlah sampel minimum untuk penelitian ini adalah:

Sampel Minimum = jumlah indikator $x ext{ 5}$

 $= 12 \times 5$

= 60 responden

Selanjutnya Hair (Ferdinand, 2002) juga menyatakan bahwa ukuran sampel yang sesuai untuk SEM adalah antara 100 – 200 sampel. Dengan mengacu pada pendapat Hair tersebut dan berdasarkan pertimbangan-pertimbangan yang telah dikemukakan di atas maka jumlah sampel yang dipakai dalam penelitian ini adalah lebih dari 100 sampel. Tingkat kesalahan masih dapat ditolerir adalah 5%. Dengan demikian, sampel yang digunakan dalam penelitian ini adalah 151 orang konsumen produk beras kesehatan "Herbal Ponni Taj Mahal" (yang sudah membeli lebih dari dua kali) di kota Semarang yang dapat merupakan *user, initiator, decider*, maupun *buyer* atau *purchasing agent* beras tersebut.

3.2.3. Metode Pemilihan Sampel

Sampel merupakan bagian dari jumlah dan karakteristik yang dimiliki oleh populasi tersebut (Sugiyono, 2002 dalam Prasetia, 2003). Teknik sampling yang dipakai yaitu *purposive sampling. Purposive sampling* adalah teknik penentuan sampel dengan pertimbangan tertentu (Sugiyono, 2002). Selanjutnya, Sugiyono mengatakan bahwa teknik ini lebih cocok digunakan untuk penelitian kualitatif. Pemilihan sampel ditentukan dengan kriteria responden sudah pernah mengkonsumsi beras kesehatan "Herbal Ponni Taj Mahal" lebih dari dua kali dan dapat merupakan *user, initiator, decider*, maupun *buyer* atau *purchasing agent* beras tersebut.

3.3. Teknik Pengumpulan Data

3.3.1. Wawancara

Metode pengumpulan data yang digunakan dalam penelitian ini adalah menggunakan wawancara, yaitu metode pengumpulan data yang langsung diperoleh dari jawaban responden dengan cara mengadakan tanya jawab dengan para responden (konsumen) dengan tatap muka secara langsung. Wawancara dilaksanakan di tokotoko yang menjual beras "Herbal Ponni Taj Mahal" dengan cara meminta konsumen yang datang membeli beras tersebut untuk diwawancarai.

Selain wawancara, pengumpulan data akan dilengkapi dengan kuesioner yang diserahkan kepada masing-masing responden yang terpilih. Data dalam penelitian ini didapat langsung dari pengisian kuesioner oleh konsumen terpilih yang menjadi sampel.

Pertanyaan-pertanyaan dalam kuesioner bersifat *closed-ended* dan *open-ended*, serta dibuat dengan skala diferensial semantik antara 1-10 artinya merupakan suatu skala yang berusaha untuk mengukur arti obyek atau konsep pada suatu skala yang

mempunyai dua adjektif yang bertentangan. Skala ini mengandung unsur evaluasi misalnya bagus-buruk, unsur potensi misalnya besar-kecil, dan unsur aktivitas misalnya cepat-lambat (Umar, 2002 dalam Prasetia, 2003). Rancangan inti pertanyaan yang akan diajukan dalam kuesioner diuraikan dalam tabel 8.

Tabel 8.

Rancangan Inti Pertanyaan Kuesioner

Variabel	X	Indikator	Inti pertanyaan	Skala
Verifikasi sumber independen	X1	Popularitas kelompok referensi	Lembaga kesehatan yang membuktikan kebenaran manfaat	pengukuran 10 skala poin, digunakan mulai 1 (sangat
uopunuun			kesehatan lebih dipercaya jika populer.	tidak setuju) sampai 10 (sangat setuju)
	X2	Independensi kelompok referensi terhadap perusahaan	Lembaga kesehatan yang membuktikan kebenaran klaim kesehatan lebih dipercaya jika tidak memiliki ketergantungan terhadap perusahaan makanan yang mengeluarkan klaim.	
	X3	Keahlian kelompok referensi	Lembaga kesehatan yang membuktikan kebenaran klaim kesehatan lebih dipercaya jika bidang keahliannya berkaitan dengan klaim kesehatan.	
Kampanye klaim kesehatan	X4	Kampanye penyembuhan penyakit tertentu	Kampanye penyembuhan diabetes untuk para penderita efektif membuat konsumen mempercayai manfaat produk tersebut	10 skala poin, digunakan mulai 1 (sangat tidak setuju) sampai 10 (sangat setuju)

	X5	Kampanye pemasaran sosial	Kampanye sosial yang dilakukan suatu perusahaan makanan meningkatkan trustworthiness manfaat kesehatan.	
	X6	Kampanye edukasi hubungan diet- kesehatan	Program edukasi yang diadakan perusahaan makanan efektif membuat konsumen mempercayai manfaat produk tersebut.	
Rasa percaya pada klaim kesehatan	X7	Reliabilitas informasi klaim kesehatan	Anda menganggap informasi dalam klaim kesehatan reliabel (dapat diandalkan).	10 skala poin, digunakan mulai 1 (sangat tidak setuju) sampai 10
	X8	Harapan akan manfaat	Setelah melihat klaim kesehatan, anda Anda semakin yakin bahwa produk memiliki manfaat kesehatan bagi Anda.	(sangat setuju)
	Х9	Penyebarluasan manfaat produk pada orang lain	Setelah melihat tulisan manfaat kesehatan, Anda akan menyarankan orang lain untuk mengkonsumsi produk.	
Intensitas pembelian	X10	Minat membeli produk	Setelah melihat klaim kesehatan, seberapa besar minat anda membeli produk tersebut?	10 skala poin. Untuk X10, 1 (sangat kecil) – 10 (sangat besar). Untuk X11 dan
	X11	Jumlah konsumsi produk	Setelah melihat klaim kesehatan, Anda akan membeli produk tersebut dalam jumlah besar.	X12, 1 (sangat tidak setuju) – 10 (sangat setuju)
	X12	Minat membeli ulang	Setelah melihat tulisan klaim kesehatan, Anda akan membeli lagi jika	

	persediaan Anda telah	
	habis.	

3.4. Metode Analisis Data

Model yang digunakan dalam penelitian ini adalah model kausalitas atau hubungan atau pengaruh, dan untuk menguji hipotesis yang diajukan dalam penelitian ini menggunakan alat SEM (*Structural Equation Modelling*) yang akan dioperasikan melalui program AMOS 4.01 (*Analysis of Moment Structure*). SEM digunakan karena memiliki keunggulan dalam penelitian manajemen, seperti kemampuannya untuk mengkonfirmasi dimensi-dimensi dari sebuah konsep atau faktor (yang lazim digunakan angka-angka).

Untuk membuat permodelan SEM yang lengkap perlu dilakukan langkahlangkah berikut (Ferdinand, 2002) :

1. Pengembangan Model Berbasis Teori

Langkah pertama yang harus dilakukan adalah mengembangkan sebuah model yang menjustifikasi teori yang kuat melalui telaah pustaka dari sumber-sumber ilmiah yang berhubungan dengan model yang sedang dikembangkan SEM tidak digunakan untuk menghasilkan kausalitas, tetapi untuk membenarkan adanya kausalitas teoritis melalui uji empirik, karena itu telaah teori yang mendalam untuk mendapatkan sebuah justifikasi teoritis untuk model yang akan diuji adalah syarat mutlak dalam penggunaan SEM ini (Ferdinand, 2002).

2. Pengembangan Diagram Alur (Path Diagram)

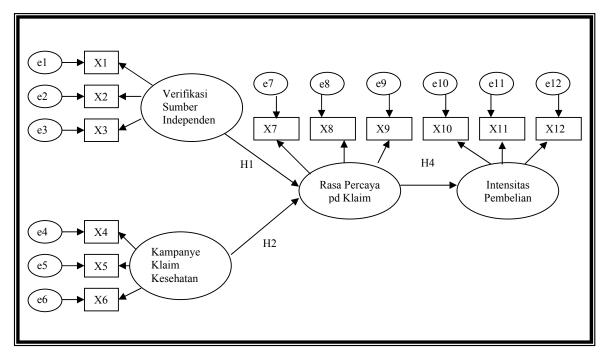
Model penelitian yang akan dikembangkan digambarkan dalam sebuah diagram alur agar mempermudah untuk melihat hubungan kausalitas yang akan diuji. Bahasa SEM

akan mengkonversi diagram alur menjadi persamaan, kemudian persamaan menjadi estimasi. Di dalam permodelan SEM dikenal dengan konstruk atau faktor, yaitu konsep-konsep yang memiliki pijakan teoritis yang cukup untuk menjelaskan berbagai bentuk hubungan. Disini akan ditentukan diagram alur dalam artian berbagai konstruk yang akan digunakan dan atas dasar itu variabel-variabel untuk mengukur konstruk itu akan dicari (Ferdinand, 2002).

Di dalam menggambarkan diagram alur, hubungan antar konstruk akan dinyatakan dengan anak panah. Anak panah yang lurus menunjukkan hubungan kausa yang langsung antara satu konstruk dengan konstruk yang lain. Sedangkan garis-garis lengkung antara konstruk dengan anak panah pada setiap ujungnya menunjukkan korelasi antar konstruk. Konstruk-konstruk yang dibangun dalam hubungan diagram alur, dapat dibedakan dalam 2 kelompok yaitu konstruk eksogen dan konstruk endogen yang dapat diuraikan sebagai berikut (Ferdinand, 2002):

a. Konstruk Eksogen

Disebut juga sebagai independen variabel yang tidak diprediksi oleh varibel yang lain dalam model. Konstruk eksogen merupakan konstruk yang dituju garis dengan dua ujung panah.


b. Konstruk Endogen

Merupakan beberapa faktor yang diprediksi oleh satu atau beberapa konstruk endogen. Konstruk endogen dapat memprediksi satu atau beberapa konstruk endogen lainnya, tetapi konstruk eksogen hanya dapat berhubungan dengan konstruk endogen.

Pada gambar 6 disajikan diagram alur yang dikembangkan untuk penelitian ini.

Gambar 6.

Diagram Alur Penelitian

Sumber: Dikembangkan untuk tesis ini

3. Konversi Diagram Alur ke Dalam Serangkaian Persamaan

Setelah model penelitian dikembangkan dan digambar pada sebuah diagram alur, langkah berikutnya adalah melakukan konversi spesifikasi model tersebut ke dalam rangkaian persamaan. Persamaan yang dibangun terdiri dari (Ferdinand, 2002) .

a) Persamaan – persamaan Struktural (Structural Equation)

Dirumuskan untuk menyatakan hubungan kausalitas antara berbagai konstruk dan biasanya disusun dengan pedoman sebagai berikut :

Variabel Endogen = Variabel Eksogen + Variabel Endogen + Error

b) Persamaan Spesifikasi Model Pengukuran

Pada persamaan ini terlebih dahulu harus ditentukan variabel yang mengukur konstruk dan menentukan serangkaian matriks yang menunjukkan korelasi yang dihipotesakan antar variabel (Ferdinand, 2000).

Tabel 9.

Model Pengukuran

EKSOGEN	ENDOGEN
$X1 = \lambda VSI + \varepsilon 1$	$X7 = \lambda RPK + \epsilon 7$
$X2 = \lambda VSI + \varepsilon 2$	$X8 = \lambda RPK + \epsilon 8$
$X3 = \lambda VSI + \varepsilon 3$	$X9 = \lambda RPK + \varepsilon 9$
$X4 = \lambda KKS + \varepsilon 4$	$X10 = \lambda IP + \varepsilon 10$
$X5 = \lambda KKS + \varepsilon 5$	$X11 = \lambda IP + \varepsilon 11$
$X6 = \lambda KKS + \epsilon 6$	$X12 = \lambda \text{ IP} + \varepsilon 12$

Sumber: Dikembangkan untuk tesis ini

4. Memilih Matriks Input dan Estimasi Model

Kovarian atau Korelasi

SEM hanya menggunakan matriks Varian/Kovarians atau matriks korelasi sebagai data input untuk keseluruhan estimasi yang dilakukannya. Matriks kovarians digunakan karena memiliki keunggulan dalam menyajikan perbandingan yang valid antara populasi yang berbeda atau sampel yang berbeda, dimana hal tersebut tidak dapat disajikan oleh korelasi. Matriks kovarians umumnya lebih banyak digunakan dalam penelitian mengenai pengaruh, karena *standard error* yang dilaporkan dari berbagai penelitian menunjukkan angka yang kurang akurat bila matriks korelasi digunakan sebagai input (Ferdinand, 2002).

Ukuran Sampel

Ukuran sampel memegang peranan penting dalam estimasi dan interpretasi hasil-hasil SEM. Ukuran SEM menghasilkan dasar untuk mengestimasi kesalahan sampling. Hair (Ferdinand, 2002) menentukan bahwa ukuran sampel yang sesuai adalah antara 100-200. Lebih lanjut, Hair menyarankan bahwa ukuran sampel minimum adalah sebanyak 5 observasi untuk setiap estimated parameter. Dengan demikian, bila estimated parameternya berjumlah 12, maka jumlah sampel minimum adalah 60 sampel.

Estimasi Model

Setelah model dikembangkan dan input data dipilih, selanjutnya adalah memilih program komputer yang akan digunakan untuk mengestimasi model, dalam hal ini digunakan program AMOS. Program AMOS dianggap sebagai salah satu program yang handal untuk menganalisis model kausalitas, serta program yang tercanggih dan mudah digunakan.

5. Kemungkinan Munculnya Masalah Identifikasi

Problem identifikasi pada prinsipnya adalah problem mengenai ketidakmampuan dari model yang dikembangkan untuk menghasilkan estimasi yang unik. Problem identifikasi dapat muncul melalui gejala-gejala berikut ini (Ferdinand, 2002):

- a) Standar Error yang besar untuk satu atau lebih koefisien adalah sangat besar
- b) Program tidak mampu menghasilkan matriks informasi yang seharusnya disajikan.
- c) Muncul angka-angka yang aneh seperti adanya varians error yang negatif.

d) Munculnya korelasi yang tinggi (lebih besar atau sama dengan 0,9) diantara koefisien estimasi.

6. Mengevaluasi Kriteria Goodness of Fit

Pada langkah kesesuaian model dievaluasi, melalui telaah terhadap berbagai kriteria *goodness-of-fit*. Tindakan pertama adalah mengevaluasi data yang akan digunakan dapat memenuhi asumsi-asumsi SEM berikut ini (Ferdinand, 2002):

Asumsi-asumsi SEM:

- a. Ukuran sampel, ukuran sampel minimum adalah sebanyak 100 dan selanjutnya menggunakan perbandingan 5 observasi untuk setiap estimated parameter.
- b. Normalitas dan Linearitas, sebaran data harus dianalisis untuk melihat apakah asumsi normalitas dipenuhi. Normalitas dapat diuji dengan melihat gambar histogram data. Uji normalitas perlu dilakukan baik untuk normalitas data tunggal maupun normalitas multivariate, dimana beberapa variabel digunakan sekaligus dalam analisis akhir. Uji linearitas dapat dilakukan dengan mengamati scatterplots dari data yaitu dengan memilih pasangan data dan dilihat pola penyebarannya untuk menduga ada tidaknya linearitas.
- c. Outliers, merupakan observasi yang muncul dengan nilai-nilai ekstrim baik secara univariat maupun multivariate, yang muncul karena kombinasi karakteristik unik yang dimilikinya dan terlihat sangat jauh berbeda dari observasi-observasi lainnya.
- d. Multicollinearity dan Singularity, multikolinearitas dapat dideteksi dari determinan matriks kovarians. Nilai determinan matriks kovarians yang sangat kecil (extremely small) memberi indikasi adanya problem multikoliearitas atau

singularitas. Perlakuan data yang dapat diambil adalah keluarkan variabel yang menyebabkan singularitas tersebut.

Uji Kesesuaian dan Uji Statistik

Beberapa indeks kesesuaian dan cut off valuenya yang digunakan dalam menguji apakah sebuah model dapat diterima atau ditolak adalah sebagai berikut (Ferdinand, 2002):

a. Chi-Square Statistic (X^2)

Model yang diuji dipandang baik atau memuaskan apabila *Chi Square*nya rendah. Semakin kecil nilai X^2 , semakin baik model itu dan diterima berdasarkan probabilitas denga *cutt-off value* sebesar p > 0,05 atau p > 0,10 (Hulland et al, dalam Ferdinand, 2000)

b. RMSEA (The Root Mean Square Error of Approximation)

Merupakan sebuah indeks yang dapat digunakan untuk mengkompensasikan *Chi-Square Statistic* dalam sampel yang besar (Baugarther dan Homburg, 1996, dalam Ferdinand, 2000). Nilai RMSEA menunjukkan nilai *goodness of fit* yang dapat diharapkan bila model diestimasi dalam populasi (Hair et al, 1995). Nilai RMSEA yang kecil atau sama dengan 0,08 merupakan indeks untuk dapat diterimanya model yang menunjukkan sebuah *close fit* dari model tersebut berdasarkan *degrees of freedom* (Browne dan Cudec, dalam Ferdinand, 2000).

c. GFI (Goodness of Fit Index)

Merupakan ukuran non statistikal yang mempunyai rentang nilai antara 0 (poor fit) sampai dengan 10 (perfect fit). Nilai yang tinggi dalam indeks ini menunjukkan better fit.

d. AGFI (Adjusted Goodness Fit Index)

Adalah analog dari R² dalam regresi berganda. Tingkat penerimaan yang direkomendasikan adalah bila AGFI mempunyai nilai sama dengan atau lebih besar dari 0,90.

e. CMIN/DF

The Minimum Sampel Discrepancy Function (CMIN)dibagi dengan degree of freedomnya. CMIN/DF tidak lain merupakan statistic chi-square, X² dibagi dengan DF-nya sehingga disebut X² relatif, dengan nilai diharapkan kurang dari 3.0 yang menunjukkan bahwa antara model dan data berindikasikan acceptable fit.

f. TLI (Tucker Lewis Index)

TLI untuk membandingkan model yang diuji terhadap *baseline* model, dengan besarnya nilai diharapkan sama atau lebih dari 0,95 yang menunjukkan bahwa model yang sangat baik (Hair, 1995) dan nilai yang mendekati 1 menunjukkan *a very good fit* (Arbucle, 1997).

g. CFI (Comparative Fit Index)

CFI untuk mengukur tingkat penerimaan model, dengan besarnya nilai diharapkan sama atau lebih dari 0,95 yang menunjukkan tingkat fit yang paling tinggi.

Uji Reliabilitas

Pada dasarnya uji reliabilitas menunjukkan sejauh mana suatu alat ukur yang dapat memberikan hasil yang relatif sama apabila dilakukan pengukuran kembali pada subyek yang sama. Uji reliabilitas dalam SEM dapat diperoleh melalui rumus sebagai berikut (Ferdinand, 2002):

Construct Reliability:
$$\frac{\left(\sum std.Loading\right)^{2}}{\left(\sum std.Loading\right)^{2} + \sum \varepsilon j}$$

Keterangan:

- Standar Loading diperoleh dari standardize loading untuk tiap-tiap indikator, yang diperoleh dari perhitungan komputer.
- $\sum \epsilon j$ adalah *measurement error* dari tiap indikator. *Measurement error* dapat diperoleh dari 1- $(standardized\ loading)^2$. Tingkat reliabilitas yang dapat diterima adalah ≥ 0.70

Variance extract

Pada prinsipnya pengukuran *variance extract* menunjukkan jumlah varians dari indikator-indikator yang diekstraksi oleh konstruk-konstruk yang dikembangkan. Nilai variance extract yang direkomendasikan adalah $\geq 0,05$. rumus yang digunakan adalah (Ferdinand, 2002):

$$Variance\ Extracted = \frac{\sum std.\ Loading^2}{\sum std.\ Loading^2 + \sum \varepsilon j}$$

Keterangan:

- Standard Loading diperoleh dari standardize loading untuk tiap-tiap indikator yang diperoleh dari perhitungan komputer.
- $\sum \epsilon j$ adalah *measurement error* dari tiap indikator.

7. Interpretasikan dan Modifikasi Model

Langkah terakhir adalah menginterpretasikan model dan bagi model yang tidak memnuhi syarat pengujian dilakukan modifikasi. Perlunya suatu model dimodifikasi dapat dilihat dari jumlah residual yang dihasilkan oleh model. Modifikasi perlu dipertimbangkan bila jumlah residual lebih dari 5% dari semua residual kovarians yang dihasilkan oleh model. Bila ditemukan nilai residual > 2,58 maka cara modifikasi adalah dengan mempertimbangkan untuk menambah sebuah alur baru terhadap model yang diestimasi tersebut (Hair dalam Ferdinand, 2002).

Indeks Modifikasi

Indeks modifikasi memberikan gambaran mengenai mengecilnya nilai *chi-square* atau pengurangan nilai *chi-square* bila sebuah koefisien diestimasi. Hal lain yang perlu diperhatikan adalah dalam memperbaiki tingkat kesesuaian modelnya, dimana hanya dapat dilakukan bila ia mempunyai dukungan dan justifikasi yang cukup terhadap perubahan tersebut secara teoritis (Ferdinand, 2002).

BAB IV

ANALISIS DATA DAN PEMBAHASAN

Dalam bab ini akan diuraikan hal-hal yang berkaitan dengan data yang dikumpulkan, hasil pengolahan data dan pembahasan hasil pengolahan data. Urutan pembahasan secara sistematis adalah sebagai berikut: gambaran umum penelitian, pengujian reliabilitas dan validitas kuesioner dan analisis data. Analisa data yang digunakan dalam penelitian ini adalah *Confirmatory Factor Analysis* dan *Full Model* dari SEM.

4.1. Gambaran umum penelitian

Penelitian ini mengambil objek konsumen beras Herbal Ponni Taj Mahal di Kota Semarang. Kuesioner yang terisi adalah sejumlah 151 kuesioner. Tabel 10 bertujuan untuk menggambarkan deskripsi penelitian ini.

Kuesioner yang telah diisi dengan benar kemudian akan diolah menjadi data penelitian. Jawaban responden memiliki nilai minimum 1 dan nilai maksimum 10 pada setiap indikator. Langkah pertama sebelum pengambilan data adalah melakukan uji kebaikan pengukuran yang meliputi reliabilitas dan validitas. Reliabilitas adalah alat untuk mengukur suatu kuesioner yang merupakan indikator dari variabel konstruk. Suatu kuesioner dikatakan reliabel bila jawaban responden terhadap pertanyaan adalah konsisten atau stabil dari waktu ke waktu. Suatu konstruk atau variabel dikatakan reliabel jika memberi nilai *Cronbach Alpha* lebih besar dari 0.6 (Imam Ghozali, 2001). Nilai *Cronbach Alpha* untuk 4 variabel laten dalam penelitian ini lebih besar dari 0.6

seperti tampak pada tabel 11. Dengan demikian dapat dikatakan bahwa hasil pengujian kuesioner reliabel.

Tabel 10.

Tabel data deskriptif penelitian

			Prosentase
Pendidikan	<sma< td=""><td>9</td><td>6 %</td></sma<>	9	6 %
	SMA	71	47 %
	D3	24	16 %
	S1	44	29 %
	>S1	3	2 %
Jenis Kelamin	Pria	68	45 %
	Wanita	83	55 %
Usia	21-30 tahun	6	4 %
	31-40 tahun	12	8 %
	>40 tahun	133	88 %
Profesi	Karyawan Swasta	27	18 %
	Wiraswasta	59	39 %
	Guru	6	4 %
	Ibu rumah tangga	59	39 %

Sumber: Data primer yang diolah

Uji validitas digunakan untuk mengukur sah atau valid tidaknya suatu kuesioner. Suatu kuesioner dikatakan valid jika pertanyaan pada kuesioner mampu mengungkapkan sesuatu yang akan diukur oleh kuesioner tersebut. Uji tersebut dilakukan dengan membandingkan nilai r hitung dengan r tabel *degree of freedom* (df)= n-k, dalam hal ini n adalah jumlah sampel dan k adalah jumlah konstruk. Pada penelitian ini, besarnya df dapat dihitung 151-4/ df = 147 dengan alpha 0.05 didapat r tabel sebesar 0.1353. Jika r hitung (untuk r tiap butir dapat dilihat pada kolom *Corrected Item – Total Correlation*) lebih besar dari r tabel dan nilai r positif maka kuesioner tersebut dikatakan valid sebagaimana ditampilkan pada tabel 11.

Tabel 11. Hasil perhitungan Reliabilitas dan Validitas Kuesioner

Konstruk/Variabel Laten	Reliabilitas (Cronbach α)	Indikator	Corrected Item – Total Corelation
Laten	(Cronbach u)	X1	.895
Verifikasi	0.40		
Kelompok Referensi	.940	X2	.897
Trefempen reference		X3	.830
Kampanye Klaim		X4	.873
Kampanye Klaim Kesehatan	.923	X5	.829
Resenatan		X6	.826
Rasa Percaya pada		X7	.884
Klaim	.945	X8	.911
Kiaiiii		X9	.864
		X10	.837
Intensitas Pembelian	.919	X11	.822
		X12	.847

Sumber: Data Primer yang diolah

4.2. Analisis Kualitatif

Model teoritis telah dibangun melalui telah pustaka, dan pengembangan model telah dijelaskan pada Bab II. Konstruk-konstruk dan dimensi-dimensi yang akan diteliti dari model penelitian telah disajikan dalam gambar 2-5. Berikut akan dibahas pertanyaan terbuka yang diperoleh dari responden.

4.2.1. Verifikasi Kelompok Referensi dan Rasa Percaya pada Klaim Kesehatan

Verifikasi kelompok referensi dalam penelitian ini didefinisikan sebagai pernyataan suatu kelompok yang perspektif, sikap, atau perilakunya dianggap sebagai acuan oleh konsumen (Arnould et al., 2005), yang mendukung kebenaran klaim kesehatan.. Ada tiga komponen yang menjadi indikator dari verifikasi kelompok referensi, yaitu: popularitas kelompok referensi, independensi kelompok referensi terhadap perusahaan, dan keahlian kelompok referensi (berkaitan dengan pernyataan verifikasi). Rasa percaya

konsumen pada klaim kesehatan akan tinggi bila terdapat verifikasi kelompok referensi yang sesuai.

Kelompok referensi yang digunakan dalam penelitian ini adalah lembaga kesehatan. Temuan penelitian untuk hubungan antarvariabel verifikasi kelompok referensi dan rasa percaya pada klaim kesehatan adalah sebagai berikut: sebanyak 91% responden lebih mempercayai lembaga kesehatan internasional daripada lembaga kesehatan nasional. Sebanyak 51% responden lebih mempercayai lembaga kesehatan yang bukan merupakan bagian/anak perusahaan beras Herbal Ponni Taj Mahal, dengan alasan adanya ketergantungan antara lembaga kesehatan dan perusahaan akan memperbesar resiko manipulasi hasil uji klinis. Responden lebih mempercayai lembaga kesehatan yang bidang keahliannya berkaitan dengan manfaat beras Herbal Ponni Taj Mahal. Bidang keahlian lembaga kesehatan tersebut sebaiknya berkaitan dengan gizi (18%), diabetes (64%), penyakit degeneratif (2%), pangan (12%), dan kesehatan (4%).

4.2.2. Kampanye Klaim Kesehatan dan Rasa Percaya pada Klaim Kesehatan

Kampanye klaim kesehatan adalah salah satu bentuk promosi produk yang dilakukan perusahaan dalam bentuk kampanye tentang manfaat produk bagi kesehatan konsumen, berkaitan dengan klaim kesehatan yang dicantumkannya. Ada tiga komponen yang menjadi indikator kampanye klaim kesehatan, yaitu kampanye penyembuhan penyakit tertentu, kampanye pemasaran sosial, dan kampanye edukasi hubungan diet-kesehatan. Rasa percaya konsumen pada klaim kesehatan akan meningkat bila kampanye klaim kesehatan yang digunakan tepat.

Temuan penelitian untuk hubungan antara variabel kampanye klaim kesehatan dan rasa percaya pada klaim kesehatan adalah sebagai berikut : Sejumlah 40% responden menyatakan lebih tergugah dengan iklan layanan masyarakat tentang diabetes, sedangkan 60% responden lebih tergugah dengan iklan produk pencegah/pengobatan diabetes karena menganggap iklan tersebut lebih tepat sasaran dan memberikan informasi langsung tentang cara pencegahan/pengobatan diabetes.

Selain itu, sebanyak 58% responden lebih berminat dengan kampanye pendidikan berupa pameran produk kesehatan, 41% responden berminat dengan seminar, dan 1% sisanya berminat dengan arisan.

4.2.3. Rasa Percaya pada Klaim Kesehatan dan Intensitas Pembelian

Dalam penelitian ini, rasa percaya terhadap klaim kesehatan didefinisikan sebagai konsumen meyakini kebenaran suatu klaim kesehatan dalam produk makanan yang diproduksi oleh perusahaan. Rasa percaya konsumen pada klaim ditandai dengan meningkatnya keyakinan konsumen tentang manfaat produk dan ekspektasi konsumen. Tiga komponen yang menjadi indikator dari rasa percaya pada klaim kesehatan adalah reliabilitas informasi klaim kesehatan, harapan akan manfaat, dan penyebarluasan manfaat produk pada orang lain.

Sedangkan intensitas pembelian diukur melalui indikator: minat membeli produk, jumlah konsumsi produk, dan minat membeli ulang. Menurut penelitian Everard dan Galletta (2006), rasa percaya konsumen mempengaruhi intensitas pembelian konsumen secara positif.

Temuan penelitian untuk hubungan antara variabel rasa percaya pada klaim kesehatan dan intensitas pembelian adalah sebagai berikut: sebanyak 52% responden mempercayai klaim kesehatan tetapi tetap memerlukan adanya informasi tambahan, sedangkan 48% sisanya tidak memerlukan informasi tambahan. Selain itu, responden yang berharap beras tersebut dapat menyembuhkan diabetes adalah sebanyak 52%, sedangkan sisanya mengharapkan penurunan kadar gula darah (34%) dan pencegahan diabetes (14%).

Dari pertanyaan terbuka, responden yang membeli 1 kantong beras setiap pembelian adalah sebesar 34%, lebih dari 1 sampai 3 kantong beras setiap pembelian sebanyak 54%, sedangkan 12% lainnya membeli lebih dari tiga kantong beras dalam setiap pembelian. Sebagian responden (38%) melakukan pembelian ulang setiap sebulan sekali, 20% responden membeli setiap 1,5 bulan sekali, 18% responden membeli setiap dua bulan sekali, 12% responden membeli setiap dua minggu sekali, 10% responden membeli lebih dari dua bulan sekali, 1,4% membeli tiga kali setiap bulan, dan sisanya menyatakan pembelian ulang dilakukan tergantung pemakaian.

4.3. Proses Analisis Data dan Pengujian Model Penelitian

Proses analisis data dan pengujian model penelitian dengan menggunakan *Structural Equation Model* akan mengikuti 7 langkah proses analisis (Ferdinand, 2002). Tujuh langkah proses analisis *Structural Equation Model* tersebut secara singkat diterangkan sebagai berikut:

4.3.1. Langkah 1: Pengembangan Model Berdasarkan Teori

Model penelitian yang dikembangkan didasarkan pada hasil telaah teori yang telah dijelaskan pada Bab II. Model ini digunakan untuk mencapai tujuan penelitian. Konstruk yang membentuk model penelitian ini juga telah dijelaskan pada bab sebelumnya dimana variabel pembentuk model terdiri dari 4 variabel dan indikator-indikator pembentuk konstruk terdiri dari 12 indikator. Model penelitian yang dibangun juga telah dirancang berdasarkan teknik analisis yang digunakan yaitu analisis *Structural Equation Model*, seperti telah disajikan dalam Bab III.

4.3.2. Langkah 2 : Menyusun Diagram Alur (Path Diagram)

Diagram Alur (path diagram) dibentuk berdasarkan model penelitian yang telah dikembangkan dari hasil telaah teori seperti yang telah diuraikan di Bab. II. Diagram alur yang telah terbentuk seperti tertuang dalam Gambar 6 pada Bab III, akan digunakan sebagai salah satu proses estimasi dengan menggunakan program AMOS 4.01.

4.3.3. Langkah 3: Persamaan Struktural dan Model Pengukuran

Model yang telah dinyatakan dalam diagram alur tersebut dikonversikan dalam persamaan struktural (*Structural Equations*) dan persamaan-persamaan spesifikasi model pengukuran (*Measurement Model*) sebagaimana telah diterangkan dalam tabel 9 pada Bab III.

4.3.4. Langkah 4: Memilih Matriks Input dan Teknik Estimasi

Matriks input yang digunakan adalah matriks kovarians sebagai input untuk proses operasi *Structural Equation Modelling* (SEM). Pemilihan input menggunakan matriks kovarians, karena penelitian ini menguji hubungan kausalitas (Ferdinand, 2002). Jumlah sampel yang digunakan dalam penelitian ini adalah 151 responden. Dari hasil olah data yang telah dilakukan, matriks kovarians data yang digunakan terlihat seperti dalam tabel 12.

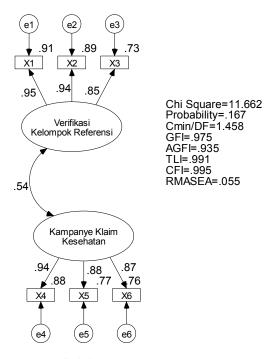
Tabel 12.

Sample Covariance – Estimates

	X12	X11	X10	X7	X8	X9	X4	X5	X6	Х3	X2	X1
X12	4.64											
X11	3.701	4.754										
X10	3.647	3.54	4.39									
X7	3.452	3.706	3.655	4.747								
X8	3.452	3.609	3.61	4.204	4.794							
X9	3.155	3.277	3.312	3.647	3.826	4.169						
X4	2.427	2.412	2.49	2.549	2.612	2.437	3.823					
X5	2.22	2.331	2.217	2.349	2.312	2.234	3.106	3.745				
X6	2.512	2.228	2.48	2.353	2.475	2.307	3.123	2.873	3.824			
X3	2.979	2.694	2.858	3.057	3.119	2.741	1.889	1.649	1.764	5.125		
X2	2.969	2.819	2.892	3.022	2.991	2.552	1.849	1.856	1.806	3.978	4.709	
X1	2.985	3.04	2.936	3.172	3.175	2.827	2.178	2.044	1.924	3.954	4.211	4.675

Sumber: Data primer yang diolah

Adapun teknik estimasi yang akan digunakan adalah maximum likelihood estimation method dari program AMOS. Dan seperti yang telah dijelaskan di atas estimasi dilakukan secara bertahap, yaitu: estimasi measurement model dengan teknik confirmatory factor analysis dan Structural Equation Model melalui uji model untuk melihat kesesuaian model dan hubungan kausalitas yang dibangun dalam model yang diuji (Ferdinand, 2002).


4.3.4.1. Confirmatory Factor Analysis Konstruk Eksogen

Hasil dari *confirmatory* factor *analysis* untuk konstruk eksogen disajikan seperti pada gambar 7, Tabel 13, dan Tabel 14 sebagai berikut :

Gambar 7.

Confirmatory Factor Analysis Konstruk Eksogen

Confirmatory Factor Analysis Konstruk Eksogen

Sumber: Data Primer yang diolah

Tabel 13.

Indeks Pengujian *Confirmatory Factor Analysis* Konstruk Eksogen

Goodness of Fit	Cut-off Value	Hasil	Evaluasi
Index	Cut-on value	Analysis	Model
X ² - Chi-square	≤26.124	11.662	Baik
significance probability	≥0.05	0.167	Baik
RMSEA	≤0.08	0.055	Baik
GFI	≥0.90 ≤1	0.975	Baik
AGFI	≥0.90 ≤1	0.935	Baik
TLI	≥0.95 ≤1	0.991	Baik
CFI	≥0.95 ≤1	0.995	Baik

Sumber : Data Primer yang diolah

Tabel 14.

Regression Weights Confirmatory Factor Analysis Konstruk Eksogen

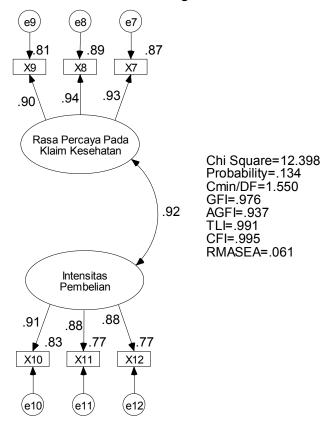
			Estimate	S.E.	C.R.	Р
X2	<	Verifikasi_Kelompok Referensi	0.990	0.045	22.082	0.000
X5	<	Kampanye Klaim_Kesehatan	0.996	0.069	14.517	0.000
X1	<	Verifikasi_Kelompok Referensi	1.000			
Х3	<	Verifikasi_Kelompok Referensi	0.935	0.056	16.613	0.000
X4	<	Kampanye Klaim_Kesehatan	1.080	0.067	16.092	0.000
X6	<	Kampanye Klaim_Kesehatan	1.000			

Sumber: Data Primer yang diolah

Hasil dari *Confirmatory Factor Analysis* untuk konstruk eksogen yang digunakan untuk menguji unidimensionalitas dari dimensi-dimensi yang membentuk variabel-variabel laten di atas menunjukkan bahwa nilai hasil model sesuai dengan kriteria *Goodness of fit*, sehingga model dapat diterima. Tingkat signifikansi sebesar 0,167 menunjukkan hipotesa nol yang menyatakan bahwa tidak terdapat perbedaan antara matriks kovarians populasi yang diestimasi tidak dapat ditolak dan karena itu konstruk eksogen ini dapat diterima.

Kuat lemahnya dimensi-dimensi untuk membentuk faktor latennya dapat dianalisis dengan menggunakan uji t terhadap *Regression Weights* sebagaimana tersaji dalam Tabel 14 dan dengan melihat faktor *loading* masing-masing dimensi tersebut. *Critical Ratio* (CR) dalam tabel identik dengan t-hitung dalam analisis regresi. *Critical Ratio* (CR) yang lebih besar dari 1.96 menunjukkan bahwa variabel-variabel tersebut di atas secara signifikan merupakan dimensi dari faktor laten yang dibentuk. Sementara itu, Hair (1995) menyatakan bahwa syarat suatu variabel yang merupakan dimensi dari variabel latennya adalah jika mempunyai *factor loading* lebih dari 0.40.

Berdasarkan Tabel 14 di atas dapat dilihat bahwa *Critical Ratio* (CR) untuk masing-masing dimensi sudah memenuhi syarat yaitu > 1.96. sementara itu faktor loading dari masing-masing dimensi sudah memenuhi syarat yaitu > 0.40. dengan demikian dapat disimpulkan bahwa variabel-variabel tersebut di atas secara signifikan merupakan dimensi dari variabel-variabel laten yang dibentuk. Berdasarkan analisis tersebut maka model penelitian ini dapat dianalisis lebih lanjut tanpa adanya modifikasi ataupun penyesuaian-penyesuaian.


4.3.4.2. Confirmatory Factor Analysis Konstruk Endogen

Hasil dari *confirmatory* factor *analysis* untuk konstruk eksogen ditampilkan pada gambar 8, Tabel 15, dan Tabel 16. Hasil dari *Confirmatory Factor Analysis* untuk konstruk eksogen yang digunakan untuk menguji unidimensionalitas dari dimensi-dimensi yang membentuk variabel-variabel laten di atas menunjukkan bahwa nilai hasil model sesuai dengan kriteria *Goodness of fit*, sehingga model dapat diterima. Tingkat signifikansi sebesar 0,134 menunjukkan hipotesa nol yang menyatakan bahwa tidak terdapat perbedaan antara matriks kovarians populasi yang diestimasi tidak dapat ditolak dan karena itu konstruk eksogen ini dapat diterima.

Gambar 8.

Confirmatory Factor Analysis Konstruk Endogen

Confirmatory Factor Analysis Konstruk Endogen

Sumber: Data Primer yang diolah

Tabel 15.

Indeks Pengujian Confirmatory Factor Analysis Konstruk Endogen

Goodness of Fit	Cut-off Value	Hasil	Evaluasi
Index	Cut-on value	Analysis	Model
X ² - Chi-square	≤26.124	12.398	Baik
significance probability	≥0.05	0.134	Baik
RMSEA	≤0.08	0.061	Baik
GFI	≥0.90 ≤1	0.976	Baik
AGFI	≥0.90 ≤1	0.937	Baik
TLI	≥0.95 ≤1	0.991	Baik
CFI	≥0.95 ≤1	0.995	Baik

Sumber : Data Primer yang diolah

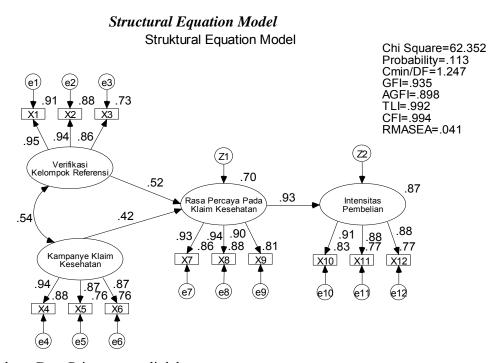
Tabel 16.

Regression Weights Confirmatory Factor Analysis Konstruk Endogen

			Estimate	S.E.	C.R.	Р
		Rasa Percaya Pada_Klaim				
X8	<	Kesehatan	1.127	0.058	19.518	0.000
X11	<	Intensitas_Pembelian	1.003	0.063	15.845	0.000
X12		Intensitas_Pembelian	0.994	0.061	16.248	0.000
X10	<	Intensitas_Pembelian	1.000			
		Rasa Percaya Pada_Klaim				
X7	<	Kesehatan	1.106	0.060	18.558	0.000
		Rasa Percaya Pada_Klaim				
X9	<	Kesehatan	1.000			

Sumber: Data Pimer yang diolah

Kuat lemahnya dimensi-dimensi untuk membentuk faktor latennya dapat dianalisis dengan menggunakan uji t terhadap *Regression Weights* sebagaimana tersaji dalam Tabel 16 dan dengan melihat faktor loading masing-masing dimensi tersebut. *Critical Ratio* (CR) dalam tabel identik dengan t-hitung dalam analisis regresi. *Critical Ratio* (CR) yang lebih besar dari 1.96 menunjukkan bahwa variabel-variabel tersebut di atas secara signifikan merupakan dimensi dari faktor laten yang dibentuk. Sementara itu, Hair (1995) menyatakan bahwa syarat suatu variabel yang merupakan dimensi dari variabel latennya adalah jika mempunyai *factor loading* lebih dari 0.40.


Berdasarkan Tabel 16 di *atas* dapat dilihat bahwa *Critical Ratio* (CR) untuk masing-masing dimensi sudah memenuhi syarat yaitu > 1.96. sementara itu faktor loading dari masing-masing dimensi sudah memenuhi syarat yaitu > 0.40. dengan demikian dapat disimpulkan bahwa variabelvariabel tersebut di atas secara signifikan merupakan dimensi dari variabel-variabel laten yang dibentuk. Berdasarkan analisis tersebut maka

model penelitian ini dapat dianalisis lebih lanjut tanpa adanya modifikasi ataupun penyesuaian-penyesuaian.

Structural Equation Model (SEM)

Hasil pengolahan *Full Model* SEM disajikan pada gambar 9, Tabel 17 dan Tabel 18 sebagai berikut:

Gambar 9.

Sumber: Data Primer yang diolah

Tabel 17.

Indeks Pengujian Kelayakan Structural Equation Model

Goodness of Fit	Cut-off Value	Hasil	Evaluasi				
χ²- Chi-square	≤86.660	62.352	Baik				
significance probability	≥0.05	0.113	Baik				
RMSEA	≤0.08	0.041	Baik				
GFI	≥0.90 ≤1	0.935	Baik				
AGFI	≥0.90 ≤1	0.898	Marginal				
TLI	≥0.95 ≤1	0.992	Baik				
CFI	≥0.95 ≤1	0.994	Baik				

Sumber: Data Primer yang diolah

Tabel 18.

Regression Weights Structural Equation Model

			Estimate	S.E.	C.R.	Р
Rasa Percaya Pada_Klaim						
Kesehatan	<	Kampanye Klaim_Kesehatan	0.456	0.073	6.246	0
Rasa Percaya Pada_Klaim						
Kesehatan	<	Verifikasi_Kelompok Referensi	0.465	0.059	7.893	0.000
		Rasa Percaya Pada_Klaim				
Intensitas_Pembelian	<	Kesehatan	0.971	0.065	14.985	0.000
X2	<	Verifikasi_Kelompok Referensi	0.987	0.043	22.788	0.000
X5	<	Kampanye Klaim_Kesehatan	0.991	0.068	14.565	0.000
		Rasa Percaya Pada_Klaim				
X8	<	Kesehatan	1.121	0.058	19.278	0.000
X11	<	Intensitas_Pembelian	1.002	0.063	15.942	0.000
X12	<	Intensitas_Pembelian	0.994	0.061	16.348	0.000
X10	<	Intensitas_Pembelian	1.000			
		Rasa Percaya Pada_Klaim				
X7	<	Kesehatan	1.104	0.060	18.556	0.000
		Rasa Percaya Pada_Klaim				
X9	<	Kesehatan	1.000			
X1	<	Verifikasi_Kelompok Referensi	1.000			
X3	<	Verifikasi_Kelompok Referensi	0.938	0.055	16.923	0.000
X4	<	Kampanye Klaim_Kesehatan	1.077	0.066	16.364	0.000
X6	<	Kampanye Klaim_Kesehatan	1.000			

Uji terhadap model menunjukkan bahwa model fit terhadap data yang digunakan dalam penelitian seperti terlihat dari tingkat signifikansi sebesar 0.113 yang sesuai dengan syarat > 0.05. Tingkat signifikansi terhadap *Chi – Square* model sebesar 62.352, GFI, AGFI, TLI, CFI dan RMSEA berada dalam rentang nilai yang diharapkan meskipun AGFI diterima secara marginal.

4.3.5. Langkah 5: Menilai Problem Identifikasi

Berdasarkan hasil analisis yang telah dilakukan, diketahui bahwa dalam penelitian ini *standard error*, *varians error*, serta korelasi antar koefisien estimasi berada dalam rentang nilai yang tidak menunjukkan adanya problem identifikasi.

4.3.6. Langkah 6: Evaluasi Atas Asumsi-Asumsi SEM

Pada langkah ini kesesuaian model dievaluasi. Namun demikian tindakan pertama yang harus dilakukan adalah mengevaluasi apakah data yang digunakan dapat memenuhi asumsi-asumsi SEM.

4.3.6.1. Asumsi-asumsi SEM.

4.3.6.1.1. Ukuran Sampel

Ukuran sampel yang harus dipenuhi adalah sebesar ≥100 dan selanjutnya menggunakan perbandingan observasi untuk setiap estimated parameter. Dalam model penelitian ini terdapat 12 parameter, sehingga minimum sampel yang digunakan adalah 60. Penelitian ini menggunakan 151 sampel konsumen beras Herbal Ponni Taj Mahal di Kota Semarang, dengan demikian sampel ini telah memenuhi syarat untuk dianalisis lebih lanjut.

4.3.6.1.2. Outlier

Outlier adalah observasi yang muncul dengan nilai-nilai ekstrim baik secara univariat maupun multivariat yaitu yang muncul karena kombinasi karakteristik unik yang dimilikinya dan terlihat sangat jauh berbeda dari observasi-observasi lainnya. Pada dasarnya outlier dapat muncul dalam empat kategori.

Pertama, *outlier* muncul karena kesalahan prosedur seperti salah dalam memasukkan data atau kesalahan dalam mengkoding data. Kedua, *outlier* dapat saja muncul karena keadaan yang benar-benar khusus yang memungkinkan profil datanya lain daripada yang lain, tetapi peneliti

mempunyai penjelasan mengenai apa penyebab munculnya nilai ekstrim ini. Ketiga, *outlier* dapat muncul karena adanya sesuatu alasan tetapi peneliti tidak dapat mengetahui apa penyebabnya atau tidak ada penjelasan mengenai sebab-sebab munculnya nilai ekstrim ini. Keempat, *outlier* dapat muncul dalam range nilai yang ada, tetapi bila dikombinasi dengan variabel lainnya, kombinasinya menjadi tidak lazim atau sangat ekstrim (Ferdinand, 2002).

4.3.6.1.2.1. Outlier *Univariate*

Deteksi terhadap ada tidaknya *univariate outlier* dapat dilakukan dengan menentukan nilai ambang batas yang akan dikategorikan sebagai *outlier* dengan cara mengkonversi nilai data penelitian ke dalam *standard score* atau yang biasa disebut *z-score* yang mempunyai nilai rata-rata nol dengan standar deviasi sebesar 1,00 (Hair, *et. al*, 1995). Observasi data yang memiliki nilai *z-score* $\geq \pm 3,0$ akan dikategorikan sebagai *univariate outlier*.

4.3.6.1.3. *Multivariate Outlier*

Evaluasi terhadap *multivariate outlier* perlu dilakukan karena walaupun data yang dianalisis menunjukkan tidak adanya *outlier* pada tingkat *univariate*, namun observasi-observasi tersebut dapat menjadi *outliers* bila sudah dikombinasikan (Ferdinand, 2002). Jarak *mahalanobis* (*The Mahalanobis Distance*) untuk tiap-tiap observasi dapat dihitung dan akan menunjukkan jarak sebuah observasi dari ratarata semua variabel dalam sebuah ruang multidimensional (Hair, *et al*,

1995; Norusis, 1994; Tabacnick & Fidell, 1996, dalam Ferdinand, 2002).

Tabel 19.

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Zscore(x1)	151	-2.12467	2.02393	.0000000	1.00000000
Zscore(x2)	151	-2.14738	1.98617	.0000000	1.00000000
Zscore(x3)	151	-2.08177	1.88059	.0000000	1.00000000
Zscore(x4)	151	-2.22811	1.85001	.0000000	1.00000000
Zscore(x5)	151	-2.33627	1.78375	.0000000	1.00000000
Zscore(x6)	151	-2.37959	2.20745	.0000000	1.00000000
Zscore(x7)	151	-2.27206	1.84492	.0000000	1.00000000
Zscore(x8)	151	-2.26397	1.83288	.0000000	1.00000000
Zscore(x9)	151	-2.41471	1.97832	.0000000	1.00000000
Zscore(x10)	151	-2.26820	2.01303	.0000000	1.00000000
Zscore(x11)	151	-2.16145	1.95257	.0000000	1.00000000
Zscore(x12)	151	-2.33488	1.82930	.0000000	1.00000000
Valid N (listwise)	151				

Sumber: DataPrimer yang diolah

Jarak mahalanobis (*The Mahalanobis Distance*) dihitung berdasarkan nilai *chi-square* pada derajat bebas sebesar 12 (jumlah variabel bebas) pada tingkat p < 0,01 adalah χ^2 (12; 0,01) = 26,25 (berdasarkan tabel distribusi χ^2). Jadi data yang memiliki jarak *mahalanobis* lebih besar dari 26,25 adalah *multivariate outliers*. Namun dalam analisis ini *outliers* yang ditemukan tidak akan dihilangkan dari analisis karena data tersebut menggambarkan keadaan yang sesungguhnya dan tidak ada alasan khusus dari profil responden yang menyebabkan harus dikeluarkan dari analisis tersebut (Ferdinand, 2002). Data *mahalanobis distance* dapat dilihat dalam lampiran output.

4.3.6.1.4. Uji Normalitas Data

Uji normalitas bertujuan untuk menguji apakah dalam model regresi, variabel terikat dan variabel bebas keduanya mempunyai distribusi normal atau tidak. Model regresi yang baik adalah model yang memiliki distribusi data normal atau mendekati normal (Ghozali, 2005).

SEM mensyaratkan dipenuhinya asumsi normalitas. Untuk menguji normalitas distribusi data dapat digunakan uji-uji statistik. Uji yang paling mudah adalah dengan mengamati *skewness value* dari data yang digunakan. Nilai statistik untuk menguji normalitas itu disebut *Z-value*. Bila nilai Z lebih besar dari nilai kritis dapat diduga bahwa distribusi data adalah tidak normal. Nilai teoritis dapat ditentukan berdasarkan tingkat signifikansi yang dikehendaki. Normalitas data dapat ditunjukkan dengan adanya *Critical Ratio* (CR) dengan nilai ambang batas sebesar ± 2.58 pada tingkat signifikansi 0.01 (1%) (Ferdinand, 2002).

Uji normalitas terhadap data yang digunakan dalam penelitian ini disajikan dalam Tabel 20. Dari Tabel 20 tersebut terlihat bahwa data tersebut tidak ada nilai C.R yang lebih besar dari 2.58. Dengan demikian data tersebut sudah terdistribusi secara normal, kecuali X5, X10, dan X12.

Tabel 20.

Assessment of Normality

Variable	min	max	skew	c.r.	kurtosis	c.r.
X12	1.000	10.000	-0.287	-1.437	-0.456	-1.143
X11	1.000	10.000	-0.249	-1.247	-0.423	-1.06
X10	1.000	10.000	-0.357	-1.792	-0.238	-0.598
X7	1.000	10.000	-0.154	-0.770	-0.476	-1.194
X8	1.000	10.000	-0.186	-0.932	-0.505	-1.267
X9	1.000	10.000	-0.185	-0.928	-0.173	-0.434
X4	1.000	9.000	-0.016	-0.080	-0.585	-1.467
X5	1.000	9.000	-0.313	-1.570	-0.062	-0.156
X6	1.000	10.000	-0.153	-0.768	-0.524	-1.315
X3	1.000	10.000	-0.104	-0.520	-0.696	-1.747
X2	1.000	10.000	-0.155	-0.779	-0.617	-1.547
X1	1.000	10.000	-0.222	-1.112	-0.533	-1.337
Multivariate					5.583	1.871

Sumber: Data Primer yang diolah

4.3.4.1.1. Evaluasi Atas Multikolinearitas dan Singularitas

Untuk melihat apakah pada data penelitian terdapat multikolineritas (*multicollinearity*) atau singularitas (*singularity*) dalam kombinasi-kombinasi variabel, maka yang perlu diamati adalah determinan dari matriks kovarians sampelnya. Indikasi adanya multikolineritas dan singularitas menunjukkan bahwa data tidak dapat digunakan untuk penelitian. Adanya *multikolineritas* dan *singularitas* dapat diketahui melalui nilai determinan matriks kovarians yang benar-benar kecil, atau mendekati nol (Tabachnick & Fidell, 1998 dalam Ferdinand, 2002).

Dari hasil pengolahan data pada penelitian ini, nilai determinan matriks kovarians sampel sebagai berikut :

Determinant of sample covariance matrix = 100.247

Hasil tersebut menunjukkan bahwa nilai determinan matriks kovarians sampel adalah jauh dari nol. Dengan demikian dapat dikatakan bahwa data penelitian yang digunakan tidak terdapat *multikolineritas* dan *singularitas*, sehingga data layak untuk digunakan.

4.3.4.2. Uji Kesesuaian : Goodness-of-Fit

Pengujian kesesuaian model penelitian adalah untuk menguji seberapa baik tingkat *goodness-of-fit* dari model penelitian. Penilaian ini menggunakan beberapa kriteria yang disyaratkan oleh SEM. Dari hasil pengolahan data kemudian dibandingkan dengan batas statistik yang telah ditentukan. Seperti ditampilkan pada Uji kesesuaian model dalam tabel 21. Berdasarkan tabel tersebut dapat diketahui bahwa dari tujuh kriteria yang dipersyaratkan, terdapat enam diantaranya dalam kondisi baik, dan hanya satu nilai yaitu AGFI yang masih berada dalam kondisi marjinal atau di bawah nilai yang dipersyaratkan yaitu 0.90. Namun demikian secara keseluruhan dapat dikatakan bahwa model penelitian ini memiliki tingkat *goodness-of-fit* yang baik. Dengan demikian dapat dinyatakan bahwa pengujian ini menghasilkan konfirmasi yang baik atas dimensi-dimensi faktor serta hubungan-hubungan kausalitas antar faktor.

Tabel 21.

Evaluasi Kriteria *Goodness of Fit Index*

Goodness of Fit	Cut-off Value	Hasil	Evaluasi
x²- Chi-square	≤86.660	62.352	Baik
significance probability	≥0.05	0.113	Baik
RMSEA	≤0.08	0.041	Baik
GFI	≥0.90 ≤1	0.935	Baik
AGFI	≥0.90 ≤1	0.898	Marginal
TLI	≥0.95 ≤1	0.992	Baik
CFI	≥0.95 ≤1	0.994	Baik

Sumber : Data Primer yang diolah

4.3.5. Langkah 7 : Interpretasi dan Modifikasi Model

Model yang baik mempunyai *Standardized Residual Covariances* yang kecil. Angka 2.58 merupakan batas nilai *Standardized Residual* yang diperkenankan. Nilai residual values yang lebih besar atau sama dengan ± 2.58 diinterpretasikan sebagai tidak signifikan secara statistik pada tingkat 5% (Ferdinand, 2002). pengujian terhadap nilai residual sebagaimana dapat dilihat pada tabel 22 menunjukkan bahwa model tersebut sudah signifikan karena tidak ada angka yang lebih besar dari 2.58. dengan demikian model ini tidak perlu dimodifikasi.

Tabel 22.

Standardized Residual Covariances

	X2	X1	X5	X4	Х3	Х9	X10	X11	X8	X7
X2	0.000									
X1	0.000	0.000								
X5	0.125	0.211	0.000							
X4	-0.326	-0.147	0.070	0.000						
X3	0.166	-0.070	-0.060	0.000	0.000					
X9	0.576	0.749	0.433	0.306	0.610	0.000				
X10	0.217	0.158	-0.782	-1.113	-0.414	-0.028	0.000			
X11	0.515	0.642	-0.153	-0.289	0.142	-0.027	0.076	0.000		
X8	0.057	0.127	-0.073	-0.461	-0.179	0.229	-0.307	-0.056	0.000	
X7	0.061	-0.098	0.019	-0.307	0.180	0.304	-0.402	-0.116	-0.005	0.000
X6	-0.064	-0.032	0.054	-0.147	0.233	0.231	-0.382	-0.178	0.011	0.007

Sumber: Data Primer yang Diolah

4.4. Uji Reliabilitas dan Variance Extract

4.4.1. Uji Reliabilitas

Pada dasarnya uji reliabilitas menunjukkan sejauh mana suatu alat ukur yang dapat memberikan hasil yang relatif sama apabila dilakukan pengukuran kembali pada subyek yang sama. Uji reliabilitas dalam SEM dapat diperoleh melalui rumus sebagai berikut (Ferdinand, 2002).

Construct reliabil. =
$$\frac{(\sum \text{Standard Loading})^2}{(\sum \text{Standard Loading})^2 + \sum \text{Ej}}$$
 (1)

Keterangan:

- Standard loading diperoleh dari standardized loading untuk tiap indikator yang didapat dari hasil perhitungan komputer
- Σ Ej adalah measurement error dari tiap indikator. Measurement error dapat diperoleh dari 1 – (standard loading)².

Tingkat reliabilitas yang dapat diterima adalah 0.70, walaupun angka itu bukanlah sebuah ukuran "mati" (Ferdinand, 2002).

Hasil standard loading data:

Verifikasi Kel. Refer. = 0.954 + 0.939 + 0.856 = 2.749 Kampanye Klaim Kes. = 0.939 + 0.873 + 0.871 = 2.683 Rasa Percaya = 0.929 + 0.938 + 0.897 = 2.764 Intensitas Pembelian = 0.910 + 0.876 + 0.879 = 2.665

Hasil Measurement error data:

Perhitungan reliabilitas data:

Verifikasi Kelompok Referensi =
$$\frac{2.749^2}{2.749^2 + 0.474}$$
 = 0.940
Kampanye Klaim Kesehatan = $\frac{2.683^2}{2.683^2 + 0.597}$ = 0.923
Rasa Percaya pada Klaim = $\frac{2.764^2}{2.764^2 + 0.452}$ = 0.944
Intensitas Pembelian = $\frac{2.665^2}{2.665^2 + 0.632}$ = 0.918

Dari pengukuran reliabilitas data di atas, dapat disimpulkan bahwa nilai reliabilitas semua variabel sudah memenuhi syarat yaitu lebih besar dari 0.70. Dengan demikian model penelitian ini dapat diterima.

4.4.2. Variance Extract

Pengukuran *variance extract* menunjukkan jumlah varians dari indikator yang diekstrasi oleh konstruk/variabel laten yang dikembangkan. Nilai *variance extract* yang dapat diterima adalah ≥ 0.50 . Rumus yang digunakan adalah sebagai berikut (Ferdinand, 2002):

Variance extract =
$$\sum Standard Loading^2$$

 $\sum Standard Loading^2 + \sum Ej$(2)

Keterangan:

- Standard loading diperoleh dari standardized loading untuk tiap indikator yang didapat dari hasil perhitungan komputer
- Σ Ej adalah *measurement error* dari tiap indikator. *Measurement error* dapat diperoleh dari $1 (standard loading)^2$.

Hasil square standardized loading data:

Verifikasi kel. Refer. =
$$0.954^2 + 0.939^2 + 0.856^2 = 2.525$$

Kampanye Klaim = $0.939^2 + 0.873^2 + 0.871^2 = 2.402$
Rasa Percaya = $0.929^2 + 0.938^2 + 0.897^2 = 2.547$
Intensitas pembelian = $0.910^2 + 0.876^2 + 0.879^2 = 2.368$

Perhitungan variance extract data:

Verifikasi Kelompok Referensi
 =

$$\frac{2.525}{2.525 + 0.474}$$
 =
 0.842

 Kampanye Klaim Kesehatan
 =
 $\frac{2.402}{2.402 + 0.597}$
 =
 0.801

 Rasa Percaya pada Klaim
 =
 $\frac{2.547}{2.547 + 0.452}$
 =
 0.849

 Intensitas Pembelian
 =
 $\frac{2.368}{2.368 + 0.632}$
 =
 0.789

Dari pengukuran *variance extract* data di atas, dapat disimpulkan bahwa nilai *variance extract* semua variabel sudah memenuhi syarat yaitu lebih besar dari 0.50. Dengan demikian model ini dapat diterima.

4.5. Kesimpulan Pengujian Hipotesis

Ada 3 hipotesis yang diajukan. Tabel pengujian hipotesis dalam analisis AMOS adalah sebagai berikut :

Tabel 23.

Estimasi Parameter Regression Weights

			Estimate	S.E.	C.R.	Р
Rasa Percaya Pada_Klaim Kesehatan	<	Kampanye Klaim_Kesehatan	0.456	0.073	6.246	0.000
Rasa Percaya Pada_Klaim Kesehatan	<	Verifikasi_Kelompok Referensi	0.465	0.059	7.893	0.000
Intensitas_Pembelian	<	Rasa Percaya Pada_Klaim Kesehatan	0.971	0.065	14.985	0.000

Sumber: Data Primer yang diolah

H1 : Verifikasi kelompok referensi berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan.

Dari tabel tersebut terlihat bahwa hubungan antara Verifikasi Kelompok Referensi dengan Rasa Percaya pada Klaim Kesehatan ditunjukkan dengan CR sebesar 6.246 yang memenuhi syarat yaitu > 2.00 dan nilai p sebesar 0.000 yang memenuhi syarat yaitu < 0.05. Dengan demikian H1 pada penelitian ini dapat diterima.

H2: Kampanye klaim kesehatan berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan.

Dari tabel tersebut terlihat bahwa hubungan antara Kampanye Klaim Kesehatan dengan Rasa Percaya pada Klaim Kesehatan ditunjukkan dengan CR sebesar 7.893 yang memenuhi syarat yaitu > 2.00 dan nilai p sebesar 0.000 yang memenuhi syarat yaitu < 0.05. Dengan demikian H2 pada penelitian ini dapat diterima.

H3: Rasa percaya konsumen pada klaim kesehatan berpengaruh positif terhadap intensitas pembelian produk makanan berklaim kesehatan

Dari tabel tersebut terlihat bahwa hubungan antara Rasa Percaya pada Klaim Kesehatan dengan Intensitas Pembelian ditunjukkan dengan CR sebesar 14.985 yang memenuhi syarat yaitu > 2.00 dan nilai p sebesar 0.000 yang memenuhi syarat yaitu < 0.05. Dengan demikian H3 pada penelitian ini dapat diterima.

BAB V

KESIMPULAN DAN IMPLIKASI KEBIJAKAN

5.1. Ringkasan Penelitian

Produk makanan dan minuman sekarang ini sangat beragam jenisnya. Perusahaan produk makanan dan minuman lokal saling bersaing untuk menghasilkan produk yang inovatif dan disukai konsumen. Saat ini banyak dipopulerkan bahan pangan yang mempunyai fungsi fisiologis tertentu di dalam tubuh, misalnya untuk menurunkan tekanan darah, menurunkan kadar kolesterol, menurunkan kadar gula darah, meningkatkan penyerapan kalsium, dan lain-lain (Astawan, 2003). Konsep produk makanan dan minuman yang demikian disebut sebagai konsep makanan fungsional (*functional foods*), yang akhir-akhir ini sangat populer di kalangan masyarakat dunia. Diantara produkproduk tersebut, banyak diantaranya mencantumkan klaim kesehatan dalam kemasannya. Menurut Puspa (2002), melalui klaim ini, perusahaan dapat mempromosikan fungsi/nilai tambah dari produk tersebut sehingga penjualan produknya dapat meningkat.

Latar belakang penelitian ini adalah adanya kontradiksi dalam hal rasa percaya konsumen pada klaim kesehatan. Penelitian Ford et al. (1996) menyebutkan bahwa keberadaan klaim kesehatan akan mempengaruhi persepsi konsumen terhadap tingkat kesehatan produk secara positif, begitu pula terhadap sikap, dan harapan mereka terhadap nutrisi produk makanan tersebut. Walau demikian, tampaknya klaim kesehatan dan/atau nutrisi pada label produk dapat juga memacu pencarian informasi, dimana beberapa

konsumen bergantung sepenuhnya pada informasi pada kemasan sedangkan yang lainnya juga memeriksa panel fakta nutrisi.

Penelitian ini menganalisis faktor-faktor yang berpengaruh terhadap rasa percaya konsumen pada klaim kesehatan produk beras Herbal Ponni Taj Mahal di Kota Semarang. Variabel-variabel yang mendukung penelitian ini diambil dari beberapa jurnal penelitian, antara lain: Bhaskaran dan Hardley (2002) dan Wansink dan Cheney (2005). Menurut mereka ada beberapa cara yang dapat dilakukan perusahaan makanan untuk meningkatkan rasa percaya konsumen terhadap klaim kesehatan produk mereka, diantaranya adalah dengan verifikasi dari sumber independen yang dipercaya (kelompok referensi) dan kampanye klaim kesehatan yang dilakukan perusahaan makanan. Selain itu, penelitian ini juga menganalisis pengaruh dari rasa percaya pada klaim kesehatan terhadap intensitas pembelian beras Herbal Ponni Taj Mahal. Jurnal pendukung pengaruh antarvariabel ini antara lain: Ford et al. (1996), Roe et al. (1999), dan Everard dan Galleta (2006).

Berdasarkan telaah pustaka dikembangkan 3 hipotesa yaitu: (1) Verifikasi kelompok referensi berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan, (2) Kampanye klaim kesehatan berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan, (3) Rasa percaya konsumen pada klaim kesehatan berpengaruh positif terhadap intensitas pembelian produk makanan berklaim kesehatan. Hasil penelitian ini diharapkan dapat menjawab rumusan masalah penelitian yaitu bagaimana cara meningkatan rasa percaya konsumen pada klaim kesehatan dalam makanan fungsional yang berdampak pada peningkatan intensitas pembelian.

Dalam penelitian ini data primer diperoleh secara langsung dari responden melalui penyebaran kuesioner pada konsumen beras Herbal Ponni Taj Mahal di Kota Semarang. Kuesioner ini terdiri dari pertanyaan tertutup dan pertanyaan terbuka. Teknik pengambilan sampel yang digunakan adalah *Purposive Sampling*. Pemilihan teknik pengambilan sampel *purposive Sampling* didasarkan pada kriteria responden yang telah ditentukan yaitu konsumen beras Herbal Ponni Taj Mahal yang telah melakukan pembelian lebih dari dua kali.

Jumlah responden yang digunakan dalam penelitian ini adalah minimal 100 orang yang merupakan penduduk Kota Semarang. Teknik analisis yang digunakan adalah *Structural Equation Modeling*. Hasil analisis data yang diperoleh akan menjelaskan hubungan kausalitas antara variabel yang dikembangkan dalam penelitian ini.

Pengukuran konstruk eksogen dan endogen telah diuji dengan menggunakan analisis konfirmatori. Selanjutnya kedua model pengukuran tersebut dianalisis dengan *Structural Equation Modeling* untuk menguji hubungan kausalitas antara variabel yang mempengaruhi dan dipengaruhi rasa percaya pada klaim kesehatan dan yang mempengaruhi intensitas pembelian memenuhi kriteria *goodness of fit* yaitu chi-squares= 62.352, GFI=0.935, AGFI=0.898, TLI=0.992, RMSEA=0.041, CFI=0.994.

Dari Hasil pengolahan data diperoleh nilai *Critical Ratio*(CR) pada hubungan antara variabel verifikasi kelompok referensi dengan variabel rasa percaya pada klaim sebesar 6.246 dengan probabilitas sebesar 0.000, sedangkan nilai *Critical Ratio* (CR) hubungan variabel kampanye klaim kesehatan dan rasa percaya pada klaim sebesar 7.893 dengan probabilitas

0.000. Kemudian nilai *Critical Ratio* variabel rasa percaya pada klaim dan variabel intensitas pembelian adalah 14.985 dengan probabilitas sebesar 0.000.

5.2. Kesimpulan Pengujian Hipotesa Penelitian

Setelah dilakukan penelitian yang menguji tiga hipotesa yang terdapat dalam penelitian ini, maka dapat diambil kesimpulan dari hipotesis-hipotesis tersebut. Kesimpulan peneliti atas ketiga hipotesa dalam penelitian ini akan dijelaskan sebagai berikut:

5.2.1. Verifikasi Kelompok Referensi dan Rasa Percaya pada Klaim Kesehatan

H1: Verifikasi kelompok referensi berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan.

Beras Herbal Ponni Taj Mahal dalam pemasarannya memanfaatkan pernyataan verifikasi dari Australia International Diabetes Institute. Lembaga ini merupakan lembaga kesehatan berskala internasional, independen, serta memiliki bidang keahlian yang langsung berkaitan dengan manfaat beras Herbal Ponni Taj Mahal, yaitu pencegahan/penyembuhan diabetes. Sifat-sifat lembaga ini membuat konsumen beras tersebut semakin mempercayai pernyataan verifikasi AIDI, terbukti dengan besarnya volume penjualan beras tersebut di kota Semarang. Hasil penelitian menunjukkan bahwa responden menganggap pernyataan verifikasi dari lembaga kesehatan yang terkenal lebih dapat dipercaya. Demikian pula dengan pernyataan verifikasi dari lembaga kesehatan yang independen. Penelitian ini juga menunjukan bahwa pernyataan verifikasi dari lembaga kesehatan yang bidang keahliannya berkorelasi dengan klaim kesehatan produk lebih dapat dipercaya kebenarannya. Dari penelitian

yang telah dilakukan dapat disimpulkan bahwa hipotesis yang menyatakan 'Verifikasi kelompok referensi berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan' dapat diterima.

5.2.2. Hubungan Variabel Kampanye Klaim Kesehatan dan Rasa Percaya pada Klaim Kesehatan.

H2: Kampanye klaim kesehatan berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan.

Kampanye juga dilakukan oleh pemasar beras Herbal Ponni Taj Mahal untuk meningkatkan jumlah konsumen. Kampanye yang dilakukannya merupakan kampanye yang bersifat edukatif, yaitu berupa seminar, pameran, dan arisan. Kampanye edukatif ini berhasil memberikan informasi yang memadai dan meningkatkan volume penjualan beras tersebut di kota Semarang. Dengan demikian, kampanye yang dilakukan pemasar beras Herbal Ponni Taj Mahal berhasil meningkatkan rasa percaya konsumen pada klaim produk tersebut. Hasil penelitian ini menunjukan bahwa hipotesa yang berbunyi 'kampanye klaim kesehatan berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan' dapat diterima. Dari hasil penelitian juga diketahui bahwa bentuk kampanye klaim kesehatan berupa kampanye penyembuhan penyakit tertentu dan kampanye kesejahteraan sosial dapat meningkatkan rasa percaya konsumen pada klaim kesehatan produk yang dikampanyekan.

5.2.3. Hubungan Variabel Rasa Percaya pada Klaim Kesehatan dan Intensitas Pembelian

H3: Rasa percaya konsumen pada klaim kesehatan berpengaruh positif terhadap intensitas pembelian produk makanan berklaim kesehatan.

Upaya-upaya pemasaran yang dilakukan oleh pemasar beras Herbal Ponni Taj Mahal, yaitu pemanfaatan verifikasi AIDI dan kampanye edukasi, berhasil meningkatkan volume penjualan produk tersebut di kota Semarang. Dengan demikian dapat dikatakan bahwa upaya-upaya pemasaran tersebut meningkatkan rasa percaya konsumen pada klaim kesehatan beras Herbal Ponni Taj Mahal yang pada akhirnya meningkatkan intensitas pembelian beras tersebut. Peningkatan intensitas pembelian konsumen akan produk tersebut dapat dilihat dari adanya peningkatan minat beli, jumlah konsumsi, dan minat membeli ulang. Hasil penelitian ini menunjukan bahwa hipotesa yang berbunyi 'Rasa percaya konsumen pada klaim kesehatan berpengaruh positif terhadap intensitas pembelian produk makanan berklaim kesehatan' dapat diterima.

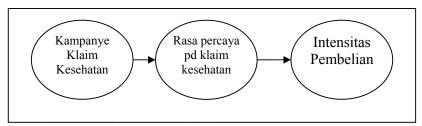
5.3. Kesimpulan dari Masalah Penelitian

Penelitian ini merupakan usaha menjawab masalah penelitian, dimana pada bab I disebutkan bahwa masalah penelitian ini adalah bagaimana cara meningkatan rasa percaya konsumen pada klaim kesehatan dalam makanan fungsional yang berdampak pada peningkatan intensitas pembelian. Dari hasil analisis penelitian didapatkan jawaban atas masalah penelitian yaitu: (1) verifikasi kelompok referensi lebih besar pengaruhnya dalam meningkatkan rasa percaya konsumen, (2) kampanye klaim kesehatan dapat meningkatkan rasa

percaya konsumen namun pengaruhnya tidak sebesar verifikasi kelompok referensi, dan (3) rasa percaya pada klaim kesehatan dapat meningkatkan intensitas pembelian . Proses berlatar belakang verifikasi kelompok referensi ditunjukkan seperti tampak pada gambar 10 berikut:

Gambar 10.

Proses Meningkatkan Intensitas Pembelian Melalui Verifikasi Kelompok
Referensi



Sumber: data primer yang diolah

Hubungan antara kampanye klaim kesehatan, rasa percaya pada klaim kesehatan, dan intensitas pembelian ditunjukkan seperti tampak pada gambar 11 berikut:

Gambar 11.

Proses Meningkatkan Intensitas Pembelian Melalui Kampanye Klaim Kesehatan

Sumber: Data Primer yang diolah

Verifikasi kelompok referensi dalam penelitian ini didefinisikan sebagai pernyataan suatu kelompok yang perspektif, sikap, atau perilakunya dianggap sebagai acuan oleh konsumen (Arnould et al., 2005), yang mendukung kebenaran klaim kesehatan. Menurut Bhaskaran dan Hardley (2002), klaim kesehatan perlu diverifikasi oleh sumber independen dan hanya dengan cara ini

kemudian konsumen akan percaya. Maka, tampaknya konsumen hanya akan mempercayai klaim perusahaan yang dilegitimasi oleh sumber independen (kelompok referensi). Dari hasil analis diketahui bahwa verifikasi dari lembaga kesehatan yang terkenal, independen, dan memiliki bidang keahlian yang berkorelasi dengan klaim kesehatan akan meningkatkan rasa percaya konsumen pada klaim kesehatan.

Kampanye klaim kesehatan yang dimaksudkan dalam penelitian ini adalah salah satu bentuk promosi produk yang dilakukan perusahaan, dalam bentuk kampanye tentang manfaat produk bagi kesehatan konsumen, berkaitan dengan klaim kesehatan yang dicantumkannya. Dari hasil analisis, komponen kampanye klaim kesehatan yang paling penting adalah 'kampanye penyembuhan penyakit tertentu' untuk konsumen. Dari hasil tersebut maka perusahaan sebaiknya lebih banyak melaksanakan kampanye berupa program-program penyembuhan/terapi penyakit sesuai klaim produk.

5.4. Implikasi Teoritis

Berdasarkan model penelitian yang dikembangkan dalam penelitian ini, maka dapat memperkuat konsep-konsep teoritis dan memberikan dukungan empiris terhadap penelitian terdahulu. Literatur-literatur yang menjelaskan tentang pengaruh verifikasi kelompok referensi dan kampanye klaim kesehatan terhadap rasa percaya pada klaim kesehatan telah diperkuat keberadaannya oleh konsep-konsep teoritis dan dukungan empiris mengenai hubungan kausalitas dari variabel-variabel yang mempengaruhi rasa percaya pada klaim kesehatan. Selanjutnya rasa percaya pada klaim kesehatan tersebut akan mempengaruhi

intensitas pembelian produk. Beberapa hal penting yang berhubungan dengan implikasi teoritis dapat dijelaskan sebagai berikut:

- 1. Verifikasi kelompok referensi berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan. Penelitian ini menggunakan indikator popularitas kelompok referensi, independensi kelompok referensi terhadap perusahaan, dan keahlian kelompok referensi (berkaitan dengan klaim kesehatan) untuk mengukur variabel verifikasi kelompok referensi. Hasil penelitian ini secara empiris memperkuat penelitian sebelumnya yang menyatakan bahwa verifikasi kelompok referensi berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan (Bhaskaran dan Hardley, 2002).
- 2. Kampanye klaim kesehatan berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan. Indikator yang digunakan untuk mengukur variabel kampanye klaim kesehatan adalah berupa jenis-jenis kampanye, yaitu: (1) kampanye penyembuhan penyakit tertentu, (2) kampanye pemasaran sosial, dan (3) kampanye edukasi hubungan diet-kesehatan (Wansink dan Cheney, 2005). Hasil penelitian ini secara empiris mendukung penelitian sebelumnya yang menyatakan bahwa kampanye klaim kesehatan berpengaruh terhadap rasa percaya konsumen pada klaim kesehatan (Bhaskaran dan Hardley (2002); Wansink dan Cheney (2005)).
- 3. Rasa percaya pada klaim kesehatan berpengaruh positif terhadap intensitas pembelian produk. Hal tersebut mendukung penelitian sebelumnya yang menyatakan bahwa rasa percaya berpengaruh positif terhadap intensitas pembelian (Everard dan Galleta (2006); Gefen (2000); Donney dan Cannon (1997)).

Tabel 24.
Implikasi Teoritis

No.	Pernyataan	Implikasi Teoritis
1.	Verifikasi kelompok referensi berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan	Secara empiris memperkuat penelitian: Bhaskaran dan Hardley, (2002) yang menyatakan bahwa konsumen akan lebih mempercayai klaim kesehatan bila terdapat verifikasi dari sumber independen yang terpercaya atau disebut sebagai kelompok referensi.
2.	Kampanye klaim kesehatan berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan	Wansink dan Cheney (2005) menyatakan cara lain untuk meningkatkan rasa percaya konsumen terhadap klaim kesehatan adalah dengan kampanye klaim oleh perusahaan makanan. Bhaskaran dan Hardley (2002) menyatakan bahwa kampanye yang ditargetkan berdampak pada perilaku konsumen dan pembeli.
3.	Rasa percaya pada klaim kesehatan berpengaruh positif terhadap intensitas pembelian produk	Ford et al. (1996) menyimpulkan, klaim kesehatan meningkatkan ekspektasi konsumen. Roe et al. (1999) menemukan beberapa bukti bahwa dengan adanya klaim kesehatan konsumen memotong pencarian informasi mereka. Everard dan Galletta (2006) menyatakan rasa percaya konsumen mempengaruhi intensitas pembelian konsumen secara positif. Gefen (2000) menemukan bahwa rasa percaya adalah prediktor yang baik bagi intensitas pembelian. Donney dan Cannon (1997) menyatakan bahwa rasa percaya (trust) adalah order qualifier untuk keputusan pembelian, dimana supaya konsumen melakukan pesanan, mereka harus mempercayai penjualnya terlebih dahulu.

Sumber: Jurnal Penelitian yang relevan dengan penelitian ini.

5.5. Implikasi manajerial

Setiap perusahaan menginginkan produknya sukses di pasaran, tidak terkecuali produk makanan fungsional. Perusahaan makanan fungsional memiliki keunikan tersendiri dalam memasarkan produknya, salah satunya adalah dengan mencantumkan klaim kesehatan pada kemasan depan produknya. Pencantuman klaim kesehatan tersebut tidak dapat dilakukan secara sembarangan, melainkan harus didasari penelitian atau kajian secara ilmiah mengenai manfaat komponen makanan yang diklaimkan. Perusahaan

makanan yang mencantumkan klaim kesehatan pada produknya dengan caracara yang benar (telah melakukan penelitian ilmiah sebelumnya) tentu mengharapkan konsumen mempercayai kebenaran klaim produk mereka dan tidak ingin terkena imbas dari klaim produk lain yang berlebihan atau tidak berdasar ilmiah. Selain itu, perusahaan tentunya mengharapkan bahwa klaim kesehatan pada kemasan produknya akan meningkatkan minat beli konsumen atas produk tersebut.

Setelah pengujian hipotesis serta dimunculkannya implikasi teoritis, selanjutnya perlu dikembangkan kebijakan manajerial yang diharapkan mampu memberikan sumbangan teoritis terhadap praktek manajemen. Implikasi kebijakan dapat diturunkan dari teori yang dibangun dan didasarkan pada penelitian yang telah dilakukan. Teori yang dimaksud adalah bahwa intensitas pembelian suatu produk dapat ditingkatkan melalui verifikasi kelompok referensi dan kampanye klaim kesehatan. Beberapa implikasi kebijakan yang dapat diperoleh dari penelitian ini adalah sebagai berikut:

- 1. Di antara dua cara yang dapat meningkatkan rasa percaya pada klaim kesehatan yang diajukan dalam penelitian ini, verifikasi kelompok referensi memiliki *regression weight* yang lebih besar daripada kampanye klaim kesehatan. Oleh karena itu, perusahaan yang akan melakukan upaya untuk meningkatkan rasa percaya konsumen sebaiknya membuat 'verifikasi kelompok referensi' terlebih dulu disusul kemudian dengan 'kampanye klaim kesehatan'.
- 2. Temuan penelitian untuk variabel intensitas pembelian menunjukkan bahwa (1) *loading factor* yang paling berpengaruh adalah minat beli, (2) sebagian besar (54%) responden penelitian ini membeli beras Herbal Ponni

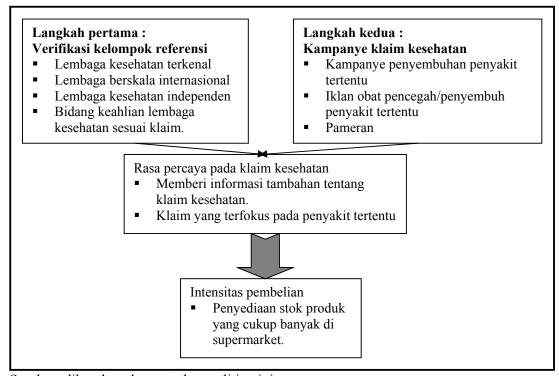
- Taj Mahal sebanyak 2 3 kantong setiap kali pembelian, dan (3) sebanyak 38% responden melakukan pembelian ulang sebulan sekali. Berkaitan dengan temuan tersebut, perusahaan sebaiknya menyediakan stok produk yang cukup banyak di supermarket-supermarket untuk menghindari kekecewaan konsumen akibat kelangkaan produk.
- 3. Responden yang merupakan konsumen beras Herbal Ponni Taj Mahal mempercayai kebenaran klaim kesehatan yang dicantumkan di kemasan depannya. Namun sebagian besar (52%) masih merasa memerlukan informasi tambahan. Perusahaan makanan fungsional sebaiknva memberikan informasi pelengkap kepada konsumen, misalnya dalam bentuk penjelasan klaim di bagian belakang kemasan produk atau booklet/leaflet berisi penjelasan klaim produk Sebagian besar (52%) responden berharap beras Herbal Ponni Taj Mahal dapat menyembuhkan diabetes. Oleh karena itu, sebaiknya perusahaan makanan fungsional membuat klaim yang terfokus pada penyembuhan penyakit tertentu. Indikator 'harapan akan manfaat' ini merupakan loading factor paling berpengaruh untuk variabel rasa percaya pada klaim kesehatan.
- 4. Temuan penelitian menunjukkan bahwa *loading factor* paling berpengaruh untuk variabel 'verifikasi kelompok referensi' adalah 'popularitas kelompok referensi'. Dari jawaban pertanyaan terbuka diperoleh informasi bahwa 91% responden lebih mempercayai pernyataan dari lembaga kesehatan bertaraf internasional dan 51% responden menganggap bahwa adanya ketergantungan antara lembaga kesehatan dan perusahaan akan memperbesar resiko manipulasi uji klinis. Selain itu, responden juga lebih mempercayai lembaga kesehatan yang bidang keahliannya adalah penyakit

diabetes. Hasil penelitian ini menyarankan perusahaan makanan fungsional untuk memanfaatkan verifikasi dari lembaga kesehatan yang terkenal, berskala internasional, independen, dan memiliki bidang keahlian yang bersesuaian dengan klaim kesehatannya. Untuk dapat mengetahui popularitas suatu lembaga kesehatan, perusahaan dapat melakukan riset atau survey konsumen terlebih dulu atau dengan menggunakan referensi yang sudah ada.

5. Berdasarkan hasil penelitian, 'kampanye penyembuhan penyakit tertentu' merupakan *loading factor* yang paling berpengaruh dalam variabel 'kampanye klaim kesehatan'. Oleh karena itu, perusahaan makanan fungsional sebaiknya mengadakan kampanye penyembuhan penyakit tertentu, sesuai dengan manfaat yang diklaimkan. Untuk beras Herbal Ponni Taj Mahal misalnya, kampanye ini dapat dilakukan dengan menciptakan suatu program diet sehat, menggunakan beras tersebut, bagi para penderita diabetes. Kadar gula sebelum dan sesudah menjalani program diet diukur, sehingga dapat memberikan bukti klinis bahwa program tersebut berhasil menurunkan kadar gula darah secara signifikan. Sebanyak 60% responden lebih tergugah dengan iklan obat pencegah/pengobatan diabetes karena menganggap iklan tersebut lebih tepat sasaran dan memberikan informasi langsung tentang cara pencegahan/pengobatan diabetes. Dengan adanya temuan ini perusahaan lebih baik membuat iklan-iklan yang langsung menyoroti manfaat produknya daripada membuat iklan layanan masyarakat. Jika perusahaan ingin mengadakan kampanye edukasi, bentuk edukasi yang paling diminati konsumen adalah pameran karena bersifat santai namun informatif.

Tabel 25. Implikasi Kebijakan Manajerial

No.	Pernyataan	Implikasi Kebijakan Manajerial
1.	-	Perusahaan yang akan melakukan upaya untuk meningkatkan rasa percaya konsumen sebaiknya membuat 'verifikasi kelompok referensi' terlebih dulu disusul kemudian dengan 'kampanye klaim kesehatan'
2.	Verifikasi kelompok referensi berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan	Perusahaan makanan fungsional sebaiknya memanfaatkan verifikasi dari lembaga kesehatan yang terkenal, berskala internasional, independen, dan memiliki bidang keahlian yang bersesuaian dengan klaim kesehatannya. Pemilihan lembaga dapat didasari oleh survey atau referensi tertentu.
3.	Kampanye klaim kesehatan berpengaruh positif terhadap rasa percaya konsumen pada klaim kesehatan	Perusahaan makanan fungsional sebaiknya mengadakan kampanye penyembuhan penyakit tertentu, sesuai dengan manfaat yang diklaimkan. Perusahaan lebih baik membuat iklan-iklan yang langsung menyoroti manfaat produknya daripada membuat iklan layanan masyarakat. Jika perusahaan ingin mengadakan kampanye edukasi, bentuk edukasi yang paling diminati konsumen adalah pameran.
4.	Rasa percaya pada klaim kesehatan berpengaruh positif terhadap intensitas pembelian produk	Perusahaan makanan fungsional sebaiknya memberikan informasi pelengkap klaim kesehatan kepada konsumen. Perusahaan makanan fungsional membuat klaim yang terfokus pada penyembuhan penyakit tertentu. Perusahaan sebaiknya menyediakan stok produk yang cukup banyak di supermarket-supermarket untuk menghindari kekecewaan konsumen akibat kelangkaan produk.


Sumber: dikembangkan untuk penelitian ini.

Selain implikasi manajerial yang telah disajikan diatas, peneliti mengajukan sebuah *framework* atas kebijakan salah satu program promosi yang dapat dilakukan oleh manajer perusahaan makanan fungsional, seperti tampak pada gambar berikut:

Gambar 12.

Framework proses meningkatkan Intensitas Pembelian Produk Makanan

Fungsional

Sumber: dikembangkan untuk penelitian ini.

Dari saran kebijakan diatas diharapkan para manajer khusunya pada perusahaan makanan fungsional dapat memperoleh manfaat dari penelitian ini.

5.6. Keterbatasan penelitian dan Agenda Penelitian Mendatang

5.6.1. Keterbatasan Penelitian

Penelitian ini menganalisis bagaimana meningkatkan intensitas pembelian beras Herbal Ponni Taj Mahal di Kota Semarang. Namun penelitian yang telah dilakukan memiliki keterbatasan-keterbatasan yang dapat diperbaiki atau dikembangkan pada penelitian yang akan datang. Keterbatasan-keterbatasan dalam penelitian ini antara lain:

- Penelitian ini hanya dilakukan pada konsumen beras Herbal Ponni Taj Mahal di Kota Semarang. Diharapkan, penelitian ini nantinya dapat dilakukan di kota besar lainnya, terutama Jakarta, karena permintaan akan beras Herbal Ponni Taj Mahal sangat besar di sana.
- 2. Variabel dan indikator yang digunakan dalam penelitian ini, yaitu hanya empat variabel laten dengan dua belas indikator merupakan salah satu keterbatasan. Berdasarkan hasil analisis data, pengaruh variabel kampanye klaim kesehatan terhadap rasa percaya konsumen tidak terlalu besar (nilai regression weight lebih kecil), sehingga dalam prakteknya pengadaan kampanye ini mungkin saja tidak efektif dalam meningkatkan rasa percaya konsumen pada klaim kesehatan.

5.6.2. Agenda Penelitian mendatang

Penelitian mengenai analisis faktor-faktor yang mempengaruhi rasa percaya pada klaim kesehatan serta pengaruhnya dengan intensitas pembelian masih mungkin untuk dikembangkan lebih lanjut pada penelitian mendatang. Hal-hal yang mungkin dapat dikembangkan tersebut antara lain:

- Pada penelitian selanjutnya dapat dipertimbangkan untuk menambahkan variabel yang dapat mempengaruhi rasa percaya pada klaim kesehatan atau yang dapat dipengaruhi oleh rasa percaya pada klaim kesehatan. Variabel kampanye kesehatan preventif dari pemerintah (Bhaskaran dan Hardley, 2002) dapat menjadi salah satu pilihan.
- Untuk penelitian mendatang sebaiknya dilakukan pada objek yang berbeda baik dari sisi jenis produk, usia maupun lokasi konsumen karena perbedaan tersebut memungkinkan hasil penelitian yang berbeda.

Responden pada penelitian ini sebagian besar berusia antara di atas 40 tahun dengan sebagian besar berprofesi sebagai wirausahawan dan ibu rumah tangga. Pengambilan objek penelitian untuk usia pelajar dan mahasiswa merupakan hal yang menarik karena sikap konsumen pada segmen ini cenderung mudah berubah dan tidak mudah ditebak.

DAFTAR REFERENSI

- Alba, J.W, J.W. Hutchinson, dan J. Lynch. 1991. Memory and Decision Making, dalam Handbook of Consumer Behavior, T.S. Robertson dan H.H. Kassarijan, eds. Prentice Hall, Englewood Cliffs, NJ
- Andrews, J.C., R.G. Netemeyer, dan S. Burton. 1998. Consumer Generalization of Nutrient Content Claims in Advertising. *Journal of Marketing*, 62 (Oktober), 62 75
- Astawan, M. 2003. Pangan Fungsional untuk Kesehatan yang Optimal. Kompas 22 Maret
- Balasubramanian, S dan C. Cole. 2002. Consumers' Search and Use of Nutrition: The Challenge and the Promise of the Nutrition Labelling and Education Act. *Journal of Marketing*, 66 (Juli), 112 27
- Bhaskaran, S dan F. Hardley. 2002. Buyer Beliefs, Attitudes, and Behaviour: Foods with Therapeutic Claims. *Journal of Consumer Marketing*, 19 (7), 591 606
- Bousch. D.M, M. Friestad, dan G.M. Rose. 1994. Adolescent skepticism toward TV advertising and knowledge of advertiser tactics. *Journal of Consumer Research*, 21 (Juni), 167 75
- Calfee, J.E. dan J.K. Pappalardo. 1991. Public Policy Issues in Health Claims for Foods, *Journal of Public Policy & Marketing*, 10 (Spring), 33-53.
- Doney, P.M dan Cannon, J.P. 1997. An examination of the nature of trust in buyer–seller relationships. *Journal of Marketing*, 61 (2), 35–51.
- Everard, A dan D.F. Galletta. 2006. How Presentation Flaws Affect Perceived Site Quality, Trust, and Intention to Purchase from an Online Store. *Journal of Management Information Systems*, 22 (Winter), 55 95
- Feldman, J.M dan J.G. Lynch Jr. 1988. Self-Generated Validity and Other Effects of Measurement on Belief, Attitude, and Behavior. *Journal of Applied Psychology*. 73 (Agustus), 421-35.
- Ferdinand, A. 2002. Structural Equation Modelling dalam Penelitian Manajemen, edisi 2, BP UDIP, Semarang

- Ford, G.T, M. Hastak, A. Mitra, dan D.J. Ringold. 1996. Can Consumers Interpret Nutrition Information in the Presence of a Health Claim? A Laboratory Investigation. *Journal of Public Policy & Marketing*, 15 (Spring), 16 27
- Friestad, M dan P. Wright. 1994. The Persuasion Knowledge Model; How People Cope with Persuasion Attempts. *Journal of Consumer Research*, 11 (Juni), 1-31.
- Gefen, D. 2000. E-commerce: The role of familiarity and trust. *Omega*, 28 (6), 725–737
- Ippolito, P.M dan A.D. Mathios. 1990. Information, Advertising and Health Choices: A Study of the Cereal Market. *RAND Journal of Economics*, 21 (Fall), 459 80
- Ippolito, P.M dan A.D. Mathios. 1991. Health Claims in Food Marketing: Evidence on Knowledge and Behavior in the Cereal Market. *Journal of Public Policy & Marketing*, 10 (Spring), 15 32
- Keller, S.B, M. Landry, J. Olson, A.M. Velliquette, S. Burton, dan J.C. Andrews. 1997. The Effects of Nutrition Package Claims, Nutrition Facts Panels, and Motivation to Process Nutrition Information on Consumer Product Evaluations. *Journal of Public Policy & Marketing*, 16 (Spring), 256 69
- Kottler, P dan K.L. Keller. 2006. Marketing Management 12e. Pearson Education, Inc., Upper Saddle River, NJ
- Kunto, A.A. 2004. Herbal Ponni Taj Mahal: Laris Manisnya Beras Kesehatan. Marketing, 19 (3)
- Moorman, C. 1996. A Quasi Experiment to Assess the Consumer and Informational Determinants of Nutrition Information Processing Activities: The Case of Nutrition Labelling and Education Act. *Journal of Public Policy & Marketing*, 15 (Spring), 28 44
- Prasetia, D. 2003. Analisis Pengaruh Faktor-Faktor Biaya Perolehan Produk terhadap Intensitas Pembelian Pelanggan. Tesis, Magister Manajemen, Universitas Diponegoro, Semarang
- Puspa, J. 2002. Bahan Pangan fungsional ("Functional Foods"): Trend Konsumsi Masa Depan? Makalah internal, University Justus Liebig-Giessen

- Roe, B, A.S. Levy, dan B.M. Derby. 1999. The Impact of Health Claims in Consumer Search and Product Evaluation Outcomes: Results from FDA Experimental Data. *Journal of Public Policy & Marketing*, 18 (Spring), 89 105
- Silverglade, B.A. 1991. A Comment on Public Policy Issues in Health Claim for Foods. *Journal of Public Policy & Marketing*, 10 (Spring), 54 62
- Silverglade, B.A. 1996. The Nutrition Labelling and Education Act Progress to Date and Challenges for the Future. *Journal of Public Policy & Marketing*, 15 (Spring), 148 –50
- Teisl, M.F, A.S. Levy, dan B.M. Derby. 1999. The Effects of Education and Information Source on Consumer Awareness of Diet-Disease Relationships. *Journal of Public Policy & Marketing*, 18 (Fall), 197 – 207
- Wansink, B dan M.M Cheney. 2005. Leveraging FDA Health Claims. *The Journal of Consumer Affairs*, 39 (2), 386 98

Lampiran 1 : Kuesioner

DAFTAR PERTANYAAN

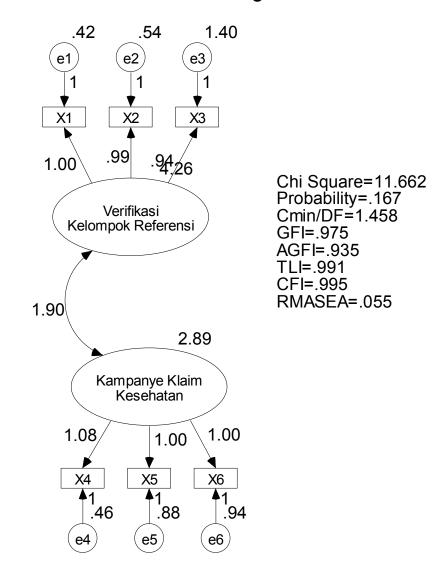
Apakah n perusahaa							sehatan d	<u>lan</u>
1 2	3	4	5	6	7	8	9	10
2. Anda leb bagian/anak Sangat tidak Se	perusahaa					ij Mahal'		
Lembaga lebih terpe		Interna	sional ata	ukah N	asional y	ang me	enurut An	<u></u>
1 2	3	4	5	6	7	8	9	10
tersebut ter Sangat tidak Se						5	Sangat Setu	ıju
lembaga kesel membenarkan 1. Anda le	ini bertuju natan, sepe manfaat oih percay	uan untuk erti: Austr beras "He	mengetal ralia Interr e rbal Pon i	hui baga national I ni Taj M	Diabetes I ahal".	nstitute		ing
Mohon Bapak/ pada salah sat "Sangat Tidak anda pilih berat	u kotak a s setuju" s ti anda ser	ngka 1 sa ampai der nakin setu	nmpai 10. ngan "San iju, dan seb	Angka 1 gat Setu paliknya.	sampai	10 artiny	ya bobot d	lari
2. Apakah me a.	lebih dari s nurut Anda Ada Fidak ada			niliki mar	nfaat kesel	hatan ter	tentu?	
Mohon dilingland 1. Anda telah		• •		Ponni Ta	aj Mahal''	sebanya	ıkkali	
Umur Respond Pendidikan	en :							
Pekerjaan Jenis Kelamin		/ P		•••••			••••	
Nama Respond	en :		•••••	•••••			••••	

							0		14
1	2	3	4	5	6	7	8	9	10
Ber					sebaikny	a mema	<u>anfaatka</u>	n lemba	ga
kese	ehatan ya	ng memi	liki bida	ng keahlia	an apa?				
I.KA	MPANYE	KLAIN	1 KESEI	HATAN					
	ian ini be								
	g dilakuka a percaya						untuk m	eningkatk	an
rasa	a percaya	KUHSUHI	en pada i	namaat be	ias ieiseui	at.			
	ika perusa		_						asa
-	aya Anda		nfaat bera	ıs "Herbal	Ponni Ta	j Mahal"			
ngat 1	tidak Setuj	u					Sa	angat Setu	ıju
1	2	3	4	5	6	7	8	9	1
1							0		
							_		
	ika perus								asa
-	caya Anda tidak Setu		nfaat bera	is "Herbal	Ponni Ta	Mahal"		c. angat Setu	
iigat i	ildak Setuj	,u						angai seii	ւյս
1	2	3	4	5	6	7	8	9	1
	L .				1) !!! !				
	na yang l betes, ata								
	u 2, dan a			iuk pene	cgan/peng	Conatan	ulabetes	. (Jawa)	
ูลเลเ									
atat									••••
					cara pend				
6. J			iai . rasa	percaya A	anda pada	maniaat t		akan naik. angat Seti	
6. J:	rbal Ponni		,				50	angai sen	.ju
6. J:									
6. Ji "He	rbal Ponni tidak Setuj	ju -		5	6	7	8	9	1 1
6. Ji	rbal Ponni		4	5	6	7	8	9	10
6. J. "He ngat t	erbal Ponni tidak Setuj	3	4				8	9	10
6. Ji "He ngat t	rbal Ponni tidak Setuj 2	3 endidika	4	ng paling	Anda mi		8	9	10
6. J. "He ngat to 1	erbal Ponni tidak Setuj	3 endidika	4 an apa ya	ng paling			8	9	10

IV. RASA PERCAYA PADA KLAIM KESEHATAN

	dak Setuj	u					S	angat Set	uju
1	2	3	4	5	6	7	8	9	10
Apal	kah Anda	a merasa	tidak m	emerluk	an inform	nasi tamb	ahan?		
 8 Se	 talah ma	lihat tuli		faat kese	hatan di l	zemasan	denan A	nda sama	
yakir	n bahwa b	eras "He			ıhal" bergi		esehatan	Anda.	
	dak Setuj			_				angat Set	
1	2	3	4	5	6	7	8	9	10
Man	faat kese	hatan se	perti apa	a yang A	nda haraj	pkan?			
					sehatan d				kan
	y arankar dak Setuj		ain untuk	k membel	i beras "H	lerbal Pon		ahal" angat Set	uju
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
		3 S PEMB		5	6	7	8	9	10
INTI B	ENSITAS	S PEMB	ELIAN an untuk	mengeta	hui sebera	apa besar	intensita	as pembe	lian
INTI B	ENSITAS	S PEMB	ELIAN an untuk	mengeta		apa besar	intensita	as pembe	lian
INTI B da sete	ENSITAS Bagian ini elah melil	S PEMBli bertujua	ELIAN nn untuk n klaim l	mengeta kesehatar	hui sebera n dalam ke	apa besar emasan pi	intensita	as pembe	lian atan
INTI B da sete sebut. 10. S mina	ENSITAS Bagian ini Belah melil Betelah m	S PEMBli bertujua hat tulisa elihat tul	ELIAN an untuk n klaim l	mengeta kesehatar	hui sebera	apa besar emasan pi	intensita roduk ber depan, se	as pemberas keseha	lian atan
INTI B da sete sebut. 10. S mina	ENSITAS Bagian ini Belah melil Betelah m	S PEMBli bertujua hat tulisa elihat tul	ELIAN an untuk n klaim l	mengeta kesehatar	hui sebera dalam ke	apa besar emasan pi	intensita roduk ber depan, se	as pembe	lian atan
INTI B da sete sebut.	ENSITAS Bagian ini Belah melil Betelah m	S PEMBli bertujua hat tulisa elihat tul	ELIAN an untuk n klaim l	mengeta kesehatar	hui sebera dalam ke	apa besar emasan pi	intensita roduk ber depan, se	as pemberas keseha	lian atan esar
INTI B da sete sebut. 10. S mina ngat ke 11. S	ENSITAS Bagian initial delah melili Betelah m at anda ur ecil 2	S PEMBli bertujua hat tulisa elihat tulintuk mem 3 melihat tu	ELIAN an untuk n klaim l isan man ibeli bera 4	mengeta kesehatar nfaat kese s "Herba	chui sebera dalam ke ehatan di l l Ponni Ta	apa besar emasan pi kemasan di Mahal'''.	intensitated depan, see	as pemberas keseha berapa be Sangat be 9	lian etan esar esar 10
INTI B da sete sebut. 10. S mina ngat ke 11. S mem	ENSITAS Bagian initial delah melili Betelah m at anda ur ecil 2	S PEMBli bertujua hat tulisa elihat tulintuk mem 3 melihat tu	ELIAN an untuk n klaim l isan man ibeli bera 4	mengeta kesehatar nfaat kese s "Herba	hui sebera n dalam ke ehatan di l l Ponni Ta	apa besar emasan pi kemasan di Mahal'''.	intensitated depan, see	as pemberas keseha berapa be Sangat be 9	lian etan esar esar 10
INTI B da sete sebut. 10. S mina ngat ke 11. S memikg).	ENSITAS Bagian initial delah melili Betelah m at anda ur ecil 2	S PEMBli bertujua hat tulisa elihat tulintuk mem 3 melihat tu s "Herba	ELIAN an untuk n klaim l isan man ibeli bera 4	mengeta kesehatar nfaat kese s "Herba	chui sebera dalam ke ehatan di l l Ponni Ta	apa besar emasan pi kemasan di Mahal'''.	depan, se	as pemberas keseha berapa be Sangat be 9	lian etan esar esar 10 kan g (5
INTI B da sete sebut. 10. S mina ngat ke 11. S memikg).	ENSITAS Bagian initial delah melili Betelah m at anda ur ecil 2 Setelah n beli bera	S PEMBli bertujua hat tulisa elihat tulintuk mem 3 melihat tu s "Herba	ELIAN an untuk n klaim l isan man ibeli bera 4	mengeta kesehatar nfaat kese s "Herba	chui sebera dalam ke ehatan di l l Ponni Ta	apa besar emasan pi kemasan di Mahal'''.	depan, se	as pemberas keseha berapa be Sangat be 9 Anda a	lian esar esar 10 kan g (5

12. Setelah melihat tulisan klaim kesehatan di kemasan dep membeli lagi jika persediaan beras "Herbal Ponni Taj Mahal" habis. Sangat tidak Setuju	
1 2 3 4 5 6 7 8	9 10
Kira-kira berapa lama jangka waktu Anda melakukan pe beras "Herbal Ponni Taj Mahal"?	mbelian ulang


Lampiran 2 : Data Mentah

X1	X2	Х3	X4	X5	X6	X7	X8	Х9	X10	X11	X12	
7	7	7	7	6	8	7	7	7	9	7	9	
8	8	7	7	7	8	8	8	8	6	8	7	
9	8	10	8	7	7	8	8	10	9	9	9	
8	8	10	8	6	9	7	8	8	6	7	8	
6	7	8	9	7	9	7	7	7	9	7	7	
9	9	10	5	7	7	7	9	9	7	7	6	
9	8	8	9	6	7	7	8	8	8	8	9	
5	4	7	9	9	10	7	7	6	6	8	8	
8	9	9	7	7	6	7	8	7	8	7	9	
8	9	7	9	9	8	8	9	9	8	8	9	
8	8	9	7	6	8	7	9	7	7	8	7	
8	7	8	8	8	8	7	7	8	8	6	7	
9	8	7	8	6	8	9	9	6	8	7	6	
8	7	7	8	7	9	8	8	8	8	8	8	
10	10	10	5	5	7	10	10	10	9	8	10	
7	8	6	7	6	8	5	6	5	6	6	8	
8	9	9	6	6	5	9	9	9	6	8	9	
8	9	10	8	7	8	10	10	10	8	6	9	
7	6	5	9	9	8	9	8	7	7	6	8	
3	2	3	4	5	2	5	4	5	4	5	6	
3	2	2	1	3	4	1	2	3	1	1	1	
4	4	4	6	6	6	6	6	6	6	5	6	
5	6	5	5	6	5	4	4	5	4	6	6	
9	10	9	5	5	6	9	8	8	10	10	10	
8	8	10	3	2	5	10	9	9	10	10	10	
6	5	4	6	5	7	5	4	6	4	4	5	
6	4	4	6	5	6	5	7	7	5	4	6	
5	5	6	5	5	6	5	4	4	6	6	6	
5	5	5	5	6	7	7	6	6	5	6	4	
1	1	3	1	1	2	1	1	2	1	2	2	
6	5	4	5	4	4	4	6	5	5	6	5	
5	5	4	6	4	7	5	4	5	6	5	5	
7	8	8	5	4	6	8	8	7	7	8	9	
6	5	4	5	5	7	5	6	6	4	5	6	
4	5	4	4	4	5	6	6	6	6	5	4	
5	6	5	5	4	5	6	5	6	5	4	5	
2	2	3	2	1	2	3	3	2	1	1	2	
8	8	7	8	9	8	10	10	10	8	9	9	
6	6	5	4	5	4	6	5	5	6	5	5	
8	8	10	8	7	7	10	8	7	8	7	9	
8	7	9		9	9	8		7	7	7	7	
7	7	8	8 8 7 7 9 8 7	8	9		8 8 9 8 9 7 8 7		8	7		
7 9	7 7	8 9 8 7 7 8 7	7	6	9 6	9 9 8 9 7 8 7	9	9	9	7 8	9	
9	10	8	7	8	8	8	8	7	8	8	7	
9 7 7	6	7	9	8 9 7 7 7 7	8 9 9 6	9	9	7	8	8 8 7 7 8 8 8	9	
7	6 7	7	8	9	9	7	7	7	7	7	7	
9	9	8	7	7	6	8	8	7	8	7	8	
8	7	7	7	7	7	7	7	8	8	8	7	
8	8	8		7	8	8	9	8	8	8	8	
9 8 8 6	8 7	8 7	6 6 3	7	8 7 4	7	9 7	7	8	8	8	
1	3	1	3	4	4	2	3	3	5	7	6	
9	3 8	7	6	6	7	8 7 2 7	6	8 9 7 7 7 7 8 8 7 3 7	7	7	8	
5	4	4	9	8	7 8	6	6	7	9	7 8	8	
9 5 5 6	4	7 4 5 5	9 4	8 4 6	4	4	6 5 5	4	9 8 8 7 8 8 8 8 5 7 9 4 7	6	8 9 7 9 7 8 7 8 8 6 8 8 5	
6	7	5	4	6	6	4 5	5	6	7	6	5	

7	8	7	6	5	5	6	5	6	7	5	6	
6	7	7	5	4	5	4				5		
	4	2	6	6			5 4	5 5	4 5		5 4	
2		3			6	4				5		
6	8	7 5 8	6	9 9	8	6	7	6	7	6	7	
6	6	5	7	9	9	6	6	7	8	6	7	
6	7	8	6	7	7	5	6	6	5	5	6	
8	7	8	4	5	4	6	7	6	5 8	7	8	
0		8		7	7	8	9	9	7	7 9	0	
9	9 5		6		7 5	0				9	9	
4		4	4	4	5	9	10	9	8	10	10	
2 3	2	3	5	6	7	6	6	7	6	8 2 7	8 3	
3	3	2 3	5	5	6	5	4	5	3	2	3	
3	2	3	6	6	7	9	8	10	7	7	6	
7	6	8	6	7	6	9 7	6	7	7	8	7	
		4	6 5	6	4	7		,	3 7 7 5	8	1	
6	4	4	3	0	4	,	6	6	3	4	4	
5 6	4	5 7	4	5 7	6	5 7	5 8	4	4	5 8	4	
6	7		6	7	7		8	7	6	8	8	
3	2	3	4	5	2	5	4	5	4	5	6	
3	2	2	5	4	2 4	1	2	3	1	1	1	
4	4	4	6	6	6	6	6	6	6		6	
4				5	2					5 6		
5 5	6	6	4	5	3 6	4	4	5	4	6	6	
5	4	3	4	5	6	4	5	6	4	2	6	
5	6	6	6	5 5 5 7	7	6	5	4	5 7	2 6	5 5 7	
5	4	4	7	7	6	6	6	6	7	6	5	
5 2	1	2	8	7	8	8	10	9	6	7	7	
4	I E	4		-	5				5	(
	5	4	6	5	5	6	5	6	5 6	6	6	
7	7	6	8	7	7 5 6	8 5 5	9	8	6	9	7	
4	5	5	4	5	5	5	6	6	5 5	3	6	
5	6	8	5	5	6	5	6	5	5	4	6	
8	8	9	4	4	5	10	9	9	10	10	9	
	5			4	5		5		6	2	5	
4	5	6	5	4	5 3	4	5	6	6 2 10	2 3	5 2 9 6	
4	4	1	1	2	3	1	1	1	2	3	2	
6	6	6	6	6	6	6	5	6	10	6	9	
5	7	5	4	4	5	4	6	6	6	5	6	
5 2	2	1	2	1	2	3	3	2	1	5 5	2	
8	8	9	8		8	10	10	10		9	9	
6	6	5	4	9 5	4			5	8 6	9 5	9 5	
0	0			3	4	6	5		0	3	3	
2 6	2 4	1	3 5	3	3 5	3 5	1	1	2 6	2 6	2 5	
		5		6	5	5	5	4	6		5	
6	4	6	6	4	6	5	5	5	5	6	5	
5	5	5	4	6	4	5	4	6		6	6	
1	1	1		1	3	2		1	5 2	3	2	
4	5	6	2 5	4	3 6	2 5	2 5	5	6	3 5	2 6	
4	<i>3</i>	0	2			0	<i>3</i>	<i>S</i>		0	O C	
8	9	8	2	2	2	9	9	9	9	8	9	
5	6 2 4	8 6 2 5 5 8 7 7 3 5 3 4	2 5 2 2 4	2 5 1	2 5 2 2 4	6 2 9	5 1	4	9 6 2 7	8 5 2 6	5 1 5 6 8 2 2 2 7 4	
1	2	2	2		2	2	1	2	2	2	1	
	4	5	2	1	2	9	8	2 8	7	6	5	
3 5	7	5	4	6	4	5	6	4	6	5	6	
0	8	9	4	8	4	6	6 5 7 7 2 6 3 6	5	5	5 7 4	o o	
9 6	0	0		0	4	6	<i>5</i>	5 6	J A	1	0	
6	6	/	4	6	4	/	/		4	4	2	
6	7	7	4	5	4	7	7	6	3	4	2	
1	2	3	3 5 4	3	3 6 4	3	2	3	2	1	2	
7	5	5	5	6	6	5	6	5	7	6	7	
1 7 1	2	3	4	5	Ā	2	3	2	2	6 1	4	
ı .	6 7 2 5 2 4) /1	7	<i>5</i>	-	7 7 3 5 2 7	6	6 3 5 2 4	<u> </u>		-	
5			7	3	6	,		4	0	3	0	
4	5	6 8 5	4	5 3 6 5 5 5 6	5	4	4	5 5	6 5 4 3 2 7 2 6 3 6	5	5	
7 5	9	8	5		5	9	6	5	6	7	8	
5	5	5	3		2	5	7	6	5	5	4	
4	5 9 5 5	4	4 5 3 3 7	3 5	5 5 2 4	9 5 5	6	2	5 3 5	5 5 7 5 2 5	6 5 8 4 3 7	
5	6	6	7	6	6	6	4	2 5	5	5	7	
ی	υ	U	/	υ	O	O	4	3	3	J	/	

7 8		6	5	1	2	3	4	2	4	3
7 8	7 7	6 8	5 7	4 6	2 8	10	6	3 7	8	
6 5	4	4	5	4	6	4	5	5	5	9 7
6 5 2 2	2	3	3	2	2	1	3	3	3	3
2 2 4	2 5	5	6	2 6	3 5 5	2 5	7	6	5	4
3 4	4	3		4	5	6	3	6	5	4
5 4		6	3 7	8	6	5	6	6	5 5 7	7
3 4 5 4 2 4 7 5	3	6	8	8	5	5 5	6	4	5	5
7 5	7	4	3	4	4	7	7	4	5	6
5 5	5	5	3 7	4	6	6	8	7	10	
4 4	6	6	6	5 5	7	7	6	6	6	6
6 6	4	7	5	6	5	4	5	5	6	7 5
	4 6	5	3 7	6	6		4	5	6 6	3 7
6 7 5 5	5	2	4	2	3	4 2	3	2	4	7 5
6 7 5 5 8 7	9	9	8	5 2 6	8	7	10	6	8	7
6 7	5	6	7	5	4	5	7	6	4	5
4 5	4	4	4	5 5		6	6	7	4	4
4 5	3		4	4	6	2	4	3	2	4
	5	2 5	6	4	5 7	7	5	7	2 4	4
5 6 4 3	6	5	7	4	6	2 7 5 5	6		1	
4 3 6 7	7	6	5	7	4	5	6	5 7	4 2 2 2 3 2 6	2 6
4 5	6	3	5	7	3	4	4	4	2	6
3 3	5	3 2 4	5 2 3 1	4	3 3 5	6	5	5	2	
3 3 4 5	8	4	3	6	5	4	4	6	3	7
6 6	9	2	1	2	3			1	2	6 7 3 4
6 6 5	9 7	2 4	5	2 3	3 6	2 6	3 7	5	6	4
6 5	6	3	5 3	1	2	3	2	3	4	3
4 5 3 3 4 5 6 6 7 5 6 5 5 5	6	3 8	9	10	2 9 2 6	8	2 7		10	10
5 5 1	2	5	4	5	$\hat{2}$	3	3	9 2 6	2	6
5 6	2	5	6	5 7	6	5	3 7	6	5	6
5 6 5	2 2 6	9	7	6	8	9	8	7	2 5 6	5
10 10	7	4	5	6	9	3 8 3 5 9 8 5	6	6	8	6 5 8 5
5 4	8	4	5	6	9 5	5	6	5	8 5	5
4 5	7	6	7	5	5	6	5	6	6	5
8 8		8	9	7	9	8	8	7	9	8
5 4		6	7	6	4	6	6	5	6	5
9 9		8	8	8	9	8	7	7	8	6

Confirmatory Factor Analysis Konstruk Eksogen

Lampiran 3B: Output Tabel Konstruk Eksogen

Your model contains the following variables

X1	observed	endogenous
X2	observed	endogenous
X3	observed	endogenous
X6	observed	endogenous
X5	observed	endogenous
X4	observed	endogenous
e1	unobserved	exogenous
Verifikasi_Kelompok Referensi	unobserved	exogenous
e2	unobserved	exogenous
e3	unobserved	exogenous
e6	unobserved	exogenous
Kampanye Klaim_Kesehatan	unobserved	exogenous
e5	unobserved	exogenous
e4	unobserved	exogenous

Number of variables in your model: 14 Number of observed variables: 6 Number of unobserved variables: 8 Number of exogenous variables: 8 Number of endogenous variables: 6

Summary of Parameters

· ·	Weights	Covariances	Variances	Means	Intercepts	Total
Fixed	8	0	0	0	0	8
Labeled	0	0	0	0	0	0
Unlabeled	4	1	8	0	0	13
Total	12	1	8	0	0	21

The model is recursive.

Sample size = 151

Computation of degrees of freedom

Number of distinct sample moments = 21 Number of distinct parameters to be estimated = 13 Degrees of freedom = 21 - 13 = 8

Minimum was achieved

Chi-square = 11.662 Degrees of freedom = 8

Probability level = 0.167

Assessment of normality

	min	max	skew	c.r.	kurtosis	c.r.
X4	1.000	9.000	-0.016	-0.080	-0.585	-1.467
X5	1.000	9.000	-0.313	-1.570	-0.062	-0.156
X6	1.000	10.000	-0.153	-0.768	-0.524	-1.315
X3	1.000	10.000	-0.104	-0.520	-0.696	-1.747
X2	1.000	10.000	-0.155	-0.779	-0.617	-1.547
X1	1.000	10.000	-0.222	-1.112	-0.533	-1.337
Multiv	ariate				-1.164	-0.730

Observations farthest from the centroid (Mahalanobis distance)

Observation Mahalanobis

number	d-squared	p1	p2
103	17.586	0.007	0.672
146	13.637	0.034	0.966
25	13.237	0.034	0.939
139	13.155	0.037	0.866
149	13.140	0.041	0.743
86	12.653	0.041	0.752
122	12.574	0.050	0.641
8	12.026	0.061	0.715
134	12.012	0.062	0.713
21	11.846	0.065	0.532
98	11.602	0.003	0.519
79	11.536	0.071	0.426
136	11.511	0.073	0.324
147	11.477	0.075	0.239
138	11.380	0.073	0.191
59	11.279	0.080	0.154
144	11.075	0.086	0.155
129	10.893	0.092	0.152
7	10.735	0.097	0.132
145	10.224	0.116	0.292
141	9.428	0.110	0.691
140	9.374	0.154	0.641
20	9.343	0.155	0.573
72	9.343	0.155	0.484
4	8.875	0.181	0.718
15	8.765	0.187	0.714
148	8.682	0.192	0.694
5	8.602	0.197	0.673
142	8.512	0.203	0.662
30	8.462	0.206	0.622
51	8.441	0.208	0.559
<i>-</i> 1	0.111	0.200	0.55)

123	8.355	0.213	0.547
96	8.195	0.224	0.597
6	8.042	0.235	0.643
89	8.027	0.236	0.581
58	7.974	0.240	0.550
13	7.920	0.244	0.519
94			
	7.905	0.245	0.457
100	7.721	0.259	0.542
43	7.435	0.283	0.713
102	7.428	0.283	0.653
69	7.411	0.285	0.599
126		0.300	
	7.228		0.690
10	7.193	0.303	0.655
101	7.155	0.307	0.622
53	7.114	0.310	0.591
60	7.105	0.311	0.531
		0.311	0.534
150	7.028		
115	6.904	0.330	0.585
41	6.824	0.337	0.595
65	6.822	0.338	0.529
137	6.814	0.338	0.469
116			
	6.776	0.342	0.439
108	6.771	0.343	0.378
32	6.765	0.343	0.320
107	6.600	0.359	0.415
143	6.521	0.367	0.429
37	6.436	0.376	0.451
132	6.376	0.382	0.447
19	6.361	0.384	0.397
27	6.282	0.392	0.415
111	6.204	0.401	0.432
34	6.136	0.408	0.441
76	6.023	0.421	0.499
24	5.932	0.431	0.535
128	5.902	0.434	0.504
18	5.875	0.437	0.468
3	5.839	0.441	0.444
		0.441	
106	5.785		0.441
44	5.733	0.454	0.435
40	5.716	0.456	0.391
16	5.633	0.466	0.421
93	5.563	0.474	0.438
121	5.526	0.478	0.418
109	5.488	0.483	0.398
67	5.485	0.483	0.340
73	5.439	0.489	0.331
88	5.415	0.492	0.299
26	5.363	0.498	0.297
62	5.282	0.508	0.327
118	5.252	0.512	0.302
52	5.222	0.516	0.277
55	5.183	0.521	0.263
14	5.101	0.531	0.203
130	5.028	0.540	0.317

31	4.991	0.545	0.301
45	4.930	0.553	0.311
17	4.891	0.558	0.298
92	4.888	0.558	0.246
84	4.848	0.563	0.235
83	4.699	0.583	0.344
104	4.613	0.594	0.387
9	4.587	0.598	0.357
75	4.545	0.603	0.347
90	4.490	0.611	0.353
33	4.387	0.624	0.422
70	4.364	0.628	0.388
125	4.330	0.632	0.368
56	4.185	0.652	0.497
127	4.165	0.654	0.457

Minimization History

	•
Iteration	Discrepancy
0	830.230
1	270.070
2	137.346
3	55.314
4	23.969
5	12.811
6	11.678
7	11.662
8	11.662

Regression Weights

			Estimate	S.E.	C.K.	P	Label
X2	<	Verifikasi_Kelompok Referensi	0.990	0.045	22.082	0.000	par-1
X5	<	Kampanye Klaim_Kesehatan	0.996	0.069	14.517	0.000	par-2
X1	<	Verifikasi Kelompok Referensi	1.000				
X3	<	Verifikasi Kelompok Referensi	0.935	0.056	16.613	0.000	par-4
X4	<	Kampanye Klaim Kesehatan	1.080	0.067	16.092	0.000	par-5
X6	<	Kampanye Klaim Kesehatan	1.000				-

Standardized Regression Weights

			Estimate
X2	<	Verifikasi_Kelompok Referensi	0.941
X5	<	Kampanye Klaim_Kesehatan	0.875
X1	<	Verifikasi Kelompok Referensi	0.954
X3	<	Verifikasi_Kelompok Referensi	0.852
X4	<	Kampanye Klaim_Kesehatan	0.938
X6	<	Kampanye Klaim Kesehatan	0.869

Covariances

Correlations

Variances

	Estimate	S.E.	C.R.	P	Label
Verifikasi_Kelompok Referensi	4.256	0.548	7.767	0.000	par-6
Kampanye Klaim_Kesehatan	2.889	0.439	6.583	0.000	par-7
e1	0.419	0.116	3.602	0.000	par-8
e2	0.540	0.120	4.487	0.000	par-9
e3	1.404	0.189	7.426	0.000	par-10
e6	0.936	0.145	6.470	0.000	par-11
e5	0.877	0.140	6.270	0.000	par-12
e4	0.456	0.122	3.737	0.000	par-13

Squared Multiple Correlations

Estimate
X4 0.881
X5 0.766
X6 0.755
X3 0.726
X2 0.885
X1 0.910

Sample Covariances - Estimates

	X4	X5	X6	X3	X2	X1
X4	3.823	3.106	3.123	1.889	1.849	2.178
X5	3.106	3.745	2.873	1.649	1.856	2.044
X6	3.123	2.873	3.824	1.764	1.806	1.924
X3	1.889	1.649	1.764	5.125	3.978	3.954
X2	1.849	1.856	1.806	3.978	4.709	4.211
X1	2.178	2.044	1.924	3.954	4.211	4.675

Sample Correlations - Estimates

	X4	X5	X6	X3	X2	X1
X4	1.000	0.821	0.817	0.427	0.436	0.515
X5	0.821	1.000	0.759	0.376	0.442	0.488
X6	0.817	0.759	1.000	0.399	0.426	0.455
X3	0.427	0.376	0.399	1.000	0.810	0.808
X2	0.436	0.442	0.426	0.810	1.000	0.897
X1	0.515	0.488	0.455	0.808	0.897	1.000

Sample covariance Matrix Sample correlation Matrix

Determinant 25.769	Condition number 43.206
Condition number	Eigenvalues 3.962
41.407	1.318
Eigenvalues	0.259
17.260	0.204
5.565	0.164
1.145	0.092
0.863	
0.651	
0.417	

All Implied Covariances - Estimates

-	Kampanye Klaim_Kesehatan	Verifikasi_Kelompok Referens	i X4	X5	X6	X3	X2	X1
Kampanye Klaim_Kesehatan	2.889	1.903	3.118	2.878	2.889	1.779	1.884	1.903
Verifikasi_Kelompok Referensi	1.903	4.256	2.055	1.896	1.903	3.980	4.212	4.256
X4	3.118	2.055	3.823	3.107	3.118	1.921	2.033	2.055
X5	2.878	1.896	3.107	3.745	2.878	1.773	1.877	1.896
X6	2.889	1.903	3.118	2.878	3.824	1.779	1.884	1.903
X3	1.779	3.980	1.921	1.773	1.779	5.125	3.939	3.980
X2	1.884	4.212	2.033	1.877	1.884	3.939	4.709	4.212
X1	1.903	4.256	2.055	1.896	1.903	3.980	4.212	4.675

All Implied Correlations - Estimates

-	Kampanye Klaim_Kesehatan	Verifikasi_Kelompok Referens	i X4	X5	X6	X3	X2	X1
Kampanye Klaim_Kesehatan	1.000	0.543	0.938	0.875	0.869	0.462	0.511	0.518
Verifikasi_Kelompok Referensi	0.543	1.000	0.509	0.475	0.472	0.852	0.941	0.954
X4	.938	0.509	1.000	0.821	0.816	0.434	0.479	0.486
X5	0.875	0.475	0.821	1.000	0.761	0.405	0.447	0.453
X6	0.869	0.472	0.816	0.761	1.000	0.402	0.444	0.450
X3	0.462	0.852	0.434	0.405	0.402	1.000	0.802	0.813
X2	0.511	0.941	0.479	0.447	0.444	0.802	1.000	0.898
X1	0.518	0.954	0.486	0.453	0.450	0.813	0.898	1.000

Implied Covariances - Estimates

	X4	X5	X6	X3	X2	X1
X4	3.823	3.107	3.118	1.921	2.033	2.055
X5	3.107	3.745	2.878	1.773	1.877	1.896
X6	3.118	2.878	3.824	1.779	1.884	1.903
X3	1.921	1.773	1.779	5.125	3.939	3.980
X2	2.033	1.877	1.884	3.939	4.709	4.212
X1	2.055	1.896	1.903	3.980	4.212	4.675

Implied Correlations - Estimates

	X4	X5	X6	X3	X2	X1
X4	1.000	0.821	0.816	0.434	0.479	0.486
X5	0.821	1.000	0.761	0.405	0.447	0.453
X6	0.816	0.761	1.000	0.402	0.444	0.450
X3	0.434	0.405	0.402	1.000	0.802	0.813
X2	0.479	0.447	0.444	0.802	1.000	0.898
X1	0.486	0.453	0.450	0.813	0.898	1.000

Residual Covariances

	X4	X5	X6	X3	X2	X1
X4	0.000	-0.002	0.004	-0.032	-0.185	0.123
X5	-0.002	0.000	-0.005	-0.124	-0.021	0.148
X6	0.004	-0.005	0.000	-0.015	-0.077	0.020
X3	-0.032	-0.124	-0.015	0.000	0.039	-0.026
X2	-0.185	-0.021	-0.077	0.039	0.000	-0.001
X1	0.123	0.148	0.020	-0.026	-0.001	0.000

Standardized Residual Covariances

	X4	X5	X6	X3	X2	X1
X4	0.000	-0.004	0.011	-0.082	-0.481	0.322
X5	-0.004	0.000	-0.014	-0.322	-0.055	0.393
X6	0.011	-0.014	0.000	-0.039	-0.203	0.054
X3	-0.082	-0.322	-0.039	0.000	0.077	-0.051
X2	-0.481	-0.055	-0.203	0.077	0.000	-0.003
X1	0.322	0.393	0.054	-0.051	-0.003	0.000

Factor Score Weights - Estimates

	X4	X5	X6	X3	X2	XI
Kampanye Klaim_Kesehatan	0.452	0.217	0.204	0.005	0.015	0.019
Verifikasi_Kelompok Referensi	0.019	0.009	0.009	0.129	0.356	0.464

Total 1	Effects - Estimates	
	Kampanye Klaim_Kesehatan	Verifikasi_Kelompok Referensi
X4	1.080	0.000
X5	0.996	0.000
X6	1.000	0.000
X3	0.000	0.935
X2	0.000	0.990
X1	0.000	1.000

Standardized Total Effects - Estimates

	Kampanye Klaim_Kesehata	an Verifikasi_Kelompok Referensi
X4	0.938	0.000
X5	0.875	0.000
X6	0.869	0.000
X3	0.000	0.852
X2	0.000	0.941
X1	0.000	0.954

Direct Effects - Estimates

	Kampanye Klaim_Kesehatar	Nerifikasi_Kelompok Referensi
X4	1.080	0.000
X5	0.996	0.000
X6	1.000	0.000
X3	0.000	0.935
X2	0.000	0.990
X1	0.000	1 000

Standardized Direct Effects - Estimates								
	Kampanye Klaim_Kesehatan	Verifikasi_Kelompok Referensi						
X4	0.938	0.000						
X5	0.875	0.000						
X6	0.869	0.000						
X3	0.000	0.852						
X2	0.000	0.941						
X1	0.000	0.954						

Indirect Effects - Estimates

	Kampanye Klaim_Kesehatan	Verifikasi_Kelompok Referensi
X4	0.000	0.000
X5	0.000	0.000
X6	0.000	0.000
X3	0.000	0.000
X2	0.000	0.000
X1	0.000	0.000

Standardized Indirect Effects - Estimates

Kampanye Klaim_	_Kesehatan	Verifikasi_	Kelompok Referensi
0.000		0.000	

Λ4	0.000	0.000
X5	0.000	0.000
X6	0.000	0.000
X3	0.000	0.000
X2	0.000	0.000
X1	0.000	0.000

Modification Indices

Covariances: M.I. Par Change

e2 <--> e4 6.696 -0.182

Variances: M.I. Par Change

Regression Weights: M.I. Par Change

Covariances among Estimates

	par-1	par-2	par-3	par-4	par-5	par-6	par-7p	ar-8	par-9	par-10	par-11	par-12	par-13
par-1	0.002	0.000	-0.002	0.001	0.000	-0.008	0.000	0.002	-0.002	-0.001	0.000	0.000	0.000
par-2	0.000	0.005	-0.005	0.000	0.003	0.000	-0.014	0.000	0.000	0.000	0.002	-0.002	0.000
par-3	-0.002	-0.005	0.127	-0.002	-0.005	0.123	0.100	-0.004	0.004	0.002	-0.003	0.000	0.003
par-4	0.001	0.000	-0.002	0.003	0.000	-0.007	0.000	0.002	-0.001	-0.002	0.000	0.000	0.000
par-5	0.000	0.003	-0.005	0.000	0.005	0.000	-0.016	0.000	0.000	0.000	0.003	0.001	-0.003
par-6	-0.008	0.000	0.123	-0.007	0.000	0.300	0.048	-0.011	0.008	0.004	0.000	0.000	0.000
par-7	0.000	-0.014	0.100	0.000	-0.016	0.048	0.193	0.000	0.000	0.000	-0.009	0.000	0.005
par-8	0.002	0.000	-0.004	0.002	0.000	-0.011	0.000	0.014	-0.008	-0.004	0.000	0.000	0.000
par-9	-0.002	0.000	0.004	-0.001	0.000	0.008	0.000	-0.008	0.014	0.001	0.000	0.000	0.000
par-10	-0.001	0.000	0.002	-0.002	0.000	0.004	0.000	-0.004	0.001	0.036	0.000	0.000	0.000
par-11	0.000	0.002	-0.003	0.000	0.003	0.000 -	0.009	0.000	0.000	0.000	0.021	0.000	-0.005
par-12	0.000	-0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.020	-0.006
par-13	0.000	0.000	0.003	0.000	-0.003	0.000	0.005	0.000	0.000	0.000	-0.005	-0.006	0.015

Correlations among Estimates

```
par-1 par-2 par-3 par-4 par-5 par-6 par-7 par-8 par-9 par-10 par-11 par-12 par-13 par-1 1.000 -0.002 -0.138 0.370 -0.010 -0.316 0.004 0.430 -0.404 -0.076 -0.012 -0.006 0.018 par-2 -0.002 1.000 -0.185 -0.002 0.564 0.001 -0.464 -0.004 0.002 0.002 0.157 -0.165 0.013 par-3 -0.138 -0.185 1.000 -0.093 -0.227 0.631 0.640 -0.105 0.092 0.025 -0.057 -0.009 0.064 par-4 0.370 -0.002 -0.093 1.000 -0.004 -0.226 0.002 0.265 -0.156 -0.153 -0.006 -0.001 0.007 par-5 -0.010 0.564 -0.227 -0.004 1.000 0.003 -0.543 -0.016 0.016 0.002 0.260 0.099 -0.350
```

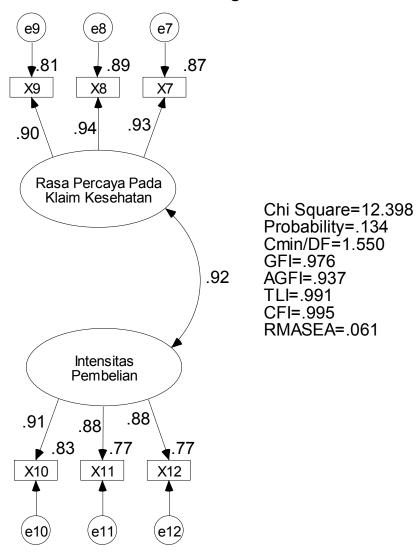
par-6 -0.316 0.001 0.631 -0.226 0.003 1.000 0.199 -0.176 0.120 0.039 0.004 0.002 -0.006 par-7 0.004 -0.464 0.640 0.002 -0.543 0.199 1.000 0.006 -0.006 -0.001 -0.146 -0.003 0.092 par-8 0.430 -0.004 -0.105 0.265 -0.016 -0.176 0.006 1.000 -0.568 -0.183 -0.019 -0.009 0.028 par-9 -0.404 0.002 0.092 -0.156 0.016 0.120 -0.006 -0.568 1.000 0.065 0.018 0.012 -0.029 par-10 -0.076 0.002 0.025 -0.153 0.002 0.039 -0.001 -0.183 0.065 1.000 0.003 -0.002 -0.001 par-11 -0.012 0.157 -0.057 -0.006 0.260 0.004 -0.146 -0.019 0.018 0.003 1.000 0.010 -0.280 par-12 -0.006 -0.165 -0.009 -0.001 0.099 0.002 -0.003 -0.009 0.012 -0.002 0.010 1.000 -0.325 par-13 0.018 0.013 0.064 0.007 -0.350 -0.006 0.092 0.028 -0.029 -0.001 -0.280 -0.325 1.000

Critical Ratios for Differences between Parameters

	par-1	par-2	par-3	par-4	par-5	par-6	par-7	par-8	par-9	par-10 par-11 par-12 par-13
par-1	0.000	0.083	2.504	-0.951	1.109	5.794	4.306	-5.431	-3.111	2.096 -0.356 -0.765 -4.126
par-2	0.083	0.000	2.420	-0.692	1.310	5.903	3.987	-4.270	-3.296	2.027 -0.406 -0.721 -3.879
par-3	2.504	2.420	0.000	-2.650	-2.186	5.532	2.854	-3.848	-3.734	-1.252 -2.470 -2.675 -3.924
par-4	-0.951	-0.692	-2.650	0.000	1.647	5.896	4.417	-4.488	-2.807	2.283 0.004 -0.384 -3.571
par-5	1.109	1.310	-2.186	1.647	0.000	5.757	3.780	-4.887	-3.940	1.618 -1.009 -1.359 -3.931
par-6	5.794	5.903	5.532	5.896	5.757	0.000	-2.171	-6.618	-6.797	-4.981 -5.865 -5.978 -6.760
par-7	4.306	3.987	2.854	4.417	3.780	-2.171	0.000	-5.449	-5.153	-3.106 -4.055 -4.363 -5.472
par-8	-5.431	-4.270	-3.848	-4.488	-4.887	-6.618	-5.449	0.000	0.579	4.115 2.759 2.507 0.224
par-9	-3.111	-3.296	-3.734	-2.807	-3.940	-6.797	-5.153	0.579	0.000	3.973 2.120 1.836 -0.483
par-10	2.096	2.027	-1.252	2.283	1.618	-4.981	-3.106	4.115	3.973	0.000 -1.971 -2.238 -4.209
par-11	-0.356	-0.406	-2.470	0.004	-1.009	-5.865	-4.055	2.759	2.120	-1.971 0.000 -0.292 -2.242
par-12	-0.765	-0.721	-2.675	-0.384	-1.359	-5.978	-4.363	2.507	1.836	-2.238 -0.292 0.000 -1.972
par-13	-4.126	-3.879	-3.924	-3.571	-3.931	-6.760	-5.472	0.224	-0.483	-4.209 -2.242 -1.972 0.000

Fit Measures

Fit Measure	Default model	Saturated	Independence	Macro
Discrepancy	11.662	0.000	821.936	CMIN
Degrees of freedom	8	0	15	DF
P	0.167		0.000	P
Number of parameter	s 13	21	6	NPAR
Discrepancy / df	1.458		54.796	CMINDF


RMR	0.068	0.000	2.278	RMR
GFI	0.975	1.000	0.341	GFI
Adjusted GFI	0.935		0.078	AGFI
Parsimony-adjusted GFI	0.372		0.244	PGFI
Normed fit index	0.986	1.000	0.000	NFI
Relative fit index	0.973		0.000	RFI
Incremental fit index	0.996	1.000	0.000	IFI
Tucker-Lewis index	0.991		0.000	TLI
Comparative fit index	0.995	1.000	0.000	CFI
Parsimony ratio	0.533	0.000	1.000	PRATIO
Parsimony-adjusted NFI	0.526	0.000	0.000	PNFI
Parsimony-adjusted CFI	0.531	0.000	0.000	PCFI
Taisinony-adjusted CFT	0.551	0.000	0.000	TCFT
Noncentrality parameter estimate	3.662	0.000	806.936	NCP
NCP lower bound	0.000	0.000	716.711	NCPLO
NCP upper bound	16.950	0.000	904.556	NCPHI
FMIN	0.078	0.000	5.480	FMIN
F0	0.024	0.000	5.380	F0
F0 lower bound	0.000	0.000	4.778	F0LO
F0 upper bound	0.113	0.000	6.030	F0HI
RMSEA	0.055		0.599	RMSEA
RMSEA lower bound	0.000		0.564	RMSEALO
RMSEA upper bound	0.119		0.634	RMSEAHI
P for test of close fit	0.391		0.000	PCLOSE
	. 27.662	42.000	022.026	ATO
Akaike information criterion (AIC		42.000	833.936	AIC
Browne-Cudeck criterion	38.935	44.056	834.523	BCC
Bayes information criterion	100.180	142.990	862.790	BIC
Consistent AIC	89.887	126.363	858.039	CAIC
Expected cross validation index	0.251	0.280	5.560	ECVI
ECVI lower bound	0.227	0.280	4.958	ECVILO
ECVI upper bound	0.340	0.280	6.210	ECVIHI
MECVI	0.260	0.294	5.563	MECVI
Hoelter .05 index	200		5	HFIVE
Hoelter .01 index	259		6	HONE

Fit Measures

Default model Saturated Independence	CMIN 11.662 0.000 821.936	DF 8 0 15	P 0.167 0.000	NPAR 13 21 6	CMINDF 1.458 54.796		RMR 0.068 0.000 2.278	GFI 0.975 1.000 0.341	AGFI 0.935 0.078	PGFI 0.372 0.244	NFI 0.986 1.000 0.000	RFI 0.973 0.000	IFI 0.996 1.000 0.000	TLI 0.991 0.000	CFI 0.995 1.000 0.000
	PRATIC	OPNFI	PCFI	NCP	NCPL	. O :	NCPHI	FMIN	F0	F0LO	F0HI	RMSEA	RMSEA	LO	
Default model	0.533	0.526	0.531	3.662	0.000		16.950	0.078	0.024	0.000	0.113	0.055	0.000		
Saturated	0.000	0.000	0.000	0.000	0.000	(0.000	0.000	0.000	0.000	0.000				
Independence	1.000	0.000	0.000	806.936	716.71	11	904.556	5.480	5.380	4.778	6.030	0.599	0.564		
	D. 500		D. GT . G. G			200	n.c	a							
	RMSEA	HI	PCLOS	_		BCC	BIC	CAIC	ECVI		DECVIHI			HONE	
Default model	0.119		0.391	37.66	238.935	38.935	100.180	89.887	0.251	0.227	0.340	0.260	200	259	
Saturated				42.00	0	44.056	142.990	126.363	0.280	0.280	0.280	0.294			
Independence	0.634		0.000	833.9	36	834.523	862.790	858.039	5.560	4.958	6.210	5.563	5	6	

Lampiran 4A: Output Grafis Konstruk Endogen

Confirmatory Factor Analysis Konstruk Endogen

Lampiran 4B: Output Tabel Konstruk Endogen

Your model contains the following variables

X9 X8 X7 X10 X11 X12	observed observed observed observed observed	endogenous endogenous endogenous endogenous endogenous
e9	unobserved	exogenous
Rasa Percaya Pada_Klaim Kesehatan	unobserved	exogenous
e7	unobserved	exogenous
e10	unobserved	exogenous
Intensitas_Pembelian	unobserved	exogenous
e11	unobserved	exogenous
e12	unobserved	exogenous
e8	unobserved	exogenous

Number of variables in your model: 14 Number of observed variables: 6 Number of unobserved variables: 8 Number of exogenous variables: 8 Number of endogenous variables: 6

Summary of Parameters

•	Weights	Covariances	Variance	s Means	Intercepts	Total
Fixed	8	0	0	0	0	8
Labeled	0	0	0	0	0	0
Unlabeled	4	1	8	0	0	13
Total	12	1	8	0	0	21

The model is recursive.

Sample size = 151

Computation of degrees of freedom

Number of distinct sample moments = 21 Number of distinct parameters to be estimated = 13 Degrees of freedom = 21 - 13 = 8

Minimum was achieved

Chi-square = 12.398 Degrees of freedom = 8 Probability level = 0.134

Assessment of normality

	min	max	skew	c.r.	kurtosi	s c.r.
X12	1.000	10.000	-0.287	-1.437	-0.456	-1.143
X11	1.000	10.000	-0.249	-1.247	-0.423	-1.060
X10	1.000	10.000	-0.357	-1.792	-0.238	-0.598
X7	1.000	10.000	-0.154	-0.770	-0.476	-1.194
X8	1.000	10.000	-0.186	-0.932	-0.505	-1.267
X9	1.000	10.000	-0.185	-0.928	-0.173	-0.434

Multivariate 2.280 1.430

Observations farthest from the centroid (Mahalanobis distance)

Observation	Mahalanobis		
number	d-squared	p1	p2
113	17.720	0.007	0.652
87	17.281	0.008	0.357
124	16.329	0.012	0.276
51	14.969	0.021	0.374
137	14.775	0.022	0.242
116	14.623	0.023	0.145
135	14.559	0.024	0.073
105	14.222	0.027	0.056
111	13.738	0.033	0.061
132	13.060	0.042	0.106
89	13.047	0.042	0.057
129	12.958	0.044	0.034
143	12.898	0.045	0.018
104	12.362	0.054	0.036
120	11.739	0.068	0.091
18	11.481	0.075	0.099
123	11.267	0.080	0.100
133	11.117	0.085	0.090
13	10.758	0.096	0.137
76	10.368	0.110	0.221
67	10.268	0.114	0.195
85	10.067	0.122	0.217
134	9.948	0.127	0.204
138	9.598	0.143	0.316
40	9.180	0.164	0.509
79	9.102	0.168	0.478
92	9.014	0.173	0.456
17	8.725	0.190	0.585
108	8.693	0.192	0.527
146	8.510	0.203	0.586
136	8.429	0.208	0.569

86	7.934	0.243	0.837
53	7.902	0.245	0.804
37	7.870	0.248	0.768
128	7.800	0.253	0.755
21	7.744	0.257	0.732
73	7.744	0.257	0.666
101	7.616	0.268	0.700
130	7.587	0.270	0.656
6	7.469	0.280	0.686
81	7.382	0.287	0.691
131	7.310	0.293	0.686
3	7.267	0.297	0.657
142	7.240	0.299	0.613
96	7.229	0.300	0.554
139	7.195	0.303	0.515
145	7.172	0.305	0.467
100	7.013	0.320	0.549
127	6.808	0.339	0.675
24	6.802	0.340	0.617
66	6.741	0.345	0.609
141	6.724	0.347	0.559
119	6.704	0.349	0.511
64	6.519	0.368	0.630
109	6.487	0.371	0.597
27	6.368	0.383	0.652
	6.292		
11		0.391	0.665
103	6.282	0.392	0.612
30	6.225	0.398	0.607
114	6.181	0.403	0.589
117	6.181	0.403	0.523
106	6.165	0.405	0.475
15	6.014	0.422	0.574
84	5.822	0.443	0.714
19	5.749	0.452	0.728
112	5.715	0.456	0.706
63	5.630	0.466	0.734
151	5.629	0.466	0.679
115	5.562	0.474	0.691
31	5.460	0.486	0.739
82	5.434	0.490	0.711
150	5.432	0.490	0.655
25	5.318	0.504	0.719
90	5.313	0.504	0.668
38	5.313	0.504	0.607
5	5.308	0.505	0.549
55	5.273	0.509	0.527
1	5.156	0.524	0.605
69	5.073	0.535	0.641
88			
	4.785	0.572	0.869
102	4.771	0.574	0.843
45	4.767	0.574	0.803
16	4.762	0.575	0.760
140	4.743	0.577	0.728
29	4.650	0.589	0.772

26	4.508	0.608	0.855
65	4.505	0.609	0.817
54	4.498	0.610	0.777
62	4.397	0.623	0.826
149	4.265	0.641	0.890
23	4.232	0.645	0.880
75	4.232	0.645	0.844
95	4.112	0.662	0.897
71	4.107	0.662	0.868
107	4.105	0.662	0.829
93	4.104	0.663	0.785
99	4.067	0.668	0.773
60	4.063	0.668	0.723
28	4.000	0.677	0.741
110	3.995	0.677	0.688

Minimization History

Iteration	Discrepancy
0	982.245
1	479.792
2	324.353
3	157.100
4	56.071
5	38.530
6	15.902
7	12.562
8	12.399
9	12.398
10	12.398

Regression Weights

			Estimate	S.E.	C.R.	P	Label
X8	<	Rasa Percaya Pada_Klaim Kesehatan	1.127	0.058	19.518	0.000	par-1
X11	<	Intensitas_Pembelian	1.003	0.063	15.845	0.000	par-2
X12	<	Intensitas_Pembelian	0.994	0.061	16.248	0.000	par-3
X10	<	Intensitas_Pembelian	1.000				
X7	<	Rasa Percaya Pada Klaim Kesehatan	1.106	0.060	18.558	0.000	par-4
X9	<	Rasa Percaya Pada Klaim Kesehatan	1.000				

Standardized Regression Weights

			Estimate
X8	<	Rasa Percaya Pada_Klaim Kesehatan	0.944
X11	<	Intensitas Pembelian	0.876
X12	<	Intensitas Pembelian	0.879
X10	<	Intensitas Pembelian	0.909
X7	<	Rasa Percaya Pada Klaim Kesehatan	0.931
X9	<	Rasa Percaya Pada Klaim Kesehatan	0.898

Covariances

Correlations

Variances

	Estimate	S.E.	C.R.	Р	Label
Rasa Percaya Pada_Klaim Kesehatar	a 3.362	0.477	7.041	0.000	par-6
Intensitas_Pembelian	3.630	0.508	7.138	0.000	par-7
e9	0.807	0.116	6.932	0.000	par-8
e7	0.636	0.107	5.946	0.000	par-9
e10	0.760	0.130	5.831	0.000	par-10
e11	1.104	0.166	6.648	0.000	par-11
e12	1.054	0.159	6.618	0.000	par-12
e8	0.523	0.099	5.278	0.000	par-13

Squared Multiple Correlations

Estimate
X12 0.773
X11 0.768
X10 0.827
X7 0.866
X8 0.891
X9 0.806

Sample Covariances - Estimates

	X12	X11	X10	X7	X8	X9
X12	4.640	3.701	3.647	3.452	3.452	3.155
X11	3.701	4.754	3.540	3.706	3.609	3.277
X10	3.647	3.540	4.390	3.655	3.610	3.312
X7	3.452	3.706	3.655	4.747	4.204	3.647
X8	3.452	3.609	3.610	4.204	4.794	3.826
X9	3.155	3.277	3.312	3.647	3.826	4.169

Sample Correlations - Estimates

	X12	X11	X10	X7	X8	X9
X12	1.000	0.788	0.808	0.735	0.732	0.717
X11	0.788	1.000	0.775	0.780	0.756	0.736
X10	0.808	0.775	1.000	0.801	0.787	0.774
X7	0.735	0.780	0.801	1.000	0.881	0.820
X8	0.732	0.756	0.787	0.881	1.000	0.856
X9	0.717	0.736	0.774	0.820	0.856	1.000

Sample covariance Matrix

Determinant

13.938

Condition number

43.808

Eigenvalues

22.539

1.780

1.075

0.822

0.765

0.515

Sample correlation Matrix

Condition number

45.071

Eigenvalues

4.917

0.386

0.231

0.187

0.169

0.109

All Implied Covariances - Estimates

	Intensitas_Pembelian	Rasa Percaya Pada_Klaim Kesehatan	X12	X11	X10	X7	X8	X9
Intensitas_Pembelian	3.630	3.220	3.608	3.640	3.630	3.561	3.629	3.220
Rasa Percaya Pada_Klaim Kesehatan	3.220	3.362	3.201	3.229	3.220	3.718	3.789	3.362
X12	3.608	3.201	4.640	3.618	3.608	3.540	3.608	3.201
X11	3.640	3.229	3.618	4.754	3.640	3.571	3.640	3.229
X10	3.630	3.220	3.608	3.640	4.390	3.561	3.629	3.220
X7	3.561	3.718	3.540	3.571	3.561	4.747	4.190	3.718
X8	3.629	3.789	3.608	3.640	3.629	4.190	4.794	3.789
X9	3.220	3.362	3.201	3.229	3.220	3.718	3.789	4.169

All Implied Correlations - Estimates									
	Intensitas_Pembelian	Rasa Percaya Pada_Klaim Kesehatan	X12	X11	X10	X7	X8	X9	
Intensitas_Pembelian	1.000	0.922	0.879	0.876	0.909	0.858	0.870	0.828	
Rasa Percaya Pada Klaim Kesehatan	0.922	1.000	0.810	0.808	0.838	0.931	0.944	0.898	
X12	0.879	0.810	1.000	0.770	0.799	0.754	0.765	0.728	
X11	0.876	0.808	0.770	1.000	0.797	0.752	0.762	0.725	
X10	0.909	0.838	0.799	0.797	1.000	0.780	0.791	0.753	
X7	0.858	0.931	0.754	0.752	0.780	1.000	0.878	0.836	
X8	0.870	0.944	0.765	0.762	0.791	0.878	1.000	0.848	
X9	0.828	0.898	0.728	0.725	0.753	0.836	0.848	1.000	

Implied Covariances - Estimates

_	X12	X11	X10	X7	X8	X9
X12	4.640	3.618	3.608	3.540	3.608	3.201
X11	3.618	4.754	3.640	3.571	3.640	3.229
X10	3.608	3.640	4.390	3.561	3.629	3.220
X7	3.540	3.571	3.561	4.747	4.190	3.718
X8	3.608	3.640	3.629	4.190	4.794	3.789
X9	3.201	3.229	3.220	3.718	3.789	4.169

Implied Correlations - Estimates

_	X12	X11	X10	X7	X8	X9
X12	1.000	0.770	0.799	0.754	0.765	0.728
X11	0.770	1.000	0.797	0.752	0.762	0.725
X10	0.799	0.797	1.000	0.780	0.791	0.753
X7	0.754	0.752	0.780	1.000	0.878	0.836
X8	0.765	0.762	0.791	0.878	1.000	0.848
X9	0.728	0.725	0.753	0.836	0.848	1.000

Residual Covariances

	X12	X11	X10	X7	X8	X9
X12	0.000	0.083	0.039	-0.088	-0.156	-0.046
X11	0.083	0.000	-0.100	0.135	-0.031	0.048
X10	0.039	-0.100	0.000	0.093	-0.020	0.092
X7	-0.088	0.135	0.093	0.000	0.014	-0.071
X8	-0.156	-0.031	-0.020	0.014	0.000	0.037
X9	-0.046	0.048	0.092	-0.071	0.037	0.000

Standardized Residual Covariances

	X12	X11	X10	X7	X8	X9
X12	0.000	0.172	0.082	-0.183	-0.322	-0.104
X11	0.172	0.000	-0.210	0.278	-0.063	0.106
X10	0.082	-0.210	0.000	0.198	-0.041	0.211
X7	-0.183	0.278	0.198	0.000	0.027	-0.149
X8	-0.322	-0.063	-0.041	0.027	0.000	0.078
X9	-0.104	0.106	0.211	-0.149	0.078	0.000

Factor Score Weights - Estimates

	X12	X11	X10	X7	X8	X9
Intensitas_Pembelian	0.205	0.198	0.287	0.088	0.109	0.063
Rasa Percaya Pada Klaim Kesehatan	0.048	0.046	0.067	0.250	0.310	0.178

Total Effects - Estimates

	Intensitas_Pembelian	Rasa Percaya Pada_Klaim Kesehatan
X12	0.994	0.000
X11	1.003	0.000
X10	1.000	0.000
X7	0.000	1.106
X8	0.000	1.127
X9	0.000	1.000

Standardized Total Effects - Estimates

	Intensitas_Pembelian	Rasa Percaya Pada_Klaim Kesehatan
X12	0.879	0.000
X11	0.876	0.000
X10	0.909	0.000
X7	0.000	0.931
X8	0.000	0.944
X9	0.000	0.898

Direct Effects - Estimates

	Intensitas_Pembelian	Rasa Percaya Pada_Klaim Kesehatan
X12	0.994	0.000
X11	1.003	0.000
X10	1.000	0.000
X7	0.000	1.106
X8	0.000	.127
X9	0.000	1.000

Standardized Direct Effects - Estimates

	Intensitas_Pembelian	Rasa Percaya Pada_Klaim Kesehatan
X12	0.879	.000
X11	0.876	0.000
X10	0.909	0.000
X7	0.000	0.931
X8	0.000	0.944
X9	0.000	0.898

Indirect Effects - Estimates

	Intensitas_Pembelian	Rasa Percaya Pada_Klaim Kesehatan
X12	0.000	0.000
X11	0.000	0.000
X10	0.000	0.000
X7	0.000	0.000
X8	0.000	0.000
X9	0.000	0.000

Stand	ardized Indirect Effe	cts - Estimates
	Intensitas_Pembelian	Rasa Percaya Pada_Klaim Kesehatan
X12	0.000	0.000
X11	0.000	0.000
X10	0.000	0.000
X7	0.000	0.000
X8	0.000	0.000
X9	0.000	0.000

Covariances among Estimates

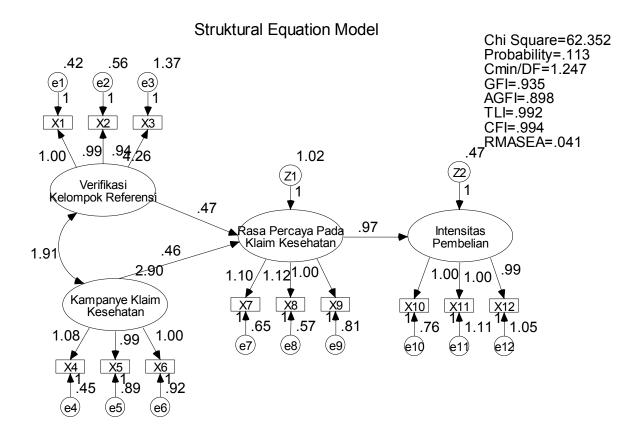
par-1 par-2 par-3 par-4 par-5 par-6 par-7 par-8 par-9 par-10 par-11 par-12 par-13 par-1 0.003 0.000 0.000 0.002 -0.006 -0.013 0.000 0.001 0.000 0.000 0.000 0.000 -0.001 par-2 0.000 0.004 0.002 0.000 -0.005 0.000 -0.012 0.000 0.000 0.000 0.002 -0.002 0.000 0.000
1
par-2 0.000 0.004 0.002 0.000 -0.005 0.000 -0.012 0.000 0.000 0.002 -0.002 0.000 0.000
P =
par-3 0.000 0.002 0.004 0.000 -0.005 0.000 -0.012 0.000 0.000 0.001 -0.001 -0.002 0.000
par-4 0.002 0.000 0.000 0.004 -0.006 -0.013 0.000 0.001 -0.001 0.000 0.000 0.000 0.000
par-5 -0.006 -0.005 -0.005 -0.006 0.187 0.181 0.192 -0.002 0.001 -0.004 0.003 0.003 0.002
par-6 -0.013 0.000 0.000 -0.013 0.181 0.228 0.138 -0.005 0.002 0.000 0.000 0.000
par-7 0.000 -0.012 -0.012 0.000 0.192 0.138 0.259 0.000 0.000 -0.009 0.005 0.001 0.000
par-8 0.001 0.000 0.000 0.001 -0.002 -0.005 0.000 0.014 -0.002 0.000 0.000 0.000
par-9 0.000 0.000 0.000 -0.001 0.001 0.002 0.000 -0.002 0.011 0.000 0.000 0.000 -0.002
par-10 0.000 0.002 0.001 0.000 -0.004 0.000 -0.009 0.000 0.017 -0.005 -0.001 0.000
par-11 0.000 -0.002 -0.001 0.000 0.003 0.000 0.005 0.000 0.000 -0.005 0.028 0.000 0.000
par-12 0.000 0.000 -0.002 0.000 0.003 0.000 0.001 0.000 0.000 -0.001 0.000 0.025 0.000
par-13 -0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000 -0.002 0.000 0.000 0.000 0.010
Correlations among Estimates
par-1 par-2 par-3 par-4 par-5 par-6 par-7 par-8 par-9 par-10 par-11 par-12 par-13
par-1 1.000 0.002 0.003 0.625 -0.256 -0.472 -0.001 0.129 -0.013 0.005 -0.001 -0.005 -0.154
par-2 0.002 1.000 0.436 0.003 -0.196 -0.001 -0.376 0.005 -0.006 0.235 -0.211 -0.020 0.001
par-3 0.003 0.436 1.000 -0.001 -0.201 0.000 -0.371 0.002 0.007 0.182 -0.067 -0.168 -0.011

COL	Correlations among Estimates												
	par-1	par-2	par-3	par-4	par-5	par-6	par-7	par-8	par-9	par-10	par-11	par-12	par-13
par-1	1.000	0.002	0.003	0.625	-0.256	-0.472	-0.001	0.129	-0.013	0.005	-0.001	-0.005	-0.154
par-2	2 0.002	1.000	0.436	0.003	-0.196	-0.001	-0.376	0.005	-0.006	0.235	-0.211	-0.020	0.001
par-3	3 0.003	0.436	1.000	-0.001	-0.201	0.000	-0.371	0.002	0.007	0.182	-0.067	-0.168	-0.011
par-4	1 0.625	0.003	-0.001	1.000	-0.241	-0.456	-0.001	0.155	-0.181	0.003	-0.007	0.006	0.034
par-5	5 -0.256	-0.196	-0.201	-0.241	1.000	0.879	0.874	-0.046	0.019	-0.065	0.036	0.037	0.035
par-6	6 -0.472	-0.001	0.000	-0.456	0.879	1.000	0.570	-0.088	0.040	-0.002	0.002	0.000	0.009
par-7	7 -0.001	-0.376	-0.371	-0.001	0.874	0.570	1.000	-0.002	0.000	-0.140	0.057	0.016	0.002
par-8	3 0.129	0.005	0.002	0.155	-0.046	-0.088	-0.002	1.000	-0.165	0.008	-0.009	0.002	-0.035
par-9	-0.013	-0.006	0.007	-0.181	0.019	0.040	0.000	-0.165	1.000	0.000	0.018	-0.021	-0.189
par-1	10 0.005	0.235	0.182	0.003	-0.065	-0.002	-0.140	0.008	0.000	1.000	-0.221	-0.063	-0.009
par-1	11 -0.001	-0.211	-0.067	-0.007	0.036	0.002	0.057	-0.009	0.018	-0.221	1.000	0.007	-0.011
par-1	12 -0.005	-0.020	-0.168	0.006	0.037	0.000	0.016	0.002	-0.021	-0.063	0.007	1.000	0.023
par-1	13 -0.154	0.001	-0.011	0.034	0.035	0.009	0.002	-0.035	-0.189	-0.009	-0.011	0.023	1.000

Critical Ratios for Differences between Parameters

	par-1	par-2	par-3	par-4	par-5	par-6	par-7	par-8	par-9	par-10	par-11	par-12	par-13
par-1	0.000	-1.452	-1.584	-0.417	4.646	4.406	4.890	-2.595	-4.023	-2.576	-0.130	-0.430	-4.940
par-2	-1.452	0.000	-0.133	1.188	4.939	4.897	4.905	-1.477	-2.947	-1.852	0.534	0.297	-4.078
par-3	-1.584	-0.133	0.000	1.310	4.963	4.919	4.934	-1.418	-2.919	-1.749	0.609	0.334	-4.020
par-4	-0.417	1.188	1.310	0.000	4.695	4.446	4.929	-2.439	-3.577	-2.412	-0.010	-0.305	-5.113
par-5	4.646	4.939	4.963	4.695	0.000	0.621	1.656	-5.328	-5.830	-5.353	-4.626	-4.760	-6.128
par-6	4.406	4.897	4.919	4.446	0.621	0.000	0.585	-5.096	-5.620	-5.254	-4.469	-4.584	-5.831
par-7	4.890	4.905	4.934	4.929	1.656	0.585	0.000	-5.408	-5.762	-5.290	-4.802	-4.856	-5.998
par-8	-2.595	-1.477	-1.418	-2.439	-5.328	-5.096	-5.408	0.000	-1.007	-0.271	1.456	1.251	-1.826
par-9	-4.023	-2.947	-2.919	-3.577	-5.830	-5.620	-5.762	-1.007	0.000	0.739	2.391	2.161	-0.707
par-10	-2.576	-1.852	-1.749	-2.412	-5.353	-5.254	-5.290	-0.271	0.739	0.000	1.477	1.385	-1.441
par-11	-0.130	0.534	0.609	-0.010	-4.626	-4.469	-4.802	1.456	2.391	1.477	0.000	-0.218	-2.989
par-12	-0.430	0.297	0.334	-0.305	-4.760	-4.584	-4.856	1.251	2.161	1.385	-0.218	0.000	-2.858
par-13	-4.940	-4.078	-4.020	-5.113	-6.128	-5.831	-5.998	-1.826	-0.707	-1.441	-2.989	-2.858	0.000

Fit Measures


Fit Measure Discrepancy Degrees of freedom P Number of parameters Discrepancy / df	Default model 12.398 8 0.134 13 21 1.550	Saturated 0.000	Independence 973.673 15 0.000 6 64.912	Macro CMIN DF P NPAR CMINDF
RMR GFI Adjusted GFI Parsimony-adjusted GFI	0.068 0.976 0.937 0.372	0.000 1.000	3.038 0.245 -0.057 0.175	RMR GFI AGFI PGFI
Normed fit index Relative fit index Incremental fit index Tucker-Lewis index Comparative fit index	0.987 0.976 0.995 0.991 0.995	1.000 1.000 1.000	0.000 0.000 0.000 0.000 0.000	NFI RFI IFI TLI CFI
Parsimony ratio Parsimony-adjusted NFI Parsimony-adjusted CFI	0.533 0.527 0.531	0.000 0.000 0.000	1.000 0.000 0.000	PRATIO PNFI PCFI
Noncentrality parameter estimate NCP lower bound NCP upper bound FMIN	4.398 0.000 18.088 0.083	0.000 0.000 0.000 0.000	958.673 860.072 1064.662 6.491	NCP NCPLO NCPHI FMIN

F0	0.029	0.000	6.391	F0
F0 lower bound	0.000	0.000	5.734	F0LO
F0 upper bound	0.121	0.000	7.098	F0HI
RMSEA	0.061		0.653	RMSEA
RMSEA lower bound	0.000		0.618	RMSEALO
RMSEA upper bound	0.123		0.688	RMSEAHI
P for test of close fit	0.342		0.000	PCLOSE
Akaike information criterion (AIC)	38.398	42.000	985.673	AIC
Browne-Cudeck criterion	39.671	44.056	986.260	BCC
Bayes information criterion	100.916	142.990	1014.527	BIC
Consistent AIC	90.623	126.363	1009.776	CAIC
Expected cross validation index	0.256	0.280	6.571	ECVI
ECVI lower bound	0.227	0.280	5.914	ECVILO
ECVI upper bound	0.347	0.280	7.278	ECVIHI
MECVI	0.264	0.294	6.575	MECVI
Hoelter .05 index	188		4	HFIVE
Hoelter .01 index	244		5	HONE

Fit Measures

Default model Saturated Independence	CMIN DF 12.398 8 0.000 0 973.673 15	P N 0.134 13 21 0.000 6		CMINDF 1.550 64.912	RMR 0.068 0.000 3.038	GFI 0.976 1.000 0.245	AGFI 0.937 -0.057	PGFI 0.372 0.175		NFI 0.987 1.000 0.000	RFI 0.976 0.000	IFI 0.995 1.000 0.000	TLI 0.991 0.000	CFI 0.995 1.000 0.000
	PRATIO	PNFI	PCFI	NCP	NCPLO	ONCPHI	FMIN	F0	F0LO	F0HI	RMSE	ARMSE	ALO	RMSEAHI
Default model	0.533	0.527	0.531	4.398	0.000	18.088	0.083	0.029	0.000	0.121	0.061	0.000		0.123
Saturated	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
Independence	1.000	0.000	0.000	958.673	860.072	2 1064.66	2 6.491	6.391	5.734	7.098	0.653	0.618		0.688
	PCLOSE	AIC	BCC	BIC	CAIC	ECVI	ECVIL	O	ECVIE	II	MECV	THFIVE	E HONE	
Default model	0.342	38.398	39.671	100.916	90.623	0.256	0.227		0.347		0.264	188	244	
Saturated		42.000	44.056	142.990	126.363	0.280	0.280		0.280		0.294			
Independence	0.000	985.673	986.260	1014.527	1009.77	66.571	5.914		7.278		6.575	4	5	

Lampiran 5A: Output Grafis SEM

Lampiran 5B: Output Tabel SEM

Your model contains the following variables

X1	observed	endogenous
X2	observed	endogenous
X3	observed	endogenous
X6	observed	endogenous
X5	observed	endogenous
X4	observed	endogenous
X9	observed	endogenous
X8	observed	endogenous
X7	observed	endogenous
X10	observed	endogenous
X11	observed	endogenous
X12	observed	endogenous
Rasa Percaya Pada_Klaim Kesehatan	unobserved	endogenous
Intensitas_Pembelian	unobserved	endogenous
Z 1	unobserved	exogenous
Z2	unobserved	exogenous
e1	unobserved	exogenous
Verifikasi_Kelompok Referensi	unobserved	exogenous
e2	unobserved	exogenous
e3	unobserved	exogenous
e 6	unobserved	exogenous
Kampanye Klaim_Kesehatan	unobserved	exogenous
e5	unobserved	exogenous
e4	unobserved	exogenous
e9	unobserved	exogenous
e7	unobserved	exogenous
e10	unobserved	exogenous
e11	unobserved	exogenous
e12	unobserved	exogenous
e8	unobserved	exogenous
		C
Number of variables in your model:30	1	
Number of observed variables: 12		
Number of unobserved variables: 18		
Number of exogenous variables: 16		
Number of endogenous variables: 14		
Č		

Summary of Parameters

	Weights	Covariances	Variance	es Means	Intercepts	Total
Fixed	18	0	0	0	0	18
Labeled	0	0	0	0	0	0
Unlabeled	11	1	16	0	0	28
Total	29	1	16	0	0	46

5.583 1.871

The model is recursive.

Sample size = 151

Computation of degrees of freedom

Number of distinct sample moments = 78 Number of distinct parameters to be estimated = 28 Degrees of freedom = 78 - 28 = 50

Minimum was achieved

Chi-square = 62.352 Degrees of freedom = 50 Probability level = 0.113

Assessment of normality

Multivariate

1 100000	1 issussificate of morniantly											
	min	max	skew	c.r.	kurtosis	c.r.						
X12	1.000	10.000	-0.287	-1.437	-0.456	-1.143						
X11	1.000	10.000	-0.249	-1.247	-0.423	-1.060						
X10	1.000	10.000	-0.357	-1.792	-0.238	-0.598						
X7	1.000	10.000	-0.154	-0.770	-0.476	-1.194						
X8	1.000	10.000	-0.186	-0.932	-0.505	-1.267						
X9	1.000	10.000	-0.185	-0.928	-0.173	-0.434						
X4	1.000	9.000	-0.016	-0.080	-0.585	-1.467						
X5	1.000	9.000	-0.313	-1.570	-0.062	-0.156						
X6	1.000	10.000	-0.153	-0.768	-0.524	-1.315						
X3	1.000	10.000	-0.104	-0.520	-0.696	-1.747						
X2	1.000	10.000	-0.155	-0.779	-0.617	-1.547						
X1	1.000	10.000	-0.222	-1.112	-0.533	-1.337						

Observations farthest from the centroid (Mahalanobis distance)

Observation	Mahalanobis	
number	d-squared	p1 p2
79	25.509	0.013 0.852
101	25.161	0.014 0.629
103	23.733	0.022 0.651
25	23.121	0.027 0.576
51	23.023	0.028 0.402
64	22.716	0.030 0.307
139	22.516	0.032 0.214
129	21.830	0.039 0.248
98	21.589	0.042 0.193
113	21.231	0.047 0.176
146	20.626	0.056 0.229
115	20.623	0.056 0.144
116	20.573	0.057 0.091
137	20.467	0.059 0.062
67	20.366	0.060 0.041
134	20.248	0.063 0.028
124	19.519	0.077 0.072
87	18.863	0.092 0.153
123	18.339	0.106 0.246
132	18.127	0.112 0.245
13	18.090	0.113 0.186
105	18.013	0.115 0.149
138	17.976	0.116 0.109
89	17.972	0.117 0.072
143	17.763	0.123 0.076
111	17.741	0.124 0.051
136	17.531	0.131 0.056
8	17.448	0.133 0.044
76	17.233	0.141 0.050
135	16.917	0.153 0.076
104	16.750	0.159 0.079
142	16.455	0.171 0.114
86	16.394	0.174 0.092
141	16.122	0.186 0.128
21	16.115	0.186 0.092
6	16.003	0.191 0.087
144	15.797	0.201 0.106
145	15.658	0.207 0.109
122	15.391	0.221 0.155
149	15.390	0.221 0.115
133	15.376	0.221 0.086
65	15.048	0.239 0.150
130	14.860	0.249 0.179
53	14.756	0.255 0.175
120	14.366	0.278 0.319
20	14.242	0.286 0.330
72	14.242	0.286 0.268
18	13.885	0.308 0.428
84	13.611	0.326 0.549
	* *	

59	13.582	0.328 0.500
4	13.455	0.337 0.521
108	13.336	0.345 0.538
40	13.234	0.352 0.544
5	13.223	0.353 0.483
7	13.153	0.358 0.467
19	13.150	0.358 0.403
109	13.008	0.368 0.439
17	13.006	0.369 0.376
27	12.886	0.307 0.370
148		
	12.724	0.389 0.451
147	12.636	0.396 0.452
69	12.631	0.396 0.390
15	12.621	0.397 0.335
107	12.345	0.418 0.477
102	12.270	0.424 0.469
140	12.095	0.438 0.541
85	12.005	0.445 0.547
73	11.969	0.448 0.510
128	11.803	0.462 0.577
150	11.709	0.469 0.588
96	11.624	0.476 0.591
62	11.508	0.486 0.620
24	11.443	0.491 0.609
26	11.294	0.504 0.663
	11.178	0.504 0.603
3		
117	11.137	0.517 0.664
126	11.085	0.522 0.644
58	10.848	0.542 0.761
100	10.719	0.553 0.795
93	10.712	0.554 0.750
60	10.696	0.555 0.708
55	10.569	0.566 0.744
112	10.540	0.569 0.711
88	10.531	0.569 0.660
114	10.468	0.575 0.650
16	10.393	0.581 0.649
127	10.307	0.589 0.659
92	10.295	0.590 0.607
37	10.291	0.590 0.545
94	10.242	0.595 0.522
11	10.242	0.598 0.492
32	10.152	0.603 0.469
66	10.139	0.604 0.414
81	10.132	0.604 0.356
30	10.107	0.607 0.316
31	9.786	0.635 0.526
131	9.710	0.641 0.527
151	9.591	0.652 0.566
43	9.578	0.653 0.510
10	9.480	0.661 0.530

Minimization History

Iteration	Discrepancy
0	1983.716
1	1014.855
2	585.789
3	370.966
4	209.243
5	125.881
6	97.017
7	73.191
8	63.521
9	62.386
10	62.352
11	62.352
12	62.352

Regression Weights

			Estimate	S.E.	C.R.	P	Label
Rasa I	Percaya	Pada_Klaim Kesehatan <kampanye klaim_kesehatan<="" td=""><td>0.456</td><td>0.073</td><td>6.246</td><td>0.000</td><td>par-5</td></kampanye>	0.456	0.073	6.246	0.000	par-5
Rasa I	Percaya	Pada_Klaim Kesehatan <verifikasi_kelompok referensi<="" td=""><td>0.465</td><td>0.059</td><td>7.893</td><td>0.000</td><td>par-6</td></verifikasi_kelompok>	0.465	0.059	7.893	0.000	par-6
Intens	itas_Per	nbelian <rasa kesehatan<="" pada_klaim="" percaya="" td=""><td>0.971</td><td>0.065</td><td>14.985</td><td>0.000</td><td>par-9</td></rasa>	0.971	0.065	14.985	0.000	par-9
X2	<	Verifikasi_Kelompok Referensi	0.987	0.043	22.788	0.000	par-1
X5	<	Kampanye Klaim_Kesehatan	0.991	0.068	14.565	0.000	par-2
X8	<	Rasa Percaya Pada_Klaim Kesehatan	1.121	0.058	19.278	0.000	par-3
X11	<	Intensitas_Pembelian	1.002	0.063	15.942	0.000	par-4
X12	<	Intensitas_Pembelian	0.994	0.061	16.348	0.000	par-8
X10	<	Intensitas_Pembelian	1.000				
X7	<	Rasa Percaya Pada_Klaim Kesehatan	1.104	0.060	18.556	0.000	par-10
X9	<	Rasa Percaya Pada_Klaim Kesehatan	1.000				
X1	<	Verifikasi_Kelompok Referensi	1.000				
X3	<	Verifikasi_Kelompok Referensi	0.938	0.055	16.923	0.000	par-11
X4	<	Kampanye Klaim_Kesehatan	1.077	0.066	16.364	0.000	par-12
X6	<	Kampanye Klaim Kesehatan	1.000				

Standardized Regression Weights

			Estimate			
Rasa Percaya Pada Klaim Kesehatan < Kampanye Klaim Kesehatan 0						
Rasa Po	ercaya P	ada Klaim Kesehatan < Verifikasi Kelompok Referensi	0.524			
Intensit	tas Pem	belian < Rasa Percaya Pada Klaim Kesehatan	0.933			
X2	<	Verifikasi Kelompok Referensi	0.939			
X5	<	Kampanye Klaim Kesehatan	0.873			
X8	<	Rasa Percaya Pada_Klaim Kesehatan	0.938			
X11	<	Intensitas Pembelian	0.876			
X12	<	Intensitas Pembelian	0.879			
X10	<	Intensitas Pembelian	0.910			
X7	<	Rasa Percaya Pada Klaim Kesehatan	0.929			

X9	<	Rasa Percaya Pada_Klaim Kesehatan	0.897
X1	<	Verifikasi_Kelompok Referensi	0.954
X3	<	Verifikasi_Kelompok Referensi	0.856
X4	<	Kampanye Klaim_Kesehatan	0.939
X6	<	Kampanye Klaim_Kesehatan	0.871

Covariances

	Estimate	S.E.	C.R.	P	Label
Verifikasi_Kelompok Referensi<>Kampanye Klaim_Kesehatan	1.911	0.356	5.368	0.000	par-7

Correlations

Verifikasi_Kelompok Referensi<-->Kampanye Klaim_Kesehatan 0.543

Variances

	Estimate	S.E.	C.R.	P	Label
Verifikasi_Kelompok Referensi	4.259	0.546	7.807	0.000	par-13
Kampanye Klaim_Kesehatan	2.904	0.439	6.619	0.000	par-14
Z1	1.019	0.166	6.133	0.000	par-15
Z2	0.468	0.118	3.954	0.000	par-16
e1	0.416	0.104	4.004	0.000	par-17
e2	0.561	0.110	5.093	0.000	par-18
e3	1.374	0.185	7.407	0.000	par-19
e6	0.920	0.142	6.503	0.000	par-20
e5	0.894	0.137	6.539	0.000	par-21
e4	0.454	0.115	3.959	0.000	par-22
e9	0.812	0.115	7.081	0.000	par-23
e7	0.652	0.104	6.284	0.000	par-24
e10	0.758	0.127	5.955	0.000	par-25
e11	1.109	0.164	6.763	0.000	par-26
e12	1.052	0.157	6.685	0.000	par-27
e8	0.574	0.099	5.826	0.000	par-28

Squared Multiple Correlations

	Estimate
Rasa Percaya Pada_Klaim Kesehatan	0.697
Intensitas_Pembelian	0.871
X12	0.773
X11	0.767
X10	0.827
X7	0.863
X8	0.880
X9	0.805
X4	0.881
X5	0.761
X6	0.759
X3	0.732
X2	0.881
X1	0.911

Sample Covariances - Estimates												
	X12	X11	X10	X7	X8	X9	X4	X5	X6	X3	X2	X1
X12	4.640	3.701	3.647	3.452	3.452	3.155	2.427	2.220	2.512	2.979	2.969	2.985
X11	3.701	4.754	3.540	3.706	3.609	3.277	2.412	2.331	2.228	2.694	2.819	3.040
X10	3.647	3.540	4.390	3.655	3.610	3.312	2.490	2.217	2.480	2.858	2.892	2.936
X7	3.452	3.706	3.655	4.747	4.204	3.647	2.549	2.349	2.353	3.057	3.022	3.172
X8	3.452	3.609	3.610	4.204	4.794	3.826	2.612	2.312	2.475	3.119	2.991	3.175
X9	3.155	3.277	3.312	3.647	3.826	4.169	2.437	2.234	2.307	2.741	2.552	2.827
X4	2.427	2.412	2.490	2.549	2.612	2.437	3.823	3.106	3.123	1.889	1.849	2.178
X5	2.220	2.331	2.217	2.349	2.312	2.234	3.106	3.745	2.873	1.649	1.856	2.044
X6	2.512	2.228	2.480	2.353	2.475	2.307	3.123	2.873	3.824	1.764	1.806	1.924
X3	2.979	2.694	2.858	3.057	3.119	2.741	1.889	1.649	1.764	5.125	3.978	3.954
X2	2.969	2.819	2.892	3.022	2.991	2.552	1.849	1.856	1.806	3.978	4.709	4.211
X1	2.985	3.040	2.936	3.172	3.175	2.827	2.178	2.044	1.924	3.954	4.211	4.675
Sample Correlations - Estimates												
Samn	la Carr	alation	a Estiv	matas								
Samp					٧Q	V0	VΛ	V5	V6	V3	V2	V 1
_	X12	X11	X10	X7	X8	X9	X4 0.576	X5	X6	X3	X2 0.635	X1
X12	X12 1.000	X11 0.788	X10 0.808	X7 0.735	0.732	0.717	0.576	0.533	0.596	0.611	0.635	0.641
X12 X11	X12 1.000 0.788	X11 0.788 1.000	X10 0.808 0.775	X7 0.735 0.780	0.732 0.756	0.717 0.736	0.576 0.566	0.533 0.552	0.596 0.523	0.611 0.546	0.635 0.596	0.641 0.645
X12 X11 X10	X12 1.000 0.788 0.808	X11 0.788 1.000 0.775	X10 0.808 0.775 1.000	X7 0.735 0.780 0.801	0.732 0.756 0.787	0.717 0.736 0.774	0.576 0.566 0.608	0.533 0.552 0.547	0.596 0.523 0.605	0.611 0.546 0.602	0.635 0.596 0.636	0.641 0.645 0.648
X12 X11 X10 X7	X12 1.000 0.788 0.808 0.735	X11 0.788 1.000 0.775 0.780	X10 0.808 0.775 1.000 0.801	X7 0.735 0.780 0.801 1.000	0.732 0.756 0.787 0.881	0.717 0.736 0.774 0.820	0.576 0.566 0.608 0.598	0.533 0.552 0.547 0.557	0.596 0.523 0.605 0.552	0.611 0.546 0.602 0.620	0.635 0.596 0.636 0.639	0.641 0.645 0.648 0.673
X12 X11 X10 X7 X8	X12 1.000 0.788 0.808 0.735 0.732	X11 0.788 1.000 0.775 0.780 0.756	X10 0.808 0.775 1.000 0.801 0.787	X7 0.735 0.780 0.801 1.000 0.881	0.732 0.756 0.787 0.881 1.000	0.717 0.736 0.774 0.820 0.856	0.576 0.566 0.608 0.598 0.610	0.533 0.552 0.547 0.557 0.546	0.596 0.523 0.605 0.552 0.578	0.611 0.546 0.602 0.620 0.629	0.635 0.596 0.636 0.639 0.630	0.641 0.645 0.648 0.673 0.671
X12 X11 X10 X7 X8 X9	X12 1.000 0.788 0.808 0.735 0.732 0.717	X11 0.788 1.000 0.775 0.780 0.756 0.736	X10 0.808 0.775 1.000 0.801 0.787 0.774	X7 0.735 0.780 0.801 1.000 0.881 0.820	0.732 0.756 0.787 0.881 1.000 0.856	0.717 0.736 0.774 0.820 0.856 1.000	0.576 0.566 0.608 0.598 0.610 0.610	0.533 0.552 0.547 0.557 0.546 0.565	0.596 0.523 0.605 0.552 0.578 0.578	0.611 0.546 0.602 0.620 0.629 0.593	0.635 0.596 0.636 0.639 0.630 0.576	0.641 0.645 0.648 0.673 0.671 0.640
X12 X11 X10 X7 X8 X9 X4	X12 1.000 0.788 0.808 0.735 0.732 0.717 0.576	X11 0.788 1.000 0.775 0.780 0.756 0.736 0.566	X10 0.808 0.775 1.000 0.801 0.787 0.774 0.608	X7 0.735 0.780 0.801 1.000 0.881 0.820 0.598	0.732 0.756 0.787 0.881 1.000 0.856 0.610	0.717 0.736 0.774 0.820 0.856 1.000 0.610	0.576 0.566 0.608 0.598 0.610 0.610 1.000	0.533 0.552 0.547 0.557 0.546 0.565 0.821	0.596 0.523 0.605 0.552 0.578 0.578 0.817	0.611 0.546 0.602 0.620 0.629 0.593 0.427	0.635 0.596 0.636 0.639 0.630 0.576 0.436	0.641 0.645 0.648 0.673 0.671 0.640 0.515
X12 X11 X10 X7 X8 X9 X4 X5	X12 1.000 0.788 0.808 0.735 0.732 0.717 0.576 0.533	X11 0.788 1.000 0.775 0.780 0.756 0.736 0.566 0.552	X10 0.808 0.775 1.000 0.801 0.787 0.774 0.608 0.547	X7 0.735 0.780 0.801 1.000 0.881 0.820 0.598 0.557	0.732 0.756 0.787 0.881 1.000 0.856 0.610 0.546	0.717 0.736 0.774 0.820 0.856 1.000 0.610 0.565	0.576 0.566 0.608 0.598 0.610 0.610 1.000 0.821	0.533 0.552 0.547 0.557 0.546 0.565 0.821 1.000	0.596 0.523 0.605 0.552 0.578 0.578 0.817 0.759	0.611 0.546 0.602 0.620 0.629 0.593 0.427 0.376	0.635 0.596 0.636 0.639 0.630 0.576 0.436 0.442	0.641 0.645 0.648 0.673 0.671 0.640 0.515 0.488
X12 X11 X10 X7 X8 X9 X4 X5 X6	X12 1.000 0.788 0.808 0.735 0.732 0.717 0.576 0.533 0.596	X11 0.788 1.000 0.775 0.780 0.756 0.736 0.566 0.552 0.523	X10 0.808 0.775 1.000 0.801 0.787 0.774 0.608 0.547 0.605	X7 0.735 0.780 0.801 1.000 0.881 0.820 0.598 0.557 0.552	0.732 0.756 0.787 0.881 1.000 0.856 0.610 0.546 0.578	0.717 0.736 0.774 0.820 0.856 1.000 0.610 0.565 0.578	0.576 0.566 0.608 0.598 0.610 0.610 1.000 0.821 0.817	0.533 0.552 0.547 0.557 0.546 0.565 0.821 1.000 0.759	0.596 0.523 0.605 0.552 0.578 0.578 0.817 0.759 1.000	0.611 0.546 0.602 0.620 0.629 0.593 0.427 0.376 0.399	0.635 0.596 0.636 0.639 0.630 0.576 0.436 0.442 0.426	0.641 0.645 0.648 0.673 0.671 0.640 0.515 0.488 0.455
X12 X11 X10 X7 X8 X9 X4 X5 X6 X3	X12 1.000 0.788 0.808 0.735 0.732 0.717 0.576 0.533 0.596 0.611	X11 0.788 1.000 0.775 0.780 0.756 0.566 0.552 0.523 0.546	X10 0.808 0.775 1.000 0.801 0.787 0.774 0.608 0.547 0.605 0.605	X7 0.735 0.780 0.801 1.000 0.881 0.820 0.598 0.557 0.552 0.620	0.732 0.756 0.787 0.881 1.000 0.856 0.610 0.546 0.578 0.629	0.717 0.736 0.774 0.820 0.856 1.000 0.610 0.565 0.578 0.593	0.576 0.566 0.608 0.598 0.610 0.610 1.000 0.821 0.817 0.427	0.533 0.552 0.547 0.557 0.546 0.565 0.821 1.000 0.759 0.376	0.596 0.523 0.605 0.552 0.578 0.578 0.817 0.759 1.000 0.399	0.611 0.546 0.602 0.620 0.629 0.593 0.427 0.376 0.399 1.000	0.635 0.596 0.636 0.639 0.630 0.576 0.436 0.442 0.426 0.810	0.641 0.645 0.648 0.673 0.671 0.640 0.515 0.488 0.455 0.808
X12 X11 X10 X7 X8 X9 X4 X5 X6	X12 1.000 0.788 0.808 0.735 0.732 0.717 0.576 0.533 0.596	X11 0.788 1.000 0.775 0.780 0.756 0.736 0.566 0.552 0.523	X10 0.808 0.775 1.000 0.801 0.787 0.774 0.608 0.547 0.605	X7 0.735 0.780 0.801 1.000 0.881 0.820 0.598 0.557 0.552	0.732 0.756 0.787 0.881 1.000 0.856 0.610 0.546 0.578	0.717 0.736 0.774 0.820 0.856 1.000 0.610 0.565 0.578	0.576 0.566 0.608 0.598 0.610 0.610 1.000 0.821 0.817	0.533 0.552 0.547 0.557 0.546 0.565 0.821 1.000 0.759	0.596 0.523 0.605 0.552 0.578 0.578 0.817 0.759 1.000	0.611 0.546 0.602 0.620 0.629 0.593 0.427 0.376 0.399	0.635 0.596 0.636 0.639 0.630 0.576 0.436 0.442 0.426	0.641 0.645 0.648 0.673 0.671 0.640 0.515 0.488 0.455

Sample covariance Matrix

ampic covariance matrix	
Determinant	Sample correlation Matrix
100.247	Condition number
Condition number	94.253
92.674	Eigenvalues
Eigenvalues	8.065
36.174	1.329
5.619	0.813
3.612	0.394
1.810	0.310
1.366	0.208
0.981	0.185
0.804	0.182
0.777	0.170
0.736	0.153
0.625	0.107
0.501	
0.390	0.086

All Implied Covariances - Estimates

Kampanye Klaim_Kesehatan			Verifik	asi_Kelo	mpok Re	ferensi	Rasa Percaya Pada_Klaim Kesehatan						
Kampanye Klaim_Kesehatan	2.904				1.911				2.214				
Verifikasi_Kelompok Referensi	1.911				4.259				2.854				
Rasa Percaya Pada_Klaim Kesehatan	2.214				2.854				3.357				
Intensitas_Pembelian	2.149				2.771				3.259				
X12	2.136				2.754				3.239				
X11	2.153				2.776				3.265				
X10	2.149				2.771				3.259				
X7	2.445				3.152				3.708				
X8	2.482				3.200				3.764				
X9	2.214				2.854				3.357				
X4	3.128				2.058				2.385				
X5	2.877				1.893				2.194				
X6	2.904				1.911				2.214				
X3	1.793				3.997				2.678				
X2	1.886				4.204				2.817				
X1	1.911				4.259				2.854				
In	tensitas_Pembel		X11	X10	X7	X8	X9	X4	X5	X6	X3	X2	X1
Kampanye Klaim_Kesehatan	2.149	2.136	2.153	2.149	2.445	2.482	2.214	3.128	2.877	2.904	1.793	1.886	1.911
Verifikasi_Kelompok Referensi	2.771	2.754	2.776	2.771	3.152	3.200	2.854	2.058	1.893	1.911	3.997	4.204	4.259
Rasa Percaya Pada_Klaim Kesehatan	3.259	3.239	3.265	3.259	3.708	3.764	3.357	2.385	2.194	2.214	2.678	2.817	2.854
Intensitas_Pembelian	3.632	3.610	3.638	3.632	3.600	3.654	3.259	2.315	2.130	2.149	2.600	2.735	2.771
X12	3.610	4.640	3.617	3.610	3.578	3.632	3.239	2.301	2.117	2.136	2.585	2.718	2.754
X11	3.638	3.617	4.754	3.638	3.606	3.660	3.265	2.319	2.134	2.153	2.605	2.739	2.776
X10	3.632	3.610	3.638	4.390	3.600	3.654	3.259	2.315	2.130	2.149	2.600	2.735	2.771
X7	3.600	3.578	3.606	3.600	4.747	4.157	3.708	2.634	2.423	2.445	2.958	3.111	3.152
X8	3.654	3.632	3.660	3.654	4.157	4.794	3.764	2.673	2.460	2.482	3.003	3.158	3.200
X9	3.259	3.239	3.265	3.259	3.708	3.764	4.169	2.385	2.194	2.214	2.678	2.817	2.854
X4	2.315	2.301	2.319	2.315	2.634	2.673	2.385	3.823	3.099	3.128	1.931	2.031	2.058
X5	2.130	2.117	2.134	2.130	2.423	2.460	2.194	3.099	3.745	2.877	1.777	1.868	1.893
X6	2.149	2.136	2.153	2.149	2.445	2.482	2.214	3.128	2.877	3.824	1.793	1.886	1.911
X3	2.600	2.585	2.605	2.600	2.958	3.003	2.678	1.931	1.777	1.793	5.125	3.945	3.997
X2	2.735	2.718	2.739	2.735	3.111	3.158	2.817	2.031	1.868	1.886	3.945	4.709	4.204
X1	2.771	2.754	2.776	2.771	3.152	3.200	2.854	2.058	1.893	1.911	3.997	4.204	4.675

All Implied Correlations - Estimates

	Kampanye Klaim_	Kesehatan Verifikasi_Kelompok Referensi	Rasa Percaya Pada_Klaim Kesehatan	Intensitas_Pembelian
Kampanye Klaim_Kesehatan	1.000	0.543	0.709	0.662
Verifikasi_Kelompok Referensi	0.543	1.000	0.755	0.704
Rasa Percaya Pada_Klaim Kesehata	an 0.709	0.755	1.000	0.933
Intensitas_Pembelian	0.662	0.704	0.933	1.000
X12	0.582	0.619	0.821	0.879
X11	0.580	0.617	0.817	0.876

X10				0.	.602			0.641			0.849					0.910	
X7				0.	.659			0.701			0.929					0.867	
X8				0.	.665			0.708			0.938					0.876	
X9				0.	.636			0.677			0.897					0.838	
X4				0.	.939			0.510			0.666					0.621	
X5					.873			0.474			0.619					0.577	
X6					.871			0.473			0.618					0.577	
X3					.465			0.856			0.646					0.603	
X2					.510			0.939			0.708					0.661	
X1				0.	.519			0.954			0.720					0.672	
						X12	X11	X10	X7	X8	X9	X4	X5	X6	X3	X2	X1
Kampai	nye Klain	n Keseha	atan			0.582	0.580	0.602	0.659	0.665	0.636	0.939	0.873	0.871	0.465	0.510	0.519
	asi Kelor					0.619	0.617	0.641	0.701	0.708	0.677	0.510	0.474	0.473	0.856	0.939	0.954
	ercaya Pa			tan		0.821	0.817	0.849	0.929	0.938	0.897	0.666	0.619	0.618	0.646	0.708	0.720
Intensit	as_Pembe	elian				0.879	0.876	0.910	0.867	0.876	0.838	0.621	0.577	0.577	0.603	0.661	0.672
X12						1.000	0.770	0.800	0.762	0.770	0.736	0.546	0.508	0.507	0.530	0.581	0.591
X11						0.770	1.000	0.796	0.759	0.767	0.733	0.544	0.506	0.505	0.528	0.579	0.589
X10						0.800	0.796	1.000	0.789	0.796	0.762	0.565	0.525	0.525	0.548	0.601	0.612
X7						0.762	0.759	0.789	1.000	0.871	0.833	0.618	0.575	0.574	0.600	0.658	0.669
X8						0.770	0.767	0.796	0.871	1.000	0.842	0.625	0.580	0.580	0.606	0.665	0.676
X9						0.736	0.733	0.762	0.833	0.842	1.000	0.597	0.555	0.554	0.579	0.636	0.646
X4						0.546	0.544	0.565	0.618	0.625	0.597	1.000	0.819	0.818	0.436	0.479	0.487
X5						0.508	0.506	0.525	0.575	0.580	0.555	0.819	1.000	0.760	0.406	0.445	0.452
X6 X3						0.507 0.530	0.505 0.528	0.525 0.548	0.574 0.600	0.580 0.606	0.554 0.579	0.818 0.436	0.760 0.406	1.000	0.405 1.000	0.444 0.803	0.452 0.817
X2						0.581	0.528	0.601	0.658	0.665	0.579	0.430	0.406	0.405 0.444	0.803	1.000	0.817
X2 X1						0.591	0.579	0.612	0.669	0.676	0.646	0.479	0.443	0.444	0.803	0.896	1.000
Λı						0.371	0.367	0.012	0.009	0.070	0.040	0.407	0.432	0.432	0.617	0.890	1.000
Implie	ed Cova	riance	s - Esti	mates													
	X12	X11	X10	X7	X8	X9	X4	X5	X6	X3	X2	X1					
X12	4.640	3.617	3.610	3.578	3.632	3.239	2.301	2.117	2.136	2.585	2.718	2.754					
X11	3.617	4.754	3.638	3.606	3.660	3.265	2.319	2.134	2.153	2.605	2.739	2.776					
X10	3.610	3.638	4.390	3.600	3.654	3.259	2.315	2.130	2.149	2.600	2.735	2.771					
X7	3.578	3.606	3.600	4.747	4.157	3.708	2.634	2.423	2.445	2.958	3.111	3.152					
X8	3.632	3.660	3.654	4.157	4.794	3.764	2.673	2.460	2.482	3.003	3.158	3.200					
X9	3.239	3.265	3.259	3.708	3.764	4.169	2.385	2.194	2.214	2.678	2.817	2.854					
X4	2.301	2.319	2.315	2.634	2.673	2.385	3.823	3.099	3.128	1.931	2.031	2.058					
X5	2.117	2.134	2.130	2.423	2.460	2.194	3.099	3.745	2.877	1.777	1.868	1.893					
X6	2.136	2.153	2.149	2.445	2.482	2.214	3.128	2.877	3.824	1.793	1.886	1.911					
110	2.150	100	٠.١١٧	2.113	2.102	4.41	5.120	2.077	J.∪ ∠ ⊤	1.175	1.000	1./11					

X3	2.585	2.605	2.600	2.958	3.003	2.678	1.931	1.777	1.793	5.125	3.945	3.997
X2	2.718	2.739	2.735	3.111	3.158	2.817	2.031	1.868	1.886	3.945	4.709	4.204
X1	2.754	2.776	2.771	3.152	3.200	2.854	2.058	1.893	1.911	3.997	4.204	4.675
Impli	ed Corr	elation	s - Estii	mates								
	X12	X11	X10	X7	X8	X9	X4	X5	X6	X3	X2	X1
X12	1.000	0.770	0.800	0.762	0.770	0.736	0.546	0.508	0.507	0.530	0.581	0.591
X11	0.770	1.000	0.796	0.759	0.767	0.733	0.544	0.506	0.505	0.528	0.579	0.589
X10	0.800	0.796	1.000	0.789	0.796	0.762	0.565	0.525	0.525	0.548	0.601	0.612
X7	0.762	0.759	0.789	1.000	0.871	0.833	0.618	0.575	0.574	0.600	0.658	0.669
X8	0.770	0.767	0.796	0.871	1.000	0.842	0.625	0.580	0.580	0.606	0.665	0.676
X9	0.736	0.733	0.762	0.833	0.842	1.000	0.597	0.555	0.554	0.579	0.636	0.646
X4	0.546	0.544	0.565	0.618	0.625	0.597	1.000	0.819	0.818	0.436	0.479	0.487
X5	0.508	0.506	0.525	0.575	0.580	0.555	0.819	1.000	0.760	0.406	0.445	0.452
X6	0.507	0.505	0.525	0.574	0.580	0.554	0.818	0.760	1.000	0.405	0.444	0.452
X3	0.530	0.528	0.548	0.600	0.606	0.579	0.436	0.406	0.405	1.000	0.803	0.817
X2	0.581	0.579	0.601	0.658	0.665	0.636	0.479	0.445	0.444	0.803	1.000	0.896
X1	0.591	0.589	0.612	0.669	0.676	0.646	0.487	0.452	0.452	0.817	0.896	1.000
Resid	ual Cov											
	X12	X11	X10	X7	X8	X9	X4	X5	X6	X3	X2	X1
X12	0.000	0.085	0.036	-0.126	-0.180	-0.085	0.125	0.103	0.376	0.395	0.251	0.231
X11	0.085	0.000	-0.099		-0.052	0.012		0.197	0.075	0.090	0.080	0.264
X10		-0.099		0.055	-0.044	0.053		0.087		0.257	0.157	0.165
X7		0.100		0.000	0.047	-0.061		-0.074			-0.089	
X8		-0.052			0.000	0.063		-0.147				-0.025
X9		0.012		-0.061	0.063	0.000		0.040				-0.027
X4	0.125	0.093	0.175	-0.085	-0.061	0.052		0.007		-0.042		
X5	0.103	0.197	0.087	-0.074	-0.147	0.040	0.007	0.000		-0.128		
X6	0.376	0.075	0.330	-0.092	-0.008	0.093		-0.004				
X3	0.395	0.090	0.257	0.099	0.116	0.062		-0.128				-0.044
X2	0.251	0.080	0.157	-0.089	-0.167	-0.264		-0.012			0.000	0.007
X1	0.231	0.264	0.165	0.020	-0.025	-0.027	0.120	0.151	0.013	-0.044	0.007	0.000

Standardized Residual Covariances																
	X12	X11	X10	X7	X8	X9	X4	X5	X6	X3	X2	X1				
X12	0.000	0.175	0.077	-0.261	-0.371	-0.190	0.320	0.270	0.974	0.876	0.568	0.523				
X11	0.175	0.000	-0.207	0.206	-0.105	0.027	0.234	0.512	0.192	0.197	0.179	0.591				
X10	0.077	-0.207	0.000	0.116	-0.092	0.121	0.455	0.233	0.874	0.583	0.363	0.381				
X7	-0.261	0.206	0.116	0.000	0.092	-0.128	-0.208	-0.187	-0.229	0.211	-0.192	0.044				
X8	-0.371	-0.105	-0.092	0.092	0.000	0.131	-0.148	-0.368	-0.019	0.245	-0.358	-0.053				
X9	-0.190	0.027	0.121	-0.128	0.131	0.000	0.137	0.108	0.249	0.142	-0.617	-0.063				
X4	0.320	0.234	0.455	-0.208	-0.148	0.137	0.000	0.017	-0.012	-0.107	-0.474	0.313				
X5	0.270	0.512	0.233	-0.187	-0.368	0.108	0.017	0.000	-0.011	-0.331	-0.033	0.402				
X6	0.974	0.192	0.874	-0.229	-0.019	0.249	-0.012	-0.011	0.000	-0.073	-0.209	0.035				
X3	0.876	0.197	0.583	0.211	0.245	0.142	-0.107	-0.331	-0.073	0.000	0.065	-0.084				
X2	0.568	0.179	0.363	-0.192	-0.358	-0.617	-0.474	-0.033	-0.209	0.065	0.000	0.014				
X1	0.523	0.591	0.381	0.044	-0.053	-0.063	0.313	0.402	0.035	-0.084	0.014	0.000				
Factor	r Score	Weight	ts - Esti	imates												
					X12	X11	X10	X7	X8	X9	X4	X5	X6	X3	X2	X1
Kampa	anye Kla	aim Ke	sehatan	1	0.004	0.004	0.006	0.019	0.022	0.014	0.439	0.205	0.201	0.001	0.002	0.003
-	kasi Ke	_			0.004	0.004	0.006	0.020	0.023	0.014	0.003	0.001	0.001	0.129	0.332	0.454
Rasa F	Percaya]	Pada K	laim K	esehatan	0.050	0.048	0.070	0.229	0.264	0.166	0.026	0.012	0.012	0.008	0.020	0.028
Intensi	itas_Pen	nbelian			0.198	0.189	0.276	0.090	0.103	0.065	0.010	0.005	0.005	0.003	0.008	0.011
Total	Effects	- Estim	ates													
				Kaı	mpanye Kla	nim_Kesehata	nVerifika	si_Kelor	npok Ref	erensi	Rasa Pe	rcaya Pa	da_Klain	n Kesehat	tanIntens	itas_Pembelian
Rasa F	Percaya 1	Pada_K	laim K	esehatan	0.456			0.465				0.000				0.000
Intensi	itas_Pen	nbelian			0.443			0.452				0.971				0.000
X12					0.440			0.449				0.965				0.994
X11					0.444			0.453				0.973				1.002
X10					0.443			0.452				0.971				1.000
X7					0.504			0.514				1.104				0.000
X8					0.511			0.522				1.121				0.000
X9					0.456			0.465				1.000				0.000
X4					1.077			0.000				0.000				0.000
X5					0.991			0.000				0.000				0.000
X6					1.000			0.000				0.000				0.000
X3					0.000			0.938				0.000				0.000
X2					0.000			0.987				0.000				0.000
X1					0.000			1.000				0.000				0.000

Standardized Total Effects - Estimates

Ka	mpanye Klaim_	_KesehatanVerifikasi_Kelompok Referensi	Rasa Percaya Pada_Klaim K	esehatanIntensitas_Pembelian
Rasa Percaya Pada_Klaim Kesehatan	0.424	0.524	0.000	0.000
Intensitas_Pembelian	0.396	0.489	0.933	0.000
X12	0.348	0.430	0.821	0.879
X11	0.347	0.428	0.817	0.876
X10	0.360	0.445	0.849	0.910
X7	0.394	0.487	0.929	0.000
X8	0.398	0.492	0.938	0.000
X9	0.381	0.470	0.897	0.000
X4	0.939	0.000	0.000	0.000
X5	0.873	0.000	0.000	0.000
X6	0.871	0.000	0.000	0.000
X3	0.000	0.856	0.000	0.000
X2	0.000	0.939	0.000	0.000
X1	0.000	0.954	0.000	0.000

Direct Effects - Estimates

Ka	mpanye Klaim_KesehatanVeri	fikasi_Kelompok ReferensiRasa Perc	aya Pada_Klaim Kesehatan	Intensitas_Pembelian
Rasa Percaya Pada_Klaim Kesehatan	0.456	0.465	0.000	0.000
Intensitas_Pembelian	0.000	0.000	0.971	0.000
X12	0.000	0.000	0.000	0.994
X11	0.000	0.000	0.000	1.002
X10	0.000	0.000	0.000	1.000
X7	0.000	0.000	1.104	0.000
X8	0.000	0.000	1.121	0.000
X9	0.000	0.000	1.000	0.000
X4	1.077	0.000	0.000	0.000
X5	0.991	0.000	0.000	0.000
X6	1.000	0.000	0.000	0.000
X3	0.000	0.938	0.000	0.000
X2	0.000	0.987	0.000	0.000
X1	0.000	1.000	0.000	0.000

Standardized Direct Effects - Estim	ates			
Ka	mpanye Klaim_KesehatanVeri	fikasi_Kelompok ReferensiRasa Pere	caya Pada_Klaim Kesehatan	Intensitas_Pembelian
Rasa Percaya Pada_Klaim Kesehatan	0.424	0.524	0.000	0.000
Intensitas_Pembelian	0.000	0.000	0.933	0.000
X12	0.000	0.000	0.000	0.879
X11	0.000	0.000	0.000	0.876
X10	0.000	0.000	0.000	0.910
X7	0.000	0.000	0.929	0.000
X8	0.000	0.000	0.938	0.000
X9	0.000	0.000	0.897	0.000
X4	0.939	0.000	0.000	0.000
X5	0.873	0.000	0.000	0.000
X6	0.871	0.000	0.000	0.000
X3	0.000	0.856	0.000	0.000
X2	0.000	0.939	0.000	0.000
X1	0.000	0.954	0.000	0.000

Indirect Effects - Estimates

K	ampanye Klair	m_KesehatanVerifikasi_Kelompok ReferensiRa	asa Percaya Pada_Klaim Kesehatan	Intensitas_Pembelian
Rasa Percaya Pada_Klaim Kesehatar	0.000	0.000	0.000	0.000
Intensitas_Pembelian	0.443	0.452	0.000	0.000
X12	0.440	0.449	0.965	0.000
X11	0.444	0.453	0.973	0.000
X10	0.443	0.452	0.971	0.000
X7	0.504	0.514	0.000	0.000
X8	0.511	0.522	0.000	0.000
X9	0.456	0.465	0.000	0.000
X4	0.000	0.000	0.000	0.000
X5	0.000	0.000	0.000	0.000
X6	0.000	0.000	0.000	0.000
X3	0.000	0.000	0.000	0.000
X2	0.000	0.000	0.000	0.000
X1	0.000	0.000	0.000	0.000

Standardized Indirect Effects - Estimates

Ka	mpanye Klaim_KesehatanVerifika	asi_Kelompok ReferensiRasa Percay	ya Pada_Klaim KesehatanIntensitas	_Pembelian
Rasa Percaya Pada_Klaim Kesehatan	0.000	0.000	0.000	0.000
Intensitas_Pembelian	0.396	0.489	0.000	0.000
X12	0.348	0.430	0.821	0.000
X11	0.347	0.428	0.817	0.000
X10	0.360	0.445	0.849	0.000
X7	0.394	0.487	0.000	0.000
X8	0.398	0.492	0.000	0.000
X9	0.381	0.470	0.000	0.000
X4	0.000	0.000	0.000	0.000
X5	0.000	0.000	0.000	0.000
X3	0.000	0.000	0.000	0.000
X2	0.000	0.000	0.000	0.000
X1	0.000	0.000	0.000	0.000

Modification Indices

Cova	riances:		M.I. Par Change							
Z2 e12	<> <>		5.962 4.639	-0.214 -0.225						
e6	<>		4.530	0.213						
e2	<>	e9	4.518	-0.156						
e2	<>	e4	5.488	-0.162						

Variances: M.I. Par Change

Regression Weights: M.I. Par Change

Covariances among Estimates

	par-1	par-2	par-3	par-4 par-5	par-6	par-7	par-8	par-9	par-10	par-11	par-12	par-13	par-14	par-15	par-16
par-1	0.002	0.000	0.000	$0.000 \ 0.000$	0.000	-0.002	0.000	0.000	0.000	0.001	0.000	-0.007	0.000	0.000	0.000
par-2	0.000	0.005	0.000	0.000 0.001	0.000	-0.004	0.000	0.000	0.000	0.000	0.003	0.000	-0.014	0.000	0.000
par-3	0.000	0.000	0.003	0.000 -0.001	-0.001	0.000	0.000	0.002	0.002	0.000	0.000	0.000	0.000	-0.004	0.000
par-4	0.000	0.000	0.000	0.004 0.000	0.000	0.000	0.002	-0.002	0.000	0.000	0.000	0.000	0.000	0.000	-0.002
par-5	0.000	0.001	-0.001	0.000 0.005	-0.002	-0.002	0.000	-0.001	-0.001	0.000	0.001	0.000	-0.006	0.001	0.000

	0.000	0.000	0.001	0.000 0.002	0.002	0.001	0.000	0.001	0.001	0.000	0.000	0.002	0.000	0.001	0.000
par-6	0.000	0.000	-0.001	0.000 -0.002	0.003	-0.001	0.000	-0.001	-0.001	0.000	0.000	-0.003	0.000	0.001	0.000
par-7	-0.002	-0.004	0.000	0.000 -0.002	-0.001	0.127	0.000	0.000	0.000	-0.002	-0.005	0.122	0.100	0.000	0.000
par-8	0.000	0.000	0.000	0.002 0.000	0.000	0.000	0.004	-0.002	0.000	0.000	0.000	0.000	0.000	0.000	-0.001
par-9	0.000	0.000	0.002	-0.002 -0.001	-0.001	0.000	-0.002	0.004	0.002	0.000	0.000	0.000	0.000	-0.004	0.000
par-10	0.000	0.000	0.002	0.000 -0.001	-0.001	0.000	0.000	0.002	0.004	0.000	0.000	0.000	0.000	-0.004	0.000
par-11	0.001	0.000	0.000	$0.000 \ 0.000$	0.000	-0.002	0.000	0.000	0.000	0.003	0.000	-0.007	0.000	0.000	0.000
par-12	0.000	0.003	0.000	0.000 0.001	0.000	-0.005	0.000	0.000	0.000	0.000	0.004	0.000	-0.016	0.000	0.000
par-13	-0.007	0.000	0.000	$0.000 \ 0.000$	-0.003	0.122	0.000	0.000	0.000	-0.007	0.000	0.298	0.049	0.001	0.000
par-14	0.000	-0.014	0.000	0.000 -0.006	0.000	0.100	0.000	0.000	0.000	0.000	-0.016	0.049	0.192	0.000	0.000
par-15	0.000	0.000	-0.004	0.000 0.001	0.001	0.000	0.000	-0.004	-0.004	0.000	0.000	0.001	0.000	0.028	0.001
par-16	0.000	0.000	0.000	-0.002 0.000	0.000	0.000	-0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.014
par-17	0.002	0.000	0.000	0.000 0.000	0.000	-0.003	0.000	0.000	0.000	0.001	0.000	-0.008	0.000	-0.001	0.000
par-18	-0.002	0.000	0.000	0.000 0.000	0.000	0.003	0.000	0.000	0.000	-0.001	0.000	0.005	0.000	0.000	0.000
par-19	-0.001	0.000	0.000	0.000 0.000	0.000	0.002	0.000	0.000	0.000	-0.002	0.000	0.004	0.000	0.001	0.000
par-20	0.000	0.002	0.000	0.000 0.001	0.000	-0.003	0.000	0.000	0.000	0.000	0.002	0.000	-0.009	0.000	0.000
par-21	0.000	-0.001	0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
par-22	0.000	0.000	0.000	0.000 0.000	0.000	0.003	0.000	0.000	0.000	0.000	-0.003	0.000	0.005	-0.001	0.000
par-23	0.000	0.000	0.001	0.000 0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	-0.002	0.000
par-24	0.000	0.000	0.000	0.000 0.000	0.000	0.000	0.000	0.000	-0.001	0.000	0.000	0.000	0.000	0.000	0.000
par-25	0.000	0.000	0.000	0.002 0.000	0.000	0.000	0.001	-0.001	0.000	0.000	0.000	0.000	0.000	0.000	-0.002
par-26	0.000	0.000	0.000	-0.002 0.000	0.000	0.000	-0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
par 20 par-27	0.000	0.000	0.000	0.002 0.000	0.000	0.000	-0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000	-0.003
par-28	0.000	0.000	-0.001	0.000 0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	-0.001	-0.002
par 20	0.000	0.000	0.001	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002
	por 17	nor 10	nor 10	par-20par-21	nor 22	nor 22	nor 24	nor 25	nor 26	nor 27	nor 20				
	par-17	par-18	par-19		par-22 0.000	par-23	par-24	par-25	par-26	par-27	par-28 0.000				
	0.002	-0.002	-0.001	0.000 0.000		0.000	0.000	0.000	0.000	0.000					
	0.000	0.000	0.000	0.002 -0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
	0.000	0.000	0.000	0.000 0.000	0.000	0.001	0.000	0.000	0.000	0.000	-0.001				
	0.000	0.000	0.000	0.000 0.000	0.000	0.000	0.000	0.002	-0.002	0.000	0.000				
	0.000	0.000	0.000	0.001 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
	0.000	0.000	0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
	-0.003	0.003	0.002	-0.003 0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000				
	0.000	0.000	0.000	0.000 0.000	0.000	0.000	0.000	0.001	-0.001	-0.002	0.000				
	0.000	0.000	0.000	0.000 0.000	0.000	0.001	0.000	-0.001	0.001	0.001	0.000				
	0.000	0.000	0.000	0.000 0.000	0.000	0.001	-0.001	0.000	0.000	0.000	0.000				
	0.001	-0.001	-0.002	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
	0.000	0.000	0.000	0.002 0.001	-0.003	0.000	0.000	0.000	0.000	0.000	0.000				
	-0.008	0.005	0.004	$0.000 \ 0.000$	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
	0.000	0.000	0.000	-0.009 0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000				
	-0.001	0.000	0.001	$0.000 \ 0.000$	-0.001	-0.002	0.000	0.000	0.000	0.000	-0.001				
	0.000	0.000	0.000	$0.000 \ 0.000$	0.000	0.000	0.000	-0.002	0.000	-0.003	-0.002				
	0.011	-0.005	-0.004	$0.000 \ 0.000$	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
	-0.005	0.012	0.001	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
	-0.004	0.001	0.034	$0.000 \ 0.000$	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
	0.000	0.000	0.000	0.020 0.000	-0.005	0.000	0.000	0.000	0.000	0.000	0.000				

0.000	0.000	0.000	0.000 0.019	-0.004	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-0.005 -0.004	0.013	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	$0.000 \ 0.000$	0.000	0.013	-0.002	0.000	0.000	0.000	0.000
0.000	0.000	0.000	$0.000 \ 0.000$	0.000	-0.002	0.011	0.000	0.000	0.000	-0.001
0.000	0.000	0.000	$0.000 \ 0.000$	0.000	0.000	0.000	0.016	-0.004	-0.001	0.000
0.000	0.000	0.000	$0.000 \ 0.000$	0.000	0.000	0.000	-0.004	0.027	0.000	0.000
0.000	0.000	0.000	$0.000 \ 0.000$	0.000	0.000	0.000	-0.001	0.000	0.025	0.000
0.000	0.000	0.000	$0.000 \ 0.000$	0.000	0.000	-0.001	0.000	0.000	0.000	0.010

Correlations among Estimates

	par-1	par-2	par-3	par-4 par-5	par-6	par-7	par-8	par-9	par-10	par-11	par-12	par-13	par-14	par-15	par-16
par-1	1.000	-0.001	0.002	-0.002 0.024	0.138	-0.125	0.000	0.003	0.003	0.352	-0.001	-0.298	0.001	-0.003	-0.004
par-2	-0.001	1.000	0.000	0.001 0.206	0.004	-0.183	0.000	-0.001	0.001	-0.001	0.569	0.000	-0.458	0.009	0.002
par-3	0.002	0.000	1.000	0.002 -0.217	-0.255	-0.001	0.002	0.484	0.619	0.001	0.001	-0.001	0.000	-0.392	0.031
par-4	-0.002	0.001	0.002	1.000 -0.003	0.001	0.000	0.432	-0.387	0.003	-0.001	0.001	0.001	0.000	0.001	-0.210
par-5	0.024	0.206	-0.217	-0.003 1.000	-0.433	-0.090	-0.002	-0.160	-0.214	0.006	0.234	-0.005	-0.191	0.074	-0.011
par-6	0.138	0.004	-0.255	0.001 -0.433	1.000	-0.055	0.002	-0.192	-0.244	0.116	0.016	-0.095	-0.002	0.107	-0.011
par-7	-0.125	-0.183	-0.001	0.000 -0.090	-0.055	1.000	0.000	0.000	-0.001	-0.087	-0.226	0.630	0.642	0.000	0.000
par-8	0.000	0.000	0.002	0.432 -0.002	0.002	0.000	1.000	-0.398	-0.001	0.000	0.000	0.000	0.000	-0.002	-0.156
par-9	0.003	-0.001	0.484	-0.387 -0.160	-0.192	0.000	-0.398	1.000	0.483	0.002	-0.001	-0.001	0.001	-0.338	0.003
par-10	0.003	0.001	0.619	0.003 -0.214	-0.244	-0.001	-0.001	0.483	1.000	0.001	0.001	-0.001	-0.001	-0.391	-0.002
par-11	0.352	-0.001	0.001	-0.001 0.006	0.116	-0.087	0.000	0.002	0.001	1.000	-0.001	-0.219	0.000	-0.014	-0.002
par-12	-0.001	0.569	0.001	0.001 0.234	0.016	-0.226	0.000	-0.001	0.001	-0.001	1.000	0.000	-0.539	0.014	0.005
par-13	-0.298	0.000	-0.001	0.001 -0.005	-0.095	0.630	0.000	-0.001	-0.001	-0.219	0.000	1.000	0.203	0.006	0.001
par-14	0.001	-0.458	0.000	0.000 -0.191	-0.002	0.642	0.000	0.001	-0.001	0.000	-0.539	0.203	1.000	-0.004	-0.002
par-15	-0.003	0.009	-0.392	0.001 0.074	0.107	0.000	-0.002	-0.338	-0.391	-0.014	0.014	0.006	-0.004	1.000	0.068
par-16	-0.004	0.002	0.031	-0.210-0.011	-0.011	0.000	-0.156	0.003	-0.002	-0.002	0.005	0.001	-0.002	0.068	1.000
par-17	0.351	-0.002	0.003	-0.0040.024	0.080	-0.087	-0.001	0.006	0.004	0.244	-0.002	-0.150	0.001	-0.030	-0.006
par-18	-0.319	0.001	-0.003	0.003 -0.057	0.006	0.071	0.001	-0.006	-0.005	-0.108	0.002	0.083	-0.001	-0.017	0.006
par-19	-0.068	0.001	-0.001	0.001 -0.002	-0.031	0.024	0.000	-0.001	0.000	-0.153	0.000	0.037	0.000	0.019	0.001
par-20	-0.002	0.156	0.001	0.001 0.051	0.007	-0.056	0.000	-0.002	0.002	-0.001	0.252	0.001	-0.141	0.013	0.006
par-21	0.000	-0.151	0.001	-0.0020.012	-0.003	-0.006	-0.001	0.000	-0.001	0.001	0.069	0.000	0.001	-0.013	0.001
par-22	0.002	-0.012	-0.002	$0.000 \ 0.009$	-0.046	0.065	0.001	0.002	-0.001	0.001	-0.333	-0.001	0.091	-0.031	-0.008
par-23	0.006	0.000	0.109	0.005 -0.053	-0.016	-0.001	0.001	0.093	0.136	0.003	0.001	-0.002	0.000	-0.090	-0.036
par-24	-0.002	-0.004	-0.032	-0.007 0.044	0.012	0.001	0.006	-0.022	-0.153	0.000	-0.003	0.001	0.002	-0.020	-0.040
par-25	-0.002	0.001	0.004	0.218 -0.005	0.002	0.000	0.170	-0.116	0.003	-0.002	0.000	0.001	-0.001	0.000	-0.149
par-26	0.003	-0.002	-0.002	-0.195 0.004	0.000	0.000	-0.061	0.063	-0.006	0.002	-0.001	-0.001	0.001	-0.003	-0.019
par-27	-0.001	0.001	-0.002	-0.019 0.001	-0.003	0.000	-0.160	0.068	0.005	-0.001	0.001	0.000	0.000	0.004	-0.185
par-28	0.001	0.001	-0.123	0.000 0.024	0.018	0.000	-0.006	0.056	0.013	0.000	-0.003	0.000	0.001	-0.085	-0.191
	par-17	par-18	par-19	par-20par-21	par-22	par-23	par-24	par-25	par-26	par-27	par-28				
	0.351	-0.319	-0.068	-0.002 0.000	0.002	0.006	-0.002	-0.002	0.003	-0.001	0.001				
	-0.002	0.001	0.001	0.156 -0.151	-0.012	0.000	-0.004	0.001	-0.002	0.001	0.001				
	0.003	-0.003	-0.001	0.001 0.001	-0.002	0.109	-0.032	0.004	-0.002	-0.002	-0.123				

-0.004	0.003	0.001	0.001 -0.002	0.000	0.005	-0.007	0.218	-0.195	-0.019	0.000
0.024	-0.057	-0.002	0.051 0.012	0.009	-0.053	0.044	-0.005	0.004	0.001	0.024
0.080	0.006	-0.031	0.007 -0.003	-0.046	-0.016	0.012	0.002	0.000	-0.003	0.018
-0.087	0.071	0.024	-0.056-0.006	0.065	-0.001	0.001	0.000	0.000	0.000	0.000
-0.001	0.001	0.000	0.000 -0.001	0.001	0.001	0.006	0.170	-0.061	-0.160	-0.006
0.006	-0.006	-0.001	-0.002 0.000	0.002	0.093	-0.022	-0.116	0.063	0.068	0.056
0.004	-0.005	0.000	0.002 -0.001	-0.001	0.136	-0.153	0.003	-0.006	0.005	0.013
0.244	-0.108	-0.153	-0.001 0.001	0.001	0.003	0.000	-0.002	0.002	-0.001	0.000
-0.002	0.002	0.000	0.252 0.069	-0.333	0.001	-0.003	0.000	-0.001	0.001	-0.003
-0.150	0.083	0.037	0.001 0.000	-0.001	-0.002	0.001	0.001	-0.001	0.000	0.000
0.001	-0.001	0.000	-0.141 0.001	0.091	0.000	0.002	-0.001	0.001	0.000	0.001
-0.030	-0.017	0.019	0.013 -0.013	-0.031	-0.090	-0.020	0.000	-0.003	0.004	-0.085
-0.006	0.006	0.001	0.006 0.001	-0.008	-0.036	-0.040	-0.149	-0.019	-0.185	-0.191
1.000	-0.437	-0.196	-0.004 0.001	0.003	0.011	-0.003	-0.005	0.006	-0.002	0.001
-0.437	1.000	0.044	0.003 0.000	-0.003	-0.011	0.005	0.004	-0.004	0.001	-0.002
-0.196	0.044	1.000	0.001 -0.001	0.000	-0.001	-0.001	0.001	-0.003	0.002	0.001
-0.004	0.003	0.001	1.000 -0.003	-0.282	0.001	-0.007	0.002	-0.003	0.002	-0.002
0.001	0.000	-0.001	-0.003 1.000	-0.251	0.000	0.004	-0.002	0.003	0.000	-0.006
0.003	-0.003	0.000	-0.282 -0.251	1.000	-0.001	0.003	0.001	0.000	-0.001	0.008
0.011	-0.011	-0.001	0.001 0.000	-0.001	1.000	-0.133	0.007	-0.008	0.001	0.002
-0.003	0.005	-0.001	-0.007 0.004	0.003	-0.133	1.000	-0.002	0.017	-0.018	-0.053
-0.005	0.004	0.001	0.002 -0.002	0.001	0.007	-0.002	1.000	-0.197	-0.052	-0.007
0.006	-0.004	-0.003	-0.003 0.003	0.000	-0.008	0.017	-0.197	1.000	0.012	-0.004
-0.002	0.001	0.002	$0.002 \ 0.000$	-0.001	0.001	-0.018	-0.052	0.012	1.000	0.013
0.001	-0.002	0.001	-0.002 -0.006	0.008	0.002	-0.053	-0.007	-0.004	0.013	1.000

Critical Ratios for Differences between Parameters

	par-1	par-2	par-3	par-4 par-5	par-6	par-7	par-8	par-9	par-10	par-11	par-12	par-13	par-14	par-15	par-16
par-1	0.000	0.049	1.852	0.194 -6.316	-7.647	2.538	0.094	-0.208	1.598	-0.849	1.143	5.843	4.349	0.185	-4.111
par-2	0.049	0.000	1.455	0.117 -6.010	-5.847	2.456	0.033	-0.214	1.257	-0.597	1.386	5.945	4.038	0.155	-3.832
par-3	1.852	1.455	0.000	-1.395 -6.469	-7.068	2.189	-1.513	-2.397	-0.324	-2.274	-0.502	5.719	4.028	-0.522	-5.013
par-4	0.194	0.117	-1.395	0.000 -5.654	-6.225	2.514	-0.118	-0.291	1.188	-0.755	0.828	5.932	4.292	0.095	-3.675
par-5	-6.316	-6.010	-6.469	-5.6540.000	0.082	3.934	5.654	4.895	6.255	5.273	7.208	6.905	5.341	3.188	0.085
par-6	-7.647	-5.847	-7.068	-6.225 0.082	0.000	3.970	6.245	5.284	6.838	6.215	6.976	6.844	5.507	3.250	0.020
par-7	2.538	2.456	2.189	2.514 3.934	3.970	0.000	-2.538	-2.597	-2.233	-2.663	-2.215	5.541	2.884	-2.271	-3.845
par-8	0.094	0.033	-1.513	-0.1185.654	6.245	-2.538	0.000	-0.221	1.298	-0.674	0.927	5.948	4.312	0.140	-3.722
par-9	-0.208	-0.214	-2.397	-0.2914.895	5.284	-2.597	-0.221	0.000	2.110	-0.379	1.150	5.985	4.360	0.242	-3.729
par-10	1.598	1.257	-0.324	1.188 6.255	6.838	-2.233	1.298	2.110	0.000	-2.041	-0.309	5.748	4.064	-0.435	-4.798
par-11	-0.849	-0.597	-2.274	-0.755 5.273	6.215	-2.663	-0.674	-0.379	-2.041	0.000	1.610	5.927	4.445	0.456	-3.596
par-12	1.143	1.386	-0.502	0.828 7.208	6.976	-2.215	0.927	1.150	-0.309	1.610	0.000	5.791	3.826	-0.329	-4.505
par-13	5.843	5.945	5.719	5.932 6.905	6.844	5.541	5.948	5.985	5.748	5.927	5.791	0.000	-2.163	-5.692	-6.793
par-14	4.349	4.038	4.028	4.292 5.341	5.507	2.884	4.312	4.360	4.064	4.445	3.826	-2.163	0.000	-4.013	-5.358

par-15	0.185	0.155	-0.522	0.095 3.188	3.250	-2.271	0.140	0.242	-0.435	0.456	-0.329	-5.692	-4.013	0.000	-2.790
par-16	-4.111	-3.832	-5.013	-3.675 0.085	0.020	-3.845	-3.722	-3.729	-4.798	-3.596	-4.505	-6.793	-5.358	-2.790	0.000
par-17	-5.853	-4.626	-5.930	-4.816-0.320	-0.429	-3.939	-4.800	-4.543	-5.760	-4.969	-5.369	-6.737	-5.520	-3.035	-0.330
par-18	-3.266	-3.326	-4.496	-3.4840.770	0.764	-3.698	-3.447	-3.203	-4.337	-2.940	-4.030	-6.755	-5.180	-2.281	0.574
par-19	2.002	1.939	1.300	1.901 4.600	4.627	-1.350	1.946	2.051	1.383	2.160	1.508	-5.065	-3.212	1.440	4.117
par-20	-0.449	-0.479	-1.312	-0.5262.977	2.975	-2.537	-0.477	-0.323	-1.199	-0.119	-1.117	-5.925	-4.136	-0.453	2.459
par-21	-0.647	-0.598	-1.528	-0.7152.839	2.876	-2.660	-0.667	-0.506	-1.410	-0.300	-1.239	-5.983	-4.375	-0.575	2.357
par-22	-4.347	-4.003	-5.181	-4.187 -0.015	-0.086	-3.970	-4.159	-3.924	-5.029	-3.802	-4.151	-6.825	-5.527	-2.756	-0.084
	-1.429	-1.341	-2.515	-1.4532.556	2.671	-2.936	-1.401	-1.255	-2.400	-0.993	-2.004	-6.181	-4.613	-0.983	2.051
	-2.976	-2.727	-3.891	-2.875 1.576	1.571	-3.396	-2.850	-2.580	-3.554	-2.434	-3.454	-6.496	-4.998	-1.855	1.146
par-25	-1.702	-1.615	-2.599	-1.8892.051	2.087	-3.050	-1.796	-1.426	-2.469	-1.300	-2.228	-6.251	-4.697	-1.246	1.556
par-26	0.721	0.666	-0.069	0.575 3.642	3.694	-2.045	0.646	0.802	0.027	0.987	0.182	-5.528	-3.833	0.387	3.140
par-27	0.398	0.356	-0.412	0.294 3.434	3.486	-2.206	0.326	0.488	-0.313	0.680	-0.148	-5.649	-3.973	0.146	2.731
par-28	-3.834	-3.480	-4.540	-3.6560.974	0.955	-3.618	-3.613	-3.451	-4.631	-3.220	-4.236	-6.647	-5.182	-2.219	0.632
	par-17	par-18	par-19	par-20par-21	par-22	par-23	par-24	par-25	par-26	par-27	par-28				
	-5.853	-3.266	2.002	-0.449 -0.647	-4.347	-1.429	-2.976	-1.702	0.721	0.398	-3.834				
	-4.626	-3.326	1.939	-0.479 -0.598	-4.003	-1.341	-2.727	-1.615	0.666	0.356	-3.480				
	-5.930	-4.496	1.300	-1.312-1.528	-5.181	-2.515	-3.891	-2.599	-0.069	-0.412	-4.540				
	-4.816	-3.484	1.901	-0.526 -0.715	-4.187	-1.453	-2.875	-1.889	0.575	0.294	-3.656				
	-0.320	0.770	4.600	2.977 2.839	-0.015	2.556	1.576	2.051	3.642	3.434	0.974				
	-0.429	0.764	4.627	2.975 2.876	-0.086	2.671	1.571	2.087	3.694	3.486	0.955				
	-3.939	-3.698	-1.350	-2.537 -2.660	-3.970	-2.936	-3.396	-3.050	-2.045	-2.206	-3.618				
	-4.800	-3.447	1.946	-0.477 -0.667	-4.159	-1.401	-2.850	-1.796	0.646	0.326	-3.613				
	-4.543	-3.203	2.051	-0.323 -0.506	-3.924	-1.255	-2.580	-1.426	0.802	0.488	-3.451				
	-5.760	-4.337	1.383	-1.199-1.410	-5.029	-2.400	-3.554	-2.469	0.027	-0.313	-4.631				
	-4.969	-2.940	2.160	-0.119 -0.300	-3.802	-0.993	-2.434	-1.300	0.987	0.680	-3.220				
	-5.369	-4.030	1.508	-1.117-1.239	-4.151	-2.004	-3.454	-2.228	0.182	-0.148	-4.236				
	-6.737	-6.755	-5.065	-5.925 -5.983	-6.825	-6.181	-6.496	-6.251	-5.528	-5.649	-6.647				
	-5.520	-5.180	-3.212	-4.136-4.375	-5.527	-4.613	-4.998	-4.697	-3.833	-3.973	-5.182				
	-3.035	-2.281	1.440	-0.453 -0.575	-2.756	-0.983	-1.855	-1.246	0.387	0.146	-2.219				
	-0.330	0.574	4.117	2.459 2.357	-0.084	2.051	1.146	1.556	3.140	2.731	0.632				
	0.000	0.797	4.171	2.868 2.785	0.247	2.574	1.604	2.076	3.580	3.369	1.106				
	0.797	0.000	3.845	2.009 1.900	-0.669	1.574	0.606	1.174	2.772	2.559	0.092				
	4.171	3.845	0.000	-1.944 -2.081	-4.217	-2.575	-3.395	-2.740	-1.068	-1.325	-3.808				
	2.868	2.009	-1.944	0.000 -0.133	-2.266	-0.594	-1.525	-0.854	0.870	0.622	-2.005				
	2.785	1.900	-2.081	-0.133 0.000	-2.207	-0.460	-1.413	-0.729	1.008	0.756	-1.893				
	0.247	-0.669	-4.217	-2.266 -2.207	0.000	2.205	1.281	1.773	3.273	3.068	0.797				
	2.574	1.574	-2.575	-0.594 -0.460	2.205	0.000	-0.973	-0.318	1.479	1.232	-1.574				
	1.604	0.606	-3.395	-1.525 -1.413	1.281	-0.973	0.000	0.644	2.374	2.104	-0.529				
	2.076	1.174	-2.740	-0.854-0.729	1.773	-0.318	0.644	0.000	1.550	1.417	-1.137				
	3.580	2.772	-1.068	0.870 1.008	3.273	1.479	2.374	1.550	0.000	-0.253	-2.790				
	3.369	2.559	-1.325	0.622 0.756	3.068	1.232	2.104	1.417	-0.253	0.000	-2.587				
	1.106	0.092	-3.808	-2.005 -1.893	0.797	-1.574	-0.529	-1.137	-2.790	-2.587	0.000				

Fit Measures

Fit Measure Discrepancy	Default model 62.352	Saturated 0.000	Independence 1987.032	Macro CMIN
Degrees of freedom P	50 0.113	0	66 0.000	DF P
Number of parameters	28	78	12	r NPAR
Discrepancy / df	1.247	70	30.107	CMINDF
Discrepancy / di	1.24/		30.107	CMINDI
RMR	0.126	0.000	2.682	RMR
GFI	0.935	1.000	0.177	GFI
Adjusted GFI	0.898		0.027	AGFI
Parsimony-adjusted GFI	0.599		0.150	PGFI
Normed fit index	0.969	1.000	0.000	NFI
Relative fit index	0.959		0.000	RFI
Incremental fit index	0.994	1.000	0.000	IFI
Tucker-Lewis index	0.992		0.000	TLI
Comparative fit index	0.994	1.000	0.000	CFI
Parsimony ratio	0.758	0.000	1.000	PRATIO
Parsimony-adjusted NFI	0.734	0.000	0.000	PNFI
Parsimony-adjusted CFI	0.753	0.000	0.000	PCFI
J J				
Noncentrality parameter estimate	12.352	0.000	1921.032	NCP
NCP lower bound	0.000	0.000	1779.247	NCPLO
NCP upper bound	36.617	0.000	2070.181	NCPHI
FMIN	0.416	0.000	13.247	FMIN
F0	0.082	0.000	12.807	F0
F0 lower bound	0.000	0.000	11.862	F0LO
F0 upper bound	0.244	0.000	13.801	F0HI
RMSEA	0.041		0.441	RMSEA
RMSEA lower bound	0.000		0.424	RMSEALO
RMSEA upper bound	0.070		0.457	RMSEAHI
P for test of close fit	0.669		0.000	PCLOSE

Akaike information criterion (AIC	C) 118.352	156.000	2011.032	AIC
Browne-Cudeck criterion	123.666	170.803	2013.310	BCC
Bayes information criterion	272.413	585.171	2077.059	BIC
Consistent AIC	230.836	469.348	2059.240	CAIC
Expected cross validation index	0.789	1.040	13.407	ECVI
ECVI lower bound	0.707	1.040	12.462	ECVILO
ECVI upper bound	0.951	1.040	14.401	ECVIHI
MECVI	0.824	1.139	13.422	MECVI
Hoelter .05 index	163		7	HFIVE
Hoelter .01 index	184		8	HONE

Fit Measures

Default model Saturated Independence	CMIN DF 62.352 50 0.000 0 1987.032 66	P NPAR 0.113 28 78 0.000 12	CMINDF 1.247 30.107	0.126 0.935 0.000 1.000	0.898 0.5	GFI NFI .599 0.969 1.000 .150 0.000	RFI IFI 0.959 0.994 1.000 0.000 0.000	TLI CFI 0.992 0.669 1.000 0.000 0.000
Default model Saturated Independence	PRATIO 0.994 0.000 1.000	PNFI PCFI 0.758 0.734 0.000 0.000 0.000 0.000	NCP 0.753 0.000 1921.032	NCPLO NCPH 12.352 0.000 0.000 0.000 1779.247 2070.1	36 0.	FMIN F0 6.617 0.416 0.000 3.247 12.807	F0LO F0HI 0.082 0.000 0.000 0.000 11.862 13.801	RMSEARMSEALO 0.244 0.041 0.000 0.441 0.424
Default model Saturated Independence	RMSEAHI 0.000 0.457	PCLOSE AIC 0.070 118.352 156.000 0.000 2011.03	BCC 123.666 170.803 2 2013.310	BIC 272.413 230.836 585.171 469.348 2077.059 2059.2	6 0.7 8 1.0	CCVI ECVII .789 0.707 .040 1.040 3.407 12.462	0.951 1.040 14.401	MECVI HFIVE HONE 0.824 163 184 1.139 13.422 7 8

DAFTAR RIWAYAT HIDUP

Nama : Eveline Rani Kusuma Subandrio

Tempat/tanggal lahir : Semarang, 30 Juni 1982

Jenis kelamin : Perempuan

Agama : Katolik

Alamat : Jl. Puri Anjasoro L4/7, Semarang – 50144

PENDIDIKAN FORMAL:

1988 – 1994 : SD Marsudirini Christus Rex Semarang

1994 – 1997: SMP PL Domenico Savio Semarang

1997 – 2000 : SMU Kolese Loyola Semarang

2000 – 2004 : Jurusan Teknologi Pangan dan Gizi, FATETA, Institut Pertanian Bogor