PERBANDINGAN UJI ALKALI DILUSI DENGAN UJI FORMALIN PADA
DARAH TIKUS WISTAR SETELAH TERPAPAR ASAP KNALPOT DENGAN
KADAR CO 1800 PPM SELAMA 4 JAM

Artikel Akhir Penelitian Karya Tulis Ilmiah
Diajukan untuk memenuhi tugas dan melengkapi
Persyaratan dalam menempuh Program Pendidikan Sarjana
Fakultas Kedokteran

Disusun oleh :
FELLA SUFA NOOR
NIM : G2A005072

FAKULTAS KEDOKTERAN
UNIVERSITAS DIPONEGORO
SEMARANG
2009
DAFTAR ISI

HALAMAN JUDUL...i
LEMBAR PENGESAHAN..ii
DAFTAR ISI..iii
DAFTAR TABEL ..vii
ABSTRAK...viii
ABSTRACT..ix

<table>
<thead>
<tr>
<th>BAB 1 PENDAHULUAN</th>
<th>PENDAHULUAN</th>
<th>PENDAHULUAN</th>
<th>PENDAHULUAN</th>
<th>PENDAHULUAN</th>
<th>PENDAHULUAN</th>
<th>PENDAHULUAN</th>
<th>PENDAHULUAN</th>
<th>PENDAHULUAN</th>
<th>PENDAHULUAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3. Tujuan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAB 2 TINJAUAN PUSTAKA</th>
<th>TINJAUAN PUSTAKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1. Pembakaran</td>
</tr>
<tr>
<td>2.2.2. Emisi Gas Buang</td>
</tr>
<tr>
<td>2.3. Racun</td>
</tr>
<tr>
<td>2.3.1. Definisi</td>
</tr>
<tr>
<td>2.3.2. Penggolongan</td>
</tr>
<tr>
<td>2.5. Patofisiologi Kerecunan CO</td>
</tr>
</tbody>
</table>
2.7. Pemeriksaan Forensik .. 19
2.8. Pemeriksaan Penunjang ... 19
2.9. Kerangka Teori ... 21
2.10. Kerangka Konsep ... 21
2.11. Hipotesis ... 21

BAB 3 METODE PENELITIAN .. 21

3.1. Ruang lingkup penelitian ... 22
3.2. Rancangan penelitian ... 22
3.3. Populasi dan Sampel .. 23
 3.3.1 Populasi ... 23
 3.3.2. Sampel .. 23
 3.3.2.1. Kriteria inklusi ... 23
 3.3.2.2. Kriteria eksklusi .. 23
 3.4.2.3. Besar sampel ... 23
 3.4.2.4. Cara pengambilan sampel .. 23
3.4. Variabel penelitian ... 24
 3.4.1. Variabel bebas .. 24
 3.4.2. Variabel tergantung .. 24
3.5. Alat dan bahan .. 24
 3.5.1. Alat Penelitian .. 24
 3.5.1.1. Alat Untuk Menghasilkan CO.......................... 24
 3.5.1.2. Alat Untuk Tempat Sampel......................... 24
 3.5.2. Bahan .. 25
3.6. Data yang dikumpulkan .. 25
3.7. Cara pengumpulan data ... 25
3.8. Alur kerja..27
3.9. Definisi operasional...28
3.10. Pengolahan dan analisa data...28

BAB 4 HASIL PENELITIAN...29
BAB 5 PEMBAHASAN...31
BAB 6 KESIMPULAN DAN SARAN...33
DAFTAR PUSTAKA...34
LAMPIRAN...35
DAFTAR TABEL

Tabel 1. Tabel Frekuensi Alkali Dilusi (P)..29

Tabel 2. Tabel Frekuensi Formalin (P)..29

Tabel 3. Hasil uji statistik Uji Alkali Dilusi Dengan Formalin(P).........................30
ABSTRAK
Perbandingan Uji Alkali Dilusi Dengan Uji Formalin Pada Darah Tikus Wistar Setelah Terpapar Asap Knalpot Dengan Kadar CO 1800 ppm Selama 4 Jam
Fella Sufa Noor*, dr. Santoso, Sp. F**

Latar Belakang: Karbon Monoksida (CO) adalah racun yang berbentuk gas. CO sendiri mempunyai afinitas 300 kali dari pada oksigen. Sebagai akibat perubahan Hb menjadi carboksi Hb, kemampuan mengangkut oksigen berkurang sehingga menimbulkan hipoksi. Penelitian ini bertujuan untuk menganalisa adanya perubahan pada darah secara makroskopes.

Hasil: Hasil penelitian ini didapatkan adanya kesamaan antara kedua uji tersebut, dimana kelompok perlakuan: +/+=4, +/=-0, +/-=1, pada kedua variabel ini didapatkan hasil yang tingkat reliabilitasnya istimewa (κ=1.0).

Kesimpulan: Terdapat kesesuaian antara uji alkali dilusi dengan uji formalin.

Kata Kunci: Uji alkali dilusi dengan uji formalin, darah tikus wistar, kadar CO, lama paparan.

* Mahasiswa Fakultas Kedokteran Universitas Diponegoro
**Staf Pengajar Bagian Ilmu Kedokteran Forensik Fakultas Kedokteran Universitas Diponegoro
ABSTRACT
Comparison Of Alkali Dilution Test With Formalin Test To Wistar Rads After Exposure Emission Containing CO 1800 ppm for 4 hours
Fella Sufa Noor*, dr. Santosa, Sp. F**

Background: Carbon monoxide is a poisoning gas. Which has affinity to Hb 300 times more than oxygen. Which is effected from the changing of Hb become carboxy Hb, the capability of fill oxygen reducted. Which is makes hypoksi. This research was to analyse the changing of blood in macroscopic.

Method: This research is an experimental research. Which is use Crosstabs metode, and Cohenn’s Kappa test, the sample consist of ten male wistar rads, which is adapted seven days. The sample divide in two groups, the first group consist 0f 5 rad, which is use as treatment, and the second group consist of 5 rad, which is use as controle. Than take the blood of controle group after intoxication exhauspt, take the blood of treatment group after death do the alkali dilution tes and the formalin tes compare with the blood of controle group. This file was obtained by perceiving the blood colour the wistar rad after intoxication.

Result: The result of this research obtained the same research between this two tes, which is the treatment group: +/-=4, +/-=0, -/-=1, in that two variable getting result wich has excellent (κ=1.0) of that level of reliable.

Conclusion: There are compatible between alkali dilution tes and formalin tes.

Key Words: Alkali dilution test and Formalin test, blood of wistar rad, dose CO, time intoxication.

* Medical student of Diponegoro University Semarang
** Forensic teacher of Medical Faculty of Diponegoro University
BAB 1
PENDAHULUAN

1.1. LATAR BELAKANG

Toksikologi adalah ilmu yang mempelajari khasiat racun, sifat, sumber, gejala-gejala dan pengobatan saat keracunan, serta kelainan-kelainan yang didapat pada korban yang telah meninggal. Sedangkan racun didefinisikan sebagai zat yang bekerja pada tubuh baik secara kimiai maupun fisiologik yang dalam dosis toksik dapat menyebabkan gangguan kesehatan atau mengakibatkan kematian.\(^1\)

Salah satu racun yang banyak dijumpai dalam kehidupan sehari-hari adalah berbentuk gas. Ada beberapa gas yang tergolong racun bagi manusia yang berasal dari sisa pembakaran, contohnya adalah gas karbon monoksida (CO), nitrogen oksida, sulfur dioksida, dll.\(^2\)

Sumber utama karbon monoksida adalah gas kota tetapi ditemukan dalam jumlah yang berarti di setiap pembakaran yang tidak sempurna, dan terutama dalam asap knalpot kendaraan bermotor. Oleh karena itu karbon monoksida merupakan bahan racun yang umum dan risiko kontak dengannya cukup besar.\(^3\)

Karbon monoksida sendiri adalah suatu gas tak berwarna dan tak berbau, dengan afinitas terhadap hemoglobin 300 kali daripada oksigen, sebagai akibat perubahan hemoglobin menjadi karboksihemoglobin, kemampuan mengangkut oksigen dari darah arteri berkurang sehingga menimbulkan hipoksi. Juga ada bukti bahwa karbon monoksida mungkin mempunyai efek toksik langsung terhadap miokardium.\(^3\)
Di Amerika Serikat, CO merupakan gas urutan pertama yang paling banyak menyebabkan kematian. Pemaparan gas CO hasil industri lebih tinggi daripada yang didapat melalui cara lain. Di Inggris sendiri, gas ini membunuh 50 orang serta mencenderai kurang lebih 200 orang per tahunnya. Di seluruh dunia, diperkirakan 1500 orang meninggal tiap tahunnya akibat keracunan gas CO. Keracunan gas CO lebih sering terjadi pada daerah kutub utara dan tempat yang tinggi di atas permukaan laut, sehingga penduduk lebih banyak menggunakan pemanas ruangan. Insiden kematian paling tinggi berada di Alaska, sedangkan Hawaii memiliki insiden kematian terendah. Keadaan jalan raya yang macet juga dapat meningkatkan insiden terjadinya keracunan gas CO, hal ini terjadi Karena asap kendaraan bermotor terbakar tidak sempurna.¹

Gas CO secara inhalasi masuk ke paru-paru, secara inhalasi kemudian mengalir ke alveoli masuk ke aliran darah. Gas CO dengan segera mengikat hemoglobin di tempat yang sama dengan tempat oksigen mengikat hemoglobin, untuk membentuk karboksi hemoglobin (COHb). Mekanisme kerja gas CO di dalam darah:

Afinitas hemoglobin untuk CO adalah 300 kali lebih besar dari oksigen. Jumlah titik jenuh dijelaskan dalam bentuk persentase hemoglobin yang dikombinasikan CO dalam bentuk karboksi-hemoglobin. Konsentrasi 0,5-10% atau 5.000-10.000 bagian per juta dari atmosfir dengan cepat dicapai pada saat kebakaran dan dapat menghasilkan sebuah titik jenuh COHb sekitar 75% dalam waktu 2-15 menit. Disamping afinitas terbesar dari hemoglobin untuk CO, kandungan COHb mencegah pelepasan oksigen ke jaringan, dampaknya adalah hipoksia jaringan. Kelembaban, temperatur, karbon dioksida dan aktfitas fisik meningkatkan tingkat respirasi dan absorbsi CO.⁴
Yang paling penting adalah reaksi CO dengan Hb dan sitokrom a3. dengan diikatnya Hb menjadi COHb mengakibatkan Hb menjadi inaktif sehingga darah berkurang kemampuannya untuk mengangkut O₂. Selain itu, adanya COHb dalam darah akan menghambat disosiasi oksi-Hb. Sehingga jaringan akan mengalami hipoksia. Reaksi CO dengan sitokrom a3 yang merupakan link yang penting dalam sistem enzim pernapasan sel yang terdapat pada mitokondria, akan menghambat pernapasan sel dan mengakibatkan hipoksia jaringan.¹

1.2. RUMUSAN MASALAH

Adakah kesesuaian antara tes Alkali Dilusi dengan tes Formalin setelah terpapar knalpot selama ³ jam dengan kadar CO 1800 ppm.

1.3. TUJUAN PENELITIAN

1.3.1. Tujuan Umum

Mengetahui kesesuaian antara pemeriksaan dengan uji Alkali dilusi dengan uji Formalin setelah pemaparan knalpot selama 4 jam dengan kadar CO 1800 ppm..
1.3.2. Tujuan Khusus

Menganalisa keefektifan antara uji Alkali Dilusi dengan uji Formalin setelah terpapar knalpot selama 4 jam dengan kadar CO 1800 ppm.

1.4. MANFAAT PENELITIAN

Agar mahasiswa mengetahui tentang bahaya CO, dosis toksik, yang dapat menyebabkan kematian, manifestasi klinis, pemeriksaan penunjang forensic, pemeriksaan penunjang untuk identifikasi keacunan CO.

Memberikan info kepada masyarakat luas tentang dampak keracunan CO
BAB 2

TINJAUAN PUSTAKA

2.1. Karbon Monoksida

2.1.1. Definisi

Karbon monoksida adalah suatu gas tak berwarna dan tak berbau, dengan afinitas terhadap hemoglobin 300 kali daripada oksigen, sebagai akibat perubahan hemoglobin terhadap karboksi-hemoglobin, kemampuan mengangkut oksigen dari darah arteri berkurang sehingga menimbulkan hipoksi. Juga ada bukti bahwa karbon monoksida mungkin mempunyai efek toksik langsung terhadap miokardium. 3

Gas CO dapat ditemukan dari hasil pembakaran yang tidak sempurna dari karbon dan bahan-bahan organik yang mengandung karbon.. Sumber terpenting gas CO adalah asap kendaraan bermotor yang menggunakan bensin sebagai bahan bakar, karena campuran bahan yang terbakar mengandung bahan bakar lebih banyak daripada udara, sehingga gas yang dikeluarkan mengandung 3-7% CO, sebaliknya, motor diesel dengan compression ignition mengeluarkan sangat sedikit CO, kecuali bila motor berfungsi tidak sempurna sehingga banyak mengeluarkan asap hitam yang mengandung CO. 1
2.2. Mesin

Secara garis besar, mesin dibagi menjadi beberapa jenis. Salah satunya adalah mesin 4 tak. Mesin 4 tak disebut juga mesin 4 langkah, maksudnya terdapat 4 langkah yang terjadi pada saat proses pembakaran bahan bakar.

2.2.1. Pembakaran

Pembakaran merupakan suatu proses oksidasi cepat bahan bakar disertai dengan produksi panas, atau panas dan cahaya. Pembakaran sempurna bahan bakar hanya terjadi jika ada pasokan oksigen yang cukup. Oksigen merupakan salah satu elemen bumi paling umum yang jumlahnya bisa mencapai 20,9% dari udara. Tujuan dari pembakaran yang baik adalah melepaskan seluruh panas yang terdapat dalam bahan bakar. Hal ini dilakukan dengan pengontrolan “tiga T” pembakaran yaitu:
(1) Temperature atau suhu yang cukup tinggi untuk menyalaikan dan menjaga penyalaan bahan bakar.

(2) Turbulence atau pencampuran oksigen dan bahan bakar yang baik, dan

(3) Time atau waktu yang cukup untuk pembakaran yang sempurna.

Energy efisiensi

Bahan bakar mengandung unsur kimia karbon (C) dan hidrogen (H). Ketika bereaksi dengan udara (O\textsubscript{2}) maka akan terbentuk panas, seperti ditunjukkan dalam persamaan reaksi kimia berikut ini.

\[
\begin{align*}
C & + O\textsubscript{2} & \rightarrow CO\textsubscript{2} + \text{Panas} \\
2C & + O\textsubscript{2} & \rightarrow 2CO + \text{Panas} \\
2H\textsubscript{2} & + O\textsubscript{2} & \rightarrow 2H\textsubscript{2}O + \text{Panas}
\end{align*}
\]

Sebagai contoh, ketika suatu motor bensin yang berbahan bakar bensin (gasoline) bereaksi dengan udara maka akan terbentuk panas dalam satuan kalori, sebagaimana ditunjukkan dalam persamaan reaksi kimia berikut ini.

\[
C\textsubscript{18}H\textsubscript{18} +12,5 (O\textsubscript{2} + 3,76 N\textsubscript{2}) \rightarrow 8CO\textsubscript{2} + 9H\textsubscript{2}O + 1212 \text{kcal}
\]

2.2.2. Emisi gas buang

Bagian – bagian gas buang yang sangat mengganggu kesehatan adalah:
a. Karbon monoksida (CO)

<table>
<thead>
<tr>
<th>Tabel 1. Perbandingan motor otto dan motor diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Bensin</td>
</tr>
<tr>
<td>Bagian-bagian</td>
</tr>
<tr>
<td>Gas buang</td>
</tr>
<tr>
<td>Air dalam bentuk Uap H2O</td>
</tr>
<tr>
<td>CO₂</td>
</tr>
<tr>
<td>Karbonmonoksida (CO)</td>
</tr>
<tr>
<td>Zat asam (O2)</td>
</tr>
<tr>
<td>Zat air (H2)</td>
</tr>
<tr>
<td>Zat nitrogen (N2)</td>
</tr>
</tbody>
</table>

Karbon monoksida yang banyaknya 0,03 % sudah merupakan racun yang berbahaya untuk dihisap manusia. Jumlah sebanyak 0,3 % selama setengah jam adalah mematikan. Yang dapat dilihat dalam tabel adalah tingginya kadar karbon monoksida pada jalan stasioner untuk motor bensin. Ini disebabkan karena perbandingan campurannya kira – kira 13 :1. Disebabkan pula oleh...
frekuensi putar rendah, derajat isian tidak sempurna dan tekanan kompresi yang rendah, mengakibatkan waktu pembakaran sama maka pembakarannya menjadi tidak sempurna.

b. Timah
c. Zat karbon hidrogen

Tabel 2. Jumlah zat karbon hidrogen yang tidak terbakar

<table>
<thead>
<tr>
<th></th>
<th>Berputar ditempat</th>
<th>Kecepatan normal</th>
<th>Akselerasi</th>
<th>Mengerem motor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17%</td>
<td>13%</td>
<td>7%</td>
<td>63%</td>
</tr>
</tbody>
</table>

2.3. Racun

2.3.1. Definisi
Racun ialah zat yang bekerja pada tubuh secara kimiawi dan fisiologik yang dalam dosis toksik akan menyebabkan gangguan kesehatan dan kematian.

2.3.2. Penggolongan
Berdasarkan sumber, dapat dibagi menjadi racun yang berasal dari tumbuhan misalnya opium (dari papaver somniferum), dari hewan misalnya bisa ular, dari mineral misalnya arsen, atau dari sintetik misalnya heroin.

Berdasarkan tempat dimana racun berada, dapat dibagi menjadi racun yang ada dialam bebas misalnya gas racun yang ada dialam sekitar. Racun yang terdapat dalam rumah tangga misalnya deterjen, racun yang digunakan dalam pertanian misalnya insektisida. Racun yang digunakan dalam industri dan laboratorium misalnya asam dan basa kuat. Racun yang terdapat dalam makanan misalnya CN dalam singkong, serta racun dalam bentuk obat misalnya sedatif.

Dapat pula pembagian racun berdasarkan organ tubuh yang dipengaruhi, misalnya yang bersifat hepatotoksik.

Berdasarkan mekanisme kerja, dikenal racun yang mengikat gugus sulfhidril misalnya Pb yang berpengaruh pada ATP-ase yang membentuk methemoglobin misalnya nitrat dan nitrit.

Pembagian lain didasarkan pada cara kerja / efek yang ditimbulkan. Ada racun yang bekerja lokal dan menimbulkan beberapa reaksi misalnya perangsangan, peradangan, atau korosif. Keadaan ini dapat menimbulkan rasa nyeri yang hebat dan dapat menyebabkan kematian akibat syok neurogenik. Contoh racun yang bersifat korosif adalah asam kuat dan basa kuat, golongan halogen, dan senyawa logam. Racun yang bekerja sistemik dan mempunyai afinitas terhadap salah satu sistem misalnya CO terhadap hemoglobin darah. Terdapat pula racun yang memiliki efek lokal dan sistemik sekaligus misalnya asam
karbol menyebabkan erosi lambung dan sebagian yang diabsorbsi akan menimbulkan depresi SSP.

2.4. Fisiologi Respirasi

Tujuan bernapas adalah untuk menyediakan oksigen bagi jaringan dan membuang karbon dioksida. Untuk mencapai tujuan ini, pernapasan dapat dibagi menjadi:

1. Ventilasi paru, yang berarti masuk dan keluarnya udara antara atmosfir dan alveoli paru.
2. Difusi oksigen dan karbon dioksida antara alveoli dan darah.
3. Transport oksigen dan karbon dioksida dalam darah dan cairan tubuh kedan dari sel.

Prosesnya meliputi:

1. Inspirasi

Terjadi apabila otot inspirator, yaitu: diafragma dan otot interkostalis eksternus berkontraksi. Kontraksi diafragma menyebabkan bertambahnya ukuran rongga dada. Sedangkan kontraksi otot interkostalis eksternus menaikkan iga dan

2. Ekspirasi

Compliance paru adalah ukuran kemampuan paru-paru dan rongga dada untuk mengembang. Hal ini terjadi karena elastisitas jaringan paru-paru (dari surfaktan), secara normal paru-paru memiliki derajat *compliance* yang tinggi.

Tahap selanjutnya adalah terjadi pertukaran gas yang terjadi di dalam paru-paru di antara alveolus dan plasma darah dan di seluruh tubuh antara plasma dan cairan intersisial. Faktor-faktor berikut ini membantu difusi O$_2$ dan CO$_2$ di tempat-tempat berikut:

1) Tekanan parsial dan kelarutan

Kelarutan yang rendah dapat diimbangi dengan tekanan parsial atau sebaliknya. Hal ini dapat dilihat dari ciri-ciri O$_2$ dan CO$_2$ sebagai berikut:

Tekanan parsial oksigen pada paru-paru tinggi (udara mengandung 21% O$_2$), tetapi kelarutannya rendah.
Karbon dioksida tekanan parsialnya dalam udara sangat rendah (hanya 0,04%), tetapi kelarutannya dalam plasma kira-kira 24 kali lipat O₂.

2) Gradien tekanan parsial

Gradien adalah perubahan jumlah dari suatu tempat ke tempat lain. Difusi gas ke dalam cairan atau sebaliknya terjadi dengan gradient tekanan parsial yang menurun, yaitu dari tekanan parsial tinggi ke tekanan parsial rendah.

3) Permukaan paru-paru untuk pertukaran gas

Daerah permukaan paru-paru yang luas meningkatkan difusi yang luas. Bila jumlah total permukaan paru dikurangi sampai mendekati sepertiga atau seperempat normal, pertukaran gas melalui membran tersebut sangat terganggu bahkan dalam keadaan istirahat sekalipun. Bahkan penurunan luas permukaan sedikitpun akan mengganggu pertukaran gas pernapasan.

4) Jarak difusi

Dinding alveolus dan kapiler yang tipis menambah kecepatan difusi.

Sedangkan untuk transport O₂ dalam darah diakukan melalui dua cara yaitu:

a. Sejumlah kecil O₂ (1,5%) diangkut dalam plasma sebagai gas terlarut.

b. Sebagian besar O₂ (98,5%) yang diangkut dalam darah diikat oleh protein Hemoglobin di dalam sel darah merah. Oksihemoglobin (HbO₂) yang sepenuhnya jenuh, mempunyai 3 molekul O₂ yang saling menempel. Tanpa O₂, molekul ini disebut deoksihemoglobin (Hb).

Kemampuan Hemoglobin untuk mengikat diri ke oksigen dipengaruhi oleh tekanan parsial O₂. Semakin besar tekanan parsial O₂ dalam darah, maka semakin cepat pula O₂ mengikat Hb. Hal ini dapat dijelaskan melalui kurva disosiasi oksigen-
hemoglobin dimana kurva ini menunjukkan bahwa ketika pO\textsubscript{2} bertambah sampai 100 mmHg, kejenuhan Hb mencapai 100%.

Faktor-faktor yang mempengaruhi kekuatan kemampuan Hb untuk menarik O\textsubscript{2} dan menyebabkan perpindahan kurva disosiasi O\textsubscript{2}-Hb ke kanan maupun ke kiri adalah:

a. Suhu

Semakin tinggi suhu, maka tekanan parsialnya akan semakin meningkat sehingga mengakibatkan kurva disosiasi O\textsubscript{2}-Hb bergeser ke kanan. Sedangkan semakin rendah suhu, maka tekanan parsialnya akan semakin menurun sehingga mengakibatkan kurva disosiasi O\textsubscript{2}-Hb bergeser ke kiri.

b. Tekanan parsial CO\textsubscript{2} (pCO\textsubscript{2})

Semakin tinggi tekanan parsial CO\textsubscript{2} maka akan mengakibatkan kurva disosiasi O\textsubscript{2}-Hb bergeser ke kiri.

c. Derajat keasaman (pH)

Kenaikan keasaman (penurunan pH) menyebabkan berkurangnya afinitas Hb pada O\textsubscript{2} yang disebut dengan efek Bohr, terjadi ketika H+ mengikat diri ke Hb.

d. BPG (biphosphoglycerate) pada sel darah merah

BPG dihasilkan oleh sel darah merah ketika energi dihasilkan oleh glukosa.5

2.5. Patofisiologi keracunan CO

Gas CO secara inhalasi masuk ke paru-paru, secara inhalasi kemudian mengalir ke alveoli masuk ke aliran darah. Gas CO dengan segera mengikat
hemoglobin di tempat yang sama dengan tempat oksigen mengikat hemoglobin, untuk membentuk karboksihemoglobin (COHb). Mekanisme kerja gas CO di dalam darah:

Afinitas hemoglobin untuk CO adalah 300 kali lebih besar dari oksigen. Jumlah titik jenuh dijelaskan dalam bentuk persentase hemoglobin yang dikombinasikan CO dalam bentuk karboksihemoglobin. Konsentrasi 0,5-10% atau 5.000-10.000 bagian per juta dari atmosfir dengan cepat dicapai pada saat kebakaran dan dapat menghasilkan sebuah titik jenuh COHb sekitar 75% dalam waktu 2-15 menit. Disamping afinitas terbesar dari hemoglobin untuk CO, kandungan COHb mencegah pelepasan oksigen ke jaringan, dampaknya adalah hipoksia jaringan. Kelembaban, temperatur, karbon dioksida dan aktfitas fisik meningkatkan tingkat respirasi dan absorpsi CO.

COHb mencampuri interaksi protein heme yang menyebabkan kurva penguraian HbO2 bergeser ke kiri. Akibatnya terjadi pengurangan pelepasan oksigen dari darah ke jaringan tubuh.

CO bereaksi dengan fe dari porfirin, oleh karena itu, CO bersaing dengan O2 dalam mengikat protein heme, yaitu hemoglobin, mioglobin, sitokrom oksidase (sitokrom a,a3), dan sitokrom P-450, peroksidase, dan katalase.

Yang paling penting adalah reaksi CO dengan Hb dan sitokrom a3. dengan diikatnya Hb menjadi COHb mengakibatkan Hb menjadi inaktif sehingga darah berkurang kemampuannya untuk mengangkut O2. Selain itu, adanya COHb dalam darah akan menghambat disosiasi oksi-Hb. Sehingga jaringan akan mengalami hipoksia. Reaksi CO dengan sitokrom a3 yang merupakan link yang penting dalam sistem enzim pernapasan sel yang terdapat pada mitokondria, akan menghambat pernapasan sel dan mengakibatkan hipoksia jaringan.
Konsentrasi CO dalam udara lingkungan dan lamanya inhalasi menentukan kecepatan timbulnya gejala-gejala atau kematian. 50 ppm (0,005%) adalah TLV (*Threshold limit value*) gas CO, yaitu konsentrasi CO dalam udara lingkungan yang dianggap aman pada inhalasi selama 8 jam setiap hari dan 5 hari setiap minggu untuk jumlah tahun yang tak terbatas. Pada 200 ppm (0,02%) inhalasi 1-3 jam akan mengakibatkan kadar COHb mencapai 15-20% saturasi dan gejala keracunan CO mulai timbul. Pada 1000 ppm (0,1%), inhalasi 3 jam akan menyebabkan kematian. Pada 10.000 ppm (1%), inhalasi 15 menit dapat menyebabkan kehilangan kesadaran dengan COHb 50% saturasi, sedangkan inhalasi 20 menit menyebabkan kematian dengan COHb 80% saturasi. Konsentrasi COHb yang menyebabkan kematian dalam ruangan setengah tertutup atau dalam ruangan kerja atau ruang tamu yang berdekatan dengan garasi.¹

Untuk menentukan kadar CO dalam darah digunakan Rumus Henderson dan Haggard, tetapi rumus ini hanya berlaku bagi orang dalam keadaan istirahat. Rumusnya yaitu:

<table>
<thead>
<tr>
<th>Waktu (dalam jam) X Konsentrasi CO di udara (dalam ppm)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>300</th>
<th>900</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>tidak ada gejala</td>
<td>timbul gejala sakit kepala, rasa lelah, mual,</td>
<td>menandakan bahaya dan dapat fatal.¹</td>
</tr>
</tbody>
</table>

Faktor-faktor lain yang dapat menyebabkan toksisitas CO:

- a) Aktifitas fisik
- b) Penyakit yang dapat mengganggu oksigenasi jaringan seperti arteriosclerosis pembuluh darah otak dan jantung, emfisema paru, asma bronchial, tbc paru, dan penyakit hipermetabolik.
c) Obat-obatan yang dapat menyebabkan depresi susunan saraf pusat.

2.6. Kadar COHb dan gejala yang ditimbulkannya

<table>
<thead>
<tr>
<th>Kadar COHb Dalam %</th>
<th>Gejala</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>Tidak ada keluhan maupun gejala</td>
</tr>
<tr>
<td>10-20</td>
<td>Rasa berat di kepala, sedikit sakit kepala, pelebaran pembuluh darah kulit.</td>
</tr>
<tr>
<td>20-30</td>
<td>Sakit kepala menusuk-nusuk pada pelipis</td>
</tr>
<tr>
<td>30-40</td>
<td>Sakit kepala hebat, lemah, pandangan jadi kabur, mual, muntah</td>
</tr>
<tr>
<td>40-50</td>
<td>Seperti di atas, syncope, nadi dan pernapasan menjadi Cepat.</td>
</tr>
<tr>
<td>50-60</td>
<td>Syncope, nadi dan pernapasan menjadi cepat, coma, Kejang yang intermittent.</td>
</tr>
<tr>
<td>60-70</td>
<td>Koma, kejang yang intermittent, depresi jantung dan Pernapasan.</td>
</tr>
<tr>
<td>70-80</td>
<td>Nadi lemah, pernapasan lambat, kegagalan pernapasan Dan meninggal dalam beberapa jam.</td>
</tr>
</tbody>
</table>

(clinical toxicology)
2.7. Pemeriksaan kedokteran foransik

Diagnosis adanya keracunan CO pada korban hidup biasanya berdasarkan anamnese adanya kontak dan ditemukannya gejala keracunan CO. pada korban mati selama atau tidak lama setelah keracunan CO, perubahan post-mortem yang utama adalah ditemukannya lebam mayat berwarna merah muda terang (cherry red). Selain itu juga, darah, jaringan, dan viscera seperti otak, jantung, dan paru-paru, juga berwarna merah terang. Warna tersebut tampak jelas bila kadar COHb mencapai 30% atau lebih. Kadang-kadang dapat ditemukan tanda asfiksia dan hyperemia viscera. 1

2.8. Pemeriksaan penunjang

Untuk pemeriksaan penunjang untuk keracunan karbon monoksida antara lain adalah:

a. Uji Alkali Dilusi

1. Ambil 2 buah tubung reaksi.
2. Masukkan ke dalam tabung pertama 1-2 tetes darah korban dan tabung kedua 1-2 tetes darah normal sebagai kontrol.
3. Tambahkan 10 ml air shingga warna merah pada kedua tabung kurang lebih sama.
4. Tambahkan pada masing-masing tabung 5 tetes larutan NaOH 10-20%, lalu dikocok.

Hasilnya: Darah normal segera berubah warna menjadi merah hijau kecoklatan karena segera terbentuk hematin alkali, sedangkan darah yang mengandung
COHb tidak berubah warnanya untuk beberapa waktu, tergantung pada konsentrasinya. COHb, karena COHb bersifat lebih resisten terhadap pengaruh alkali. COHb dengan kadar saturasi 20% memberi warna merah muda yang bertahan selama beberapa detik dan setelah 1 menit baru berubah warna menjadi kecoklatan. Sebagai kontrol jangan digunakan darah fetus karena darah fetus juga resisten terhadap alkali.¹

b. Uji Formalin

Cara pemeriksaan:
Ambil beberapa tetes darah yang akan diperiksa, masukkan dalam tabung reaksi, tambahkan beberapa tetes larutan formalin 40% sama banyaknya.

Hasilnya: Bila darah mengandung COHb 25% saturasi maka akan terbentuk koagulat berwarna merah yang mengendap pada dasar tabung reaksi. Semakin tinggi kadar COHb, semakin merah warna koagulatnya, sedangkan pada darah normal akan terbentuk koagulat berwarna coklat. Sedangkan pada pemeriksaan organ juga dapat dilakukan uji formalin dengan cara yang sama seperti pada pemeriksaan dengan sample berupa darah. Organ yang bisa diambil untuk dijadikan bahan pemeriksaan otak, jantung, paru, otot, organ tersebut ditambahkan larutan formalin 40%. Hasil yang didapatkan adalah bila keracunan CO maka organ yang diperiksa akan berwarna merah terang bila ditambahkan dengan formalin40%. Sedangkan bila tidak keracunan CO maka organ tersebut akan berwarna pucat setelah ditambahkan formalin 40%.

Cara Gettler-Freimuth (semi kuantitatif), menggunakan prinsip sebagai berikut:

\[
\text{Darah + Kalium ferisianida} \rightarrow \text{CO dibebabaskan dari COHb}
\]

\[
\text{CO+PbCl}_2 + \text{H}_2\text{O} \rightarrow \text{Pd+ CO}_2 + \text{HCl}
\]
Palladium (Pd) ion akan diendapkan pada kertas saring berupa endapan berwarna hitam. Dengan membandingkan intensitas warna hitam yang diperoleh dari pemeriksaan terhadap darah dengan kadar COHb yang diketahui, maka dapat ditentukan konsentrasinya COHb secara semikuantitatif.

2.9. Kerangka teori

\[
\begin{align*}
\text{CO} & \quad \rightarrow \quad \text{TUBUH} \quad \rightarrow \quad \text{ABSORBSI} \\
\text{PARU} & \\
\text{HB} & \quad \leftarrow \quad \text{SEL DARAH MERAH} \\
\text{COHB} &
\end{align*}
\]

2.10. Kerangka Konsep

\[
\begin{align*}
\text{CO} & \quad \rightarrow \quad \text{PEMERIKSAAN COHB DENGAN ALKALI DILUSI DAN FORMALIN}
\end{align*}
\]

2.11. Hipotesis
Terdapatnya perbedaan hasil uji alkali dilusi dan uji formalin pada tikus wistar setelah pemaparan asap knalpot selama 4 jam dengan kadar CO 1800 ppm.

BAB 3

METODOLOGI PENELITIAN

3.1. Ruang Lingkup Penelitian

3.1.1 Lingkup tempat : a) Laboratorium Mesin Jurusan Teknik Mesin Fakultas Teknik Universitas Diponegoro Semarang.

b) Laboratorium Biologi Fakultas MIPA Universitas Negeri Semarang.

3.1.2 Lingkup waktu : Maret 2009 - April 2009.

3.1.3 Lingkup ilmu : Ilmu Kedokteran Forensik, Ilmu Faal, ilmu Teknik Mesin, konversi energy (motor bensin).

3.2. Rancangan Penelitian

Penelitian ini merupakan penelitian eksperimental laboratorik dengan rancangan post test only control group design yang menggunakan binatang coba sebagai obyek percobaan.

Perlakuan dalam penelitian adalah pemberian lama paparan asap knalpot dengan kadar CO 1800 ppm pada tikus wistar. Keluaran (outcome) yang dinilai adalah perbedaan uji alkali dilusi dan uji formalin sebelum dan sesudah terpapar CO.
3.3. Populasi dan Sampel Penelitian

3.3.1. Populasi

Populasi yang diteliti adalah tikus *Wistar*

3.3.2. Sampel

3.3.2.1. Kriteria Inklusi

a) Tikus jenis *Wistar* jantan

b) Berat badan: 150-250 gram

c) Umur 2-3 tahun

d) Tikus dalam keadaan sehat

3.3.2.2. Kriteria eksklusi:

Tikus dengan berat badan meningkat

3.3.2.3. Besar Sampel

Besar sampel penelitian sesuai dengan kriteria WHO (1993) yaitu minimal menggunakan 5 ekor tikus tiap 1 kelompok perlakuan. Oleh karena terdapat 2 kelompok, 1 kelompok kontrol dan 1 kelompok perlakuan, maka dibutuhkan 10 ekor tikus *Wistar*.

3.3.2.4. Cara Pengambilan Sampel

Untuk menghindari bias karena faktor variasi umur dan berat badan maka pengambilan sampel dilakukan secara acak sederhana (*simple random sampling*). Randomisasi langsung dapat dilakukan karena sampel diambil dari tikus *Wistar* yang sudah memenuhi kriteria inklusi dan eksklusi sehingga dianggap cukup homogen. Semuanya diambil
dari secara acak dari kelompok tikus yang sudah diadaptasi pakan selama 1 minggu.

3.4. Variabel Penelitian

3.4.1. Variabel Bebas

Variabel bebas dalam penelitian ini adalah paparan asap knalpot.

3.4.2. Variabel Tergantung

Variabel tergantung dalam penelitian ini adalah darah tikus Wistar.

3.5. Alat dan Bahan

3.5.1. Alat Penelitian

3.5.1.1. Alat Untuk Menghasilkan Gas CO

a) Mesin mobil yang dikondisikan dapat menghasilkan gas CO 1800 ppm.

b) Bahan bakar bensin premium

c) Knalpot

Alat Untuk Tempat Sampel

a) Bejana berbahan acrylic dengan ukuran:
 Panjang = 1 m
 Lebar = 0,5 m
 Tinggi = 0,5 m

b) 2 buah pipa fleksibel

c) 15 buah tabung reaksi
3.5.2. Bahan

Bahan-bahan untuk percobaan ini:

1. Aquades
2. Tikus Wistar
3. Asam pikrat
4. Anti koagulan EDTA
5. Reagen alkali dilusi
6. Reagen formalin

3.6. Data yang Dikumpulkan

Data yang dikumpulkan dalam penelitian ini adalah data primer hasil penelitian uji alkali dilusi dan uji formalin pada darah tikus Wistar dari kelompok perlakuan.

3.7. Cara Pengumpulan Data

1. Sejumlah 5 ekor tikus wistar jantan dilakukan adaptasi selama 7 hari di laboratorium dengan kandang tunggal dan diberi pakan standar serta minum secukupnya.

2. Pada hari ke delapan, tikus wistar diberi tanda dengan asam pikrat pada daerah yang berbeda yaitu kepala, punggung, perut, ekor dan seekor tanpa tanda (polos). Selanjutnya masing-masing tikus ditimbang, dilakukan pengukuran suhu dan pemeriksaan fisik dada meliputi inspeksi dan auskultasi.

7. Setelah itu, bandingkan hasil penilaian pada uji alkali dilusi dengan uji formalin.
3.8. Alur Kerja

10 ekor tikus
Adaptasi 1 minggu
K (5 ekor) P (5 ekor)

Paparan 4 jam
Hidup Mati

Dekapitasi
Ambil darah

Hasil kontrol Uji Alkali Dilusi Uji Formalin
Hasil Hasil Hasil

Bandingkan
3.9. Definisi Operasional

Variabel Penelitian:

1. Paparan asap knalpot.
 Asap knalpot dikeluarkan dari mesin mobil berbahan bakar Premium yang telah diatur sedemikian rupa sehingga mengandung CO dengan kadar 1800 ppm.
 Satuan : part per million (ppm)

2. Uji alkali dilusi
 Merupakan pemeriksaan untuk penentuan COHb secara kualitatif dengan menggunakan larutan NaOH 10-20%. Dengan uji ini darah yang mengandung CO akan berubah warna menjadi merah muda dan estelah 1 menit akan berubah menjadi kecoklatan.

3. Uji formalin
 Merupakan pemeriksaan untuk penentuan COHb secara kualitatif dengan menggunakan larutan formalin 40%. Bila darah mengandung CO maka darah akan membentuk koagulat berwarna merah di dasar tabung.

3.10. Pengolahan dan Analisa Data

Data yang diperoleh diolah dengan program SPSS 15.0 for Windows kemudian dilakukan uji Cohenn’s Kappa.