Warsito, Budi and Rusgiyono, Agus and Amirillah, M. Afif (2008) PEMODELAN GENERAL REGRESSION NEURAL NETWORK UNTUK PREDIKSI TINGKAT PENCEMARAN UDARA KOTA SEMARANG. Media Statistika, 1 (1). pp. 43-51. ISSN 1979-3693
| PDF - Published Version 87Kb |
Official URL: http://stat.undip.ac.id
Abstract
This paper is discuss about General Regression Neural Network (GRNN) modelling to predict time series data, i.e. the air pollution rate in Semarang City comprises the floating dust, carbon monoxide (CO) and nitrogen monoxide (NO). The GRNN model have four processing layer that are input layer, pattern layer, summation layer and output layer. The input variable is determined by the ARIMA model. The result of GRNN modelling shows that the network have a good performance both at predict in sample and predict out of sample, that can be seen from the mean square error. Keywords: GRNN, predict, air pollution
Item Type: | Article |
---|---|
Subjects: | Q Science > Q Science (General) |
Divisions: | Faculty of Science and Mathematics > Department of Statistics |
ID Code: | 1384 |
Deposited By: | INVALID USER |
Deposited On: | 15 Oct 2009 15:04 |
Last Modified: | 15 Oct 2009 15:04 |
Repository Staff Only: item control page