SERAPAN FOSFOR DAN KUALITAS RUMPUT PAKAN POLIPOID DAN DIPLOID YANG TOLERAN CEKAMAN KEMASAMAN TANAH PADA PEMUPUKAN FOSFOR

TESIS

Oleh

BENEDIKTUS SUHARNO

UNT-PUSTAK-UNDIP
No. Daft: 6258/IT/MT/06
Tgl: 26-6-2008

PROGRAM STUDI MAGISTER ILMU TERNAK
PROGRAM PASCA SARJANA – FAKULTAS PETERNAKAN
UNIVERSITAS DIPONEGORO
SEMARANG
2005
SERAPAN FOSFOR DAN KUALITAS RUMPUT PAKAN POLIPLOID DAN DIPLOID YANG TOLERAN CEKAMAN KEMASAMAN TANAH PADA PEMUPUKAN FOSFOR

TESIS

Oleh

BENEDIKTUS SUHARNO

NIM : H4A 002 002

Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Magister Sains Pada Program Studi Magister Ilmu Ternak Program Pascasarjana Fakultas Peternakan Universitas Diponegoro

PROGRAM STUDI MAGISTER ILMU TERNAK
PROGRAM PASCA SARJANA – FAKULTAS PETERNAKAN
UNIVERSITAS DIPONEGORO
SEMARANG
2005
Judul Tesis : SERAPAN FOSFOR DAN KUALITAS RUMPUT PAKAN POLIPOID DAN DIPLOID YANG TOLERAN CEKAMAN KEMASAMAN TANAH PADA PEMUPUKAN FOSFOR

Nama Mahasiswa : BENEDIKTUS SUHARNO

Nomor Induk Mahasiswa : H4A 002 002

Program Studi : MAGISTER ILMU TERNAK

Telah disidangkan di hadapan Tim Penguji dan dinyatakan lulus pada tanggal 23 Desember 2005

Pembimbing Utama

Dr. Ir. Syaiful Anwar, M.Si.

Pembimbing Anggota

Dr. Ir. Dwi Retno Lukiwati, M.S.

Ketua Program Studi

Magister Ilmu Ternak

Prof. Dr. Ir. Umiyati Atmomarsono

Ketua Jurusan

Nutrisi dan Makana Ternak

Dr. Ir. V. Dwi Yunianto, M.S., M.Sc.

Dekan Fakultas Peternakan

Dr. Ir. Joedal Achmadi, M.Sc.
ABSTRAK

Rancangan yang digunakan dalam penelitian ini adalah rancangan acak lengkap berpola split plot, sebagai petak utama adalah rumput pakan dan anak petak dosis pupuk P, dengan tiga kali pengulangan. Rumput yang digunakan R1 = Brachiaria brizantha poliploid, R2 = Brachiaria decumbens poliploid, R3 = Panicum munitum poliploid, R4 = Brachiaria brizantha diploid, R5 = Brachiaria decumbens diploid, R6 = Panicum munitum diploid. Pupuk SP dalam empat dosis yaitu : 0 kg, 150 kg, 225 kg, 300 kg P2O5/ha/tahun.

Parameter yang diukur yaitu : serapan fosfor, efisiensi pemanfaatan fosfor, kadar klorofil, aktivitas nitrat reduktase, protein kasar, serat kasar, dan produksi bahan kering. Data yang diperoleh dianalisis dengan uji ragam dilanjutkan dengan uji Duncan taraf 5%. Untuk mengetahui respon pemupukan fosfor dilakukan uji lanjut dengan Uji Polynomial Orthogonal dengan persamaan regresinya.

Berdasarkan uji ragam menunjukkan dosis pupuk SP, interaksi dosis pupuk SP dengan jenis rumput tidak berpengaruh terhadap semua parameter penelitian (P > 0,05), kecuali terhadap kandungan serat kasar. Sedangkan jenis rumput berpengaruh terhadap kadar klorofil, protein kasar, serat kasar, dan produksi bahan kering.

Kata kunci : klorofil, aktivitas nitrat reduktase, protein kasar, serat kasar, produksi bahan kering, serapan fosfor.
ABSTRACT

BENEDIKTUS SUHARNO. H4A 002 002. The Phosphorus uptake and Quality of Polyplloid and Diploid Fodder Grass on Acidity Soil Stress. (Supervisor : SYAIFUL ANWAR and DWI RETNO LUKIWATI).

The aim of this research was to measure response of polyplloid and diploid fodder grass crop as well as among polyplloid fodder grass crop which was tolerant against acidity soil towards phosphorus fertilization based on phosphorus uptake and quality. The research was carried out from January 2004 until June 2004 in Green House and The Forage Crop Laboratory of Department of Food Science and Nutrition, Faculty of Animal Agriculture Diponegoro University in Semarang.

The research used Completely Randomized Design with split plot pattern. The main plot is kinds of grass and phosphorus fertilizer dosage is subplot, within three replications. Kinds of grass consist of $R_1 = Brachiaria brizantha$ poliploid, $R_2 = Brachiaria decumbens$ poliploid, $R_3 = Panicum micutum$ poliploid, $R_4 = Brachiaria brizantha$ diploid, $R_5 = Brachiaria decumbens$ diploid, $R_6 = Panicum micutum$ diploid. There are four levels of phosphorus fertilization, i.e.: 0 kg, 150 kg, 225 kg, 300 kg P_2O_5 per hectare.

The observed parameters were: phosphorus uptake, efficiency of phosphorus use, the content of chlorophyll, nitrate reductase activity, crude protein, crude fibre, and dry matter production. The data obtained from these parameters was analysed through analyses of variance, and followed by Duncan test (5%). In order to measure the phosphorus fertilization response, then the data was further analyzed by using Orthogonal Polynomial test in order to get the regression equation.

The research showed that phosphorus fertilization dosage and interactions between kinds of grass with phosphorus fertilization dosage did not affect to all parameter of this research ($P > 0,05$), except the content of crude fibre; whereas kinds of grass affect the content of chlorophyll, crude protein, crude fibre, and dry matter production.

The conclusion of this research is: (1) There are no differences of response between polyplloid and diploid fodder grass towards phosphorus fertilization based on phosphorus uptake, efficiency of phosphorus use, the content of chlorophyll, crude protein, nitrate reductase activity, dry matter production. (2) The response of $Brachiaria brizantha$ polyplloid grass is different with all fodder grass based on the content of crude fibre. (3) Polyplloid fodder grass having high genetic potency based on research parameters are: 1. $B. brizantha$, 2. $B. decumbens$, 3. $P. micutum$, or 1. $B. decumbens$, 2. $B. brizantha$, 3. $P. micutum$. Based on responsibility towards phosphorus fertilization in order: 1. $B. brizantha$, 2. $B. decumbens$, 3. $P. micutum$, or 1. $B. brizantha$, 2. $P. micutum$, 3. $B. decumbens$.

Key words: phosphorus uptake, chlorophyll, nitrate reductase activity, crude protein, crude fibre, dry matter production.
KATA PENGANTAR

Kenyataan di Indonesia menunjukkan banyak lahan yang bersifat masam yang dapat diupayakan bagi budidaya rumput pakan, guna menunjang ketersediaan hijauan rumput pakan yang berkualitas. Upaya pengadaan ketersediaan hijauan rumput pakan yang berkualitas di tanah masam dapat dilakukan dengan budidaya rumput unggul dengan pemupukan fosfor yang cukup. Menanggapi upaya tersebut penulis melakukan penelitian tentang serapan fosfor dan kualitas rumput pakan poliploid dan diploid yang toleran pada tanah masam.

Penulis menyampaikan ucapan terima kasih kepada : Dr. Ir. Syaiful Anwar, M.Si., sebagai Pembimbing Utama yang dengan segala kesabaran dan saran telah banyak memberikan arahan, dan Dr. Ir. Dwi Retno Lukiwati sebagai Pembimbing Anggota. Ucapan yang sama kami sampaikan kepada Ketua dan Sekretaris Program Magister Ilmu Ternak beserta staf, Rektor IKIP-PGRI dan Dekan FPMIPA IKIP-PGRI Semarang yang telah memberi kesempatan, bantuan, fasilitas untuk studi lanjut. Terima kasih yang tak terhingga untuk Istri dan ketiga anakku, yang telah memberikan pendampingan dan doa dalam suka dan duka, semoga Tuhan memberkati.

Penulis berharap semoga tulisan ini masih mempunyai nilai manfaat bagi yang membutuhkan.

Semarang, Desember 2005

Ben. Suharno
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATA PENGANTAR</td>
<td>vi</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>viii</td>
</tr>
<tr>
<td>DAFTAR ILUSTRASI</td>
<td>x</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>xi</td>
</tr>
<tr>
<td>BAB I PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>BAB II TINJAUAN PUSTAKA</td>
<td>5</td>
</tr>
<tr>
<td>BAB III METODOLOGI</td>
<td>12</td>
</tr>
<tr>
<td>BAB IV HASIL DAN PEMBAHASAN</td>
<td></td>
</tr>
<tr>
<td>4. 1. Hasil Penelitian</td>
<td>22</td>
</tr>
<tr>
<td>4. 2. Pembahasan</td>
<td>34</td>
</tr>
<tr>
<td>BAB V KESIMPULAN</td>
<td>42</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>43</td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td>47</td>
</tr>
<tr>
<td>RIWAYAT HIDUP</td>
<td>152</td>
</tr>
<tr>
<td>Nomor</td>
<td>Tabel Judul</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>1.</td>
<td>Perubahan Sifat Fisiologi Rumput Poliploid</td>
</tr>
<tr>
<td>2.</td>
<td>Serapan Fosfor Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Pemupukan P</td>
</tr>
<tr>
<td>3.</td>
<td>Respon Berbagai Jenis Rumput Pakan dengan Perlakuan Pemupukan P terhadap Serapan Fosfor</td>
</tr>
<tr>
<td>4.</td>
<td>Efisiensi Pemanfaatan Fosfor Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Pemupukan P</td>
</tr>
<tr>
<td>5.</td>
<td>Respon Berbagai Jenis Rumput Pakan dengan Perlakuan Pemupukan P terhadap Efisiensi Pemanfaatan Fosfor</td>
</tr>
<tr>
<td>6.</td>
<td>Kadar Klorofil Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Pemupukan P</td>
</tr>
<tr>
<td>7.</td>
<td>Respon Berbagai Jenis Rumput Pakan dengan Perlakuan Pemupukan P terhadap Kadar Klorofil</td>
</tr>
<tr>
<td>8.</td>
<td>Aktivitas Nitrat Reduktase Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Berbagai Dosis Pemupukan P</td>
</tr>
<tr>
<td>9.</td>
<td>Respon Berbagai Jenis Rumput Pakan dengan Perlakuan Pemupukan P terhadap Aktivitas Nitrat Reduktase</td>
</tr>
<tr>
<td>10.</td>
<td>Kadar Protein Kasar Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Pemupukan P</td>
</tr>
<tr>
<td>11.</td>
<td>Respon Berbagai Jenis Rumput Pakan dengan Perlakuan Pemupukan P terhadap Kadar Protein Kasar</td>
</tr>
<tr>
<td>12.</td>
<td>Kadar Serat Kasar Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Pemupukan P</td>
</tr>
<tr>
<td>13.</td>
<td>Respon Berbagai Jenis Rumput Pakan dengan Perlakuan Pemupukan P terhadap Kadar Serat Kasar</td>
</tr>
<tr>
<td>14.</td>
<td>Produksi Bahan Kering Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Pemupukan P</td>
</tr>
</tbody>
</table>
15. Respon Berbagai Jenis Rumput Pakan dengan Perlakuan Pemupukan P terhadap Produksi Bahan Kering ... 32

16. Urutan Responsibilitas Rumput Pakan Poliploid Berdasarkan Beberapa Parameter Penelitian ... 33

17. Urutan Responsibilitas Rumput Pakan Poliploid terhadap Pemupukan P ... 34
DAFTAR ILUSTRASI

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Denah Peletakan Pot Percobaan</td>
<td>16</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

<table>
<thead>
<tr>
<th>No</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Uji Ragam dan Uji Duncan Berbagai Rumput Pakan Poliploid dan Diploid terhadap Serapan Fosfor</td>
<td>47</td>
</tr>
<tr>
<td>2.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria brizantha Poliploid terhadap Serapan Fosfor</td>
<td>50</td>
</tr>
<tr>
<td>3.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria decumbens Poliploid terhadap Serapan Fosfor</td>
<td>52</td>
</tr>
<tr>
<td>4.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Panicum muticum Poliploid terhadap Serapan Fosfor</td>
<td>54</td>
</tr>
<tr>
<td>5.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria brizantha Diploid terhadap Serapan Fosfor</td>
<td>56</td>
</tr>
<tr>
<td>6.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria decumbens Diploid terhadap Serapan Fosfor</td>
<td>58</td>
</tr>
<tr>
<td>7.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Panicum muticum Diploid terhadap Serapan Fosfor</td>
<td>60</td>
</tr>
<tr>
<td>8.</td>
<td>Uji Ragam dan Uji Duncan Berbagai Rumput Pakan Poliploid dan Diploid terhadap Efisiensi Pemanfaatan Fosfor</td>
<td>62</td>
</tr>
<tr>
<td>9.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria brizantha Poliploid terhadap Efisiensi Pemanfaatan Fosfor</td>
<td>65</td>
</tr>
<tr>
<td>10.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria decumbens Poliploid terhadap Efisiensi Pemanfaatan Fosfor</td>
<td>67</td>
</tr>
<tr>
<td>11.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Panicum muticum Poliploid terhadap Efisiensi Pemanfaatan Fosfor</td>
<td>69</td>
</tr>
<tr>
<td>12.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria brizantha Diploid terhadap Efisiensi Pemanfaatan Fosfor</td>
<td>71</td>
</tr>
<tr>
<td>13.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria decumbens Diploid terhadap Efisiensi Pemanfaatan Fosfor</td>
<td>73</td>
</tr>
<tr>
<td>14.</td>
<td>Uji Ragam, Uji Duncan dan Persamaan Regresi Panicum muticum Diploid terhadap Efisiensi Pemanfaatan Fosfor</td>
<td>75</td>
</tr>
</tbody>
</table>
15. Uji Ragam dan Uji Duncan Berbagai Rumput Pakan Poliploid dan Diploid terhadap Kadar Klorofil ... 77
16. Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria brizantha Poliploid terhadap Kadar Klorofil 80
17. Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria decumbens Poliploid terhadap Kadar Klorofil 82
18. Uji Ragam, Uji Duncan dan Persamaan Regresi Panicum muticum Poliploid terhadap Kadar Klorofil ... 84
19. Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria brizantha Diploid terhadap Kadar Klorofil ... 86
20. Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria decumbens Diploid terhadap Kadar Klorofil ... 88
21. Uji Ragam, Uji Duncan dan Persamaan Regresi Panicum muticum Diploid terhadap Kadar Klorofil ... 90
22. Uji Ragam dan Uji Duncan Berbagai Rumput Pakan Poliploid dan Diploid terhadap Aktivitas Nitrat Reduktase 92
23. Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria brizantha Poliploid terhadap Aktivitas Nitrat Reduktase 95
24. Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria decumbens Poliploid terhadap Aktivitas Nitrat Reduktase 97
25. Uji Ragam, Uji Duncan dan Persamaan Regresi Panicum muticum Poliploid terhadap Aktivitas Nitrat Reduktase 99
26. Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria brizantha Diploid terhadap Aktivitas Nitrat Reduktase 101
27. Uji Ragam, Uji Duncan dan Persamaan Regresi Brachiaria decumbens Diploid terhadap Aktivitas Nitrat Reduktase 103
28. Uji Ragam, Uji Duncan dan Persamaan Regresi Panicum muticum Diploid terhadap Aktivitas Nitrat Reduktase 105
29. Uji Ragam dan Uji Duncan Berbagai Rumput Pakan Poliploid dan Diploid terhadap Kadar Protein Kasar ... 107

xii
30. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria brizantha* Poliploid terhadap Kadar Protein Kasar 110
31. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria decumbens* Poliploid terhadap Kadar Protein Kasar 112
32. Uji Ragam, Uji Duncan dan Persamaan Regresi *Panicum muticum* Poliploid terhadap Kadar Protein Kasar 114
33. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria brizantha* Diploid terhadap Kadar Protein Kasar 116
34. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria decumbens* Diploid terhadap Kadar Protein Kasar 118
35. Uji Ragam, Uji Duncan dan Persamaan Regresi *Panicum muticum* Diploid terhadap Kadar Protein Kasar 120
36. Uji Ragam dan Uji Duncan Berbagai Rumput Pakan Poliploid dan Diploid terhadap Kadar Serat Kasar ... 122
37. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria brizantha* Poliploid terhadap Kadar Serat Kasar 125
38. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria decumbens* Poliploid terhadap Kadar Serat Kasar 127
39. Uji Ragam, Uji Duncan dan Persamaan Regresi *Panicum muticum* Poliploid terhadap Kadar Serat Kasar 129
40. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria brizantha* Diploid terhadap Kadar Serat Kasar 131
41. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria decumbens* Diploid terhadap Kadar Serat Kasar 133
42. Uji Ragam, Uji Duncan dan Persamaan Regresi *Panicum muticum* Diploid terhadap Kadar Serat Kasar 135
43. Uji Ragam dan Uji Duncan Berbagai Rumput Pakan Poliploid dan Diploid terhadap Produksi Bahan Kering ... 137
44. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria brizantha* Poliploid terhadap Produksi Bahan Kering 140
45. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria decumbens* Poliploid terhadap Produksi Bahan Kering142

46. Uji Ragam, Uji Duncan dan Persamaan Regresi *Panicum muticum* Poliploid terhadap Produksi Bahan Kering144

47. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria brizantha* Diploid terhadap Produksi Bahan Kering146

48. Uji Ragam, Uji Duncan dan Persamaan Regresi *Brachiaria decumbens* Diploid terhadap Produksi Bahan Kering148

49. Uji Ragam, Uji Duncan dan Persamaan Regresi *Panicum muticum* Diploid terhadap Produksi Bahan Kering150
BAB 1

PENDAHULUAN

1.1. Latar Belakang

Hijauan sebagai pakan utama ternak Ruminansia mempunyai arti penting bagi pengembangan peternakan, karena 60% dari total bahan dasar ransum terdiri hijauan, selain rumput juga legum. Ketersediaan hijauan rumput pakan yang berkualitas dengan jumlah yang cukup untuk memenuhi kebutuhan Ruminansia, dapat diupayakan melalui budidaya rumput unggul. Kandungan nutrisi hijauan pakan tergantung pada faktor lingkungan maupun faktor genetis.

terjadi karena hambatan pada proses pembelahan sel-sel akar akibat terhambatnya proses fosforilasi (FAO, 2000).

Sudah banyak penelitian budidaya di tanah masam, namun tentang budidaya tanaman rumput pakan poliploid dengan pemupukan fosfor belum banyak informasinya. Berdasarkan hal ini maka perlu dilakukan penelitian tentang serapan fosfor dan kualitas rumput pakan poliploid dan diploid yang toleran terhadap cekaman kemasaman aluminium.

1.2. Tujuan Penelitian:

Penelitian ini bertujuan untuk:

1. Mengetahui respon pemupukan fosfor berdasarkan serapan fosfor dan kualitas pada tanaman rumput pakan poliploid dan diploid yang toleran terhadap cekaman tanah masam.

2. Mengetahui respon pemupukan fosfor berdasarkan serapan fosfor dan kualitas diantara berbagai tanaman rumput pakan poliploid yang toleran terhadap cekaman tanah masam.

1.3. Manfaat Penelitian

1. Dapat menyiapkan ketersediaan tanaman pakan yang sesuai dengan zona agroekologi tanah masam.

2. Dapat memanfaatkan tanaman pakan sebagai sumber manipulasi genetik, untuk pengembangan tanaman yang toleran cekaman tanah masam.
1. 4. Hipotesis Penelitian

Hipotesis yang di kemukakan dalam penelitian ini :

1. Pemupukan fosfor sampai dosis tertentu dapat meningkatkan kualitas dan serapan hara tanaman rumput pakan poliploid dan diploid.

2. Rumput poliploid lebih responsif terhadap pemupukan fosfor dibandingkan rumput diploid.

3. Rumput poliploid yang mempunyai potensi genetis tinggi, lebih responsif terhadap pemupukan fosfor dibandingkan dengan rumput poliploid yang mempunyai potensi genetis rendah.
BAB II

TINJAUAN PUSTAKA

2.1. Rumput Para / Kolonjono (Panicum muticum Forsk)

Rumput para tumbuh sangat baik sampai ketinggian 1000 m diatas permukaan laut. Rumput para juga tumbuh baik bersama legum, dengan jarak tanam 60 x 90 cm, dipotong setelah 40 hari (6-8 minggu) sekali pada musim kemarau. Produksi sebesar 70-200 ton/ha/tahun hijauan segar (Bogdan, 1977; Departemen Pertanian, 1985). Analisis proksimat rumput para (Hartadi et al., 1990) berdasarkan 100% bahan kering adalah: abu 9,4%, ekstrak eter 1,6%, serat kasar 32,9%, BETN 49,0%, dan protein kasar 6,5%.

bahan pembanding rumput pakan *Setaria splendida* memiliki Indeks Derajat Toleransi Kumulatif 3,26 dengan kategori moderat.

2.2. **Rumput Bebe (Brachiaria brizantha Hochst. ex A. Rich.)**

Rumput bebe berasal dari Afrika merupakan tanaman tahunan, berdaun lebat, kaku, mempunyai batang yang kecil tumbuh cepat membentuk hamparan vertikal dan horizontal dengan tinggi mencapai 60-150 cm. Tahan terhadap kekeringan, mempunyai produktivitas yang tinggi dan palatable. Sangat responsif terhadap pupuk nitrogen, tumbuh baik pada ketinggian 0-1200 m diatas permukaan laut dengan curah hujan tahunan lebih dari 1500 mm, tidak tahan terhadap genangan air (Departemen Pertanian, 1985). Menurut Bogdan (1977) rumput bebe dikenal bentuk tetraploid \(2n = 36\), dan hexaploid \(2n = 54\). Menurut Hartadi *et al.*, (1990), analisis proksimat dari rumput bebe berdasarkan 100% bahan kering adalah : abu 10,9%, ekstrak eter 1,3%, serat kasar 32,2%, BETN 49,1% dan protein kasar 6,6%.

2.3. **Rumput Bede (Brachiaria decumbens Stapf.)**

Rumput bede berasal dari Uganda dan sekarang telah tersebar di daerah tropik dan sub tropik, tumbuh sedikit tegak membentuk hamparan lebat, tinggi
30 -100 cm. Daun pendek, kaku dan berstruktur halus, warna hijau gelap, berbulu, panjang daun 4-14 cm dengan lebar 8-12 mm. Batang yang tumbuh dari dasar buku yang terdapat pada stolon yang menjalar di atas permukaan tanah. Bunga bertipe malai bendera dengan dua atau tiga tandan panjang 2-5 cm dengan rachis yang gepeng, jumlah kromosom 2n = 36. Rumput bede lebih responsif terhadap pupuk fosfat, tahan terhadap penggembalaan berat dan injakan ternak, tumbuh dengan baik pada naungan dan di bawah pohon. Rumput bede sangat baik untuk menahan erosi dan penutup tanah (Karti et al., 1999). Menurut Hartadi et al., (1990) analisis proksimat dari rumput Bede berdasarkan 100% bahan kering adalah : abu 6,3%, ekstrak eter 0,8%, serat kasar 37,9%, BETN 52,3%, dan protein kasar 2,9%.

2.4. Rumput Poliploid

Poliploidisasi pada dasarnya dapat terjadi melalui dua mekanisme. Mekanisme pertama melalui poliploidisasi sel somatik yaitu pada jaringan meristem primer, sehingga terbentuk jaringan dengan sel-sel poliploid.
Mekanisme kedua dengan melakukan gangguan pada proses meiosis jaringan re produktif, sehingga diperoleh gamet dengan perangkat kromosom yang tidak tereduksi (Crowder, 1997).

Menurut Suharni (2004) poliploidisasi pada tanaman rumput pakan menghasilkan rumput yang memiliki sifat fisiologi berubah relatif lebih tinggi dibanding rumput diploid (Tabel 1). Berdasar parameter kandungan klorofil, aktivitas nitrat reduktase (ANR) dan produksi bahan kering (PBK); kualitas serta potensi genetis rumput poliploid dapat diurutkan: *Panicum munitum*, *Brachiaria brizantha*, *Brachiaria decumbens*.

<table>
<thead>
<tr>
<th>Tabel 1. Perubahan Sifat Fisiologi Rumput Poliploid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perubahan Kenaikan Relatif (%) dibanding diploidnya</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Klorofil</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Brachiaria brizantha poliploid</td>
</tr>
<tr>
<td>Brachiaria decumbens poliploid</td>
</tr>
<tr>
<td>Panicum munitum poliploid</td>
</tr>
</tbody>
</table>

2.5. *Fosfor dalam Sistem Alam dan Pertumbuhan Tanaman*

Unsur fosfor merupakan unsur yang banyak terlibat langsung pada hampir seluruh proses kehidupan. Fosfor ini merupakan penyusun komponen setiap sel hidup, dan cenderung lebih banyak pada biji dan titik tumbuh. Unsur ini relatif stabil dalam tanah, kehilangan akibat pencucian jarang terjadi. Hal ini berakibat
kelarutan P sangat rendah, konsekwensinya ketersediaan fosfor pun relatif sangat rendah (Pietraszewsk, 2001).

Fosfor diserap tanaman ar dalam bentuk ortofosfat primer dan sekunder ($H_2PO_4^-$ dan HPO_4^{2-}) di dalam larutan tanah. Ortofosfat yang diserap ini dalam bentuk larutan tanah pada perbandingan tertentu. Sebagian dari P organik yang larut juga dapat diabsorpsi tanaman, tetapi bentuk ini kurang begitu penting (Salisbury dan Ross, 1995). Bila tidak terdapat faktor pembatas yang lain, maka pertumbuhan tanaman berbanding lurus dengan jumlah P yang diserap dari larutan tanah. Berdasarkan hal tersebut P yang terdapat dalam larutan tanah harus selalu dapat diganti dan diperbaharui (Hakim et al., 1986).

Konsentrasi ion ortofosfat ($H_2PO_4^-$ dan HPO_4^{2-}) dalam larutan tanah adalah rendah, menurut Harjadi (1979) dalam tanah pertanian kadarnya berkisar antara 0,5 – 1 ppm. Kadar atau jumlah masing-masing sangat tergantung pada pH tanah. Bentuk $H_2PO_4^-$ banyak dijumpai pada tanah masam, sedangkan HPO_4^{2-} pada tanah dengan pH di atas 7,0. Jika ion-ion Fe, Al, Ca, dan Mg terdapat dalam tanah, maka fosfor akan diendapkan menjadi Fe-P, Al-P pada suasana masam, dan menjadi Ca-P, Mg-P pada tanah dengan pH lebih tinggi dari 7,0 (Hakim et al., 1986; Foth, 1994).

Fosfor sangat berpengaruh terhadap perkembangan dan pertumbuhan tanaman, karena fosfor banyak dibutuhkan untuk pembentukan nukleotida dalam sel. Nukleotida merupakan suatu ikatan yang mengandung fosfor, sebagai penyusun RNA dan DNA yang berperan dalam perkembangan sel tanaman. Fosfor mempunyai peran penting dalam metabolisme energi karena
keberadaannya dalam ATP, ADP, AMP dan pirofosfat (PPI). Pada tanaman yang kekurangan fosfor terjadi hambatan metabolisme, terutama karena terhambatnya proses fosforilasi, sehingga terhambat pula pembentukan heksosa fosfat. Gula-6-fosfat ini merupakan titik masuk substrat karbohidrat ke dalam proses respirasi, yang berakibat terhambatnya pertumbuhan dan perkembangan tanaman (FAO, 2000).

2. 6. Kemasaman Tanah

BAB III

METODOLOGI

3.1. Kerangka Pemikiran:

Rendahnya potensi dan kualitas tanaman rumput pakan di Indonesia, salah satunya disebabkan karena penggunaan bibit yang berasal dari perbanyakan vegetatif secara terus menerus. Pengembangan tanaman rumput pakan di tanah masam juga menekan potensi dan kualitas rumput pakan. Rendahnya potensi dan kualitas tanaman rumput pakan yang dikembangkan di tanah masam disebabkan karena hambatan pada serapan hara akibat gangguan fisiologi dan morfologi akar. Hambatan dan gangguan tersebut diusahakan diatasi dengan pemupukan P secara intensif untuk mengurangi gangguan ion Al$^{3+}$ terhadap pertumbuhan akar.

3. 2. Tempat, Waktu dan Materi Penelitian

Bahan dan alat yang digunakan untuk keperluan analisis sebagai berikut:

1. Analisis kadar klorofil menggunakan: larutan aseton 80%, tabung reaksi, pipet, mortar, kertas saring, spektrofotometer.

2. Analisis aktivitas nitrat reduktase menggunakan: larutan penyaring fosfat pH 7,5, larutan 5M NaNO₃, larutan 1% sulfanil amida dalam 3N HCl, larutan 0,02% N-Naftil etilen diamine, air suling, tabung hitam tidak tembus cahaya, cutter, tabung reaksi, pipet, dan spektrofotometer.

3. Analisis kadar serat kasar menggunakan: H₂SO₄ pekat, H₂SO₄ 1,25% (0,225 N), NaOH 1,25% (0,313 N), aceton, air panas, labu ErlenMeyer, gelas Beaker, gelas ukur, corong Buchner, kertas saring bebas abu, oven, eksikator, timbangan digital, cawan porselin, tanur listrik.
4. Analisis kadar protein kasar menggunakan: KHSO dan CuSO₄ (pengganti selen), H₂SO₄ 0,3 N, H₂SO₄ pekat BJ 1,84, NaOH 33%, NaOH 0,3 N, campuran indikator MR dan BR, indikator PP, asam oksalat 0,3 N.

3.3. Metode Penelitian

Penelitian ini merupakan penelitian eksperimental dengan menggunakan Rancangan Acak Lengkap berpola split plot. Pola percobaan terbagi ke dalam unit-unit petak utama dan setiap unit petak utama dibagi menjadi unit-unit anak petak. Sebagai petak utama adalah rumput pakan dengan anak petak adalah dosis pupuk SP 36. Masing-masing perlakuan diulang sebanyak 3 kali.

Rumput pakan yang digunakan adalah:

- \(R_1\) : *Brachiaria brizantha* poliploid
- \(R_2\) : *Brachiaria decumbens* poliploid
- \(R_3\) : *Panicum munitum* poliploid
- \(R_4\) : *Brachiaria brizantha* diploid
- \(R_5\) : *Brachiaria decumbens* diploid
- \(R_6\) : *Panicum munitum* diploid

Dosis pupuk SP 36 meliputi:

- \(P_0\) : dosis 0 kg P₂O₅/ ha/ tahun
- \(P_1\) : dosis 150 kg P₂O₅/ ha/ tahun
- \(P_2\) : dosis 225 kg P₂O₅/ ha/ tahun
- ... \(P_3\) : dosis 300 kg P₂O₅/ ha/ tahun
Dari jumlah perlakuan tersebut didapat 24 kombinasi yaitu : P₀R₁, P₀R₂, P₀R₃,
P₀R₄, P₀R₅, P₀R₆, P₁R₁, P₁R₂, P₁R₃, P₁R₄, P₁R₅, P₁R₆, P₂R₁, P₂R₂, P₂R₃, P₂R₄, P₂R₅,
P₂R₆, P₃R₁, P₃R₂, P₃R₃, P₃R₄, P₃R₅, P₃R₆

3.4. Denah Percobaan

Dengan 24 kombinasi perlakuan dan 3 ulangan dengan pola split plot,
denah percobaan disusun seperti berikut:
Ilustrasi 1. Denah Peletakan Pot Percobaan
Keterangan: R1U1 - R6U3 = petak utama
P0 - P3 = anak petak
3. 5. Prosedur Penelitian

3. 5. 1. Analisis tanah

Analisis tanah dilakukan terhadap media tanam (tanah latosol dicampur pupuk kandang dalam perbandingan 4 : 1) sebelum dilakukan penanaman. Contoh media yang diambil dianalisis pH tanah dengan menggunakan pH meter secara langsung, N tersedia dengan metode Kjeldahl, P tersedia dengan metode Bray II, dan K tersedia dengan metode K larut dalam air. Hasil analisis tanah menunjukkan N tersedia 0,060 % (sangat rendah), P tersedia 4,66 ppm (sangat rendah), K tersedia 0,22 me / 100 mg (rendah) (Hardjowigeno, 1985).

3. 5. 2. Persiapan tanam

Persiapan media tanam dilakukan dengan mencampur tanah dengan pupuk kandang dalam perbandingan 4:1. Media tanam yang telah tersedia selanjutnya dimasukkan ke dalam pot. Pot plastik sebanyak 72 buah ditempatkan secara acak untuk masing-masing unit perlakuan.

3. 5. 3. Pemberian larutan Al₂(SO₄)₃.H₂O

Pemasaman tanah dilakukan dengan memberikan larutan Al₂(SO₄)₃.H₂O sebanyak 300 mM (17,55 g/l) pada tanah dalam pot plastik. Pemberian larutan Al₂(SO₄)₃.H₂O setelah 1 (satu) minggu potong paksa, dilakukan setiap 2 (dua) hari sekali. Penyiraman sekaligus pemberian larutan Al₂(SO₄)₃.H₂O dilakukan sesuai dengan kapasitas lapang selama 6 minggu.

3. 5. 4. Perlakuan pemupukan

Pemupukan fosfor diberikan dalam dua tahap masing-masing setengah dosis, yang diberikan 1 minggu setelah potong paksa (bersamaan dengan dimulainya pemasaman tanah) dan 3 minggu kemudian dalam bentuk SP 36, sesuai dosis perlakuan dengan cara menempatkan pupuk secara ditugal.

3. 6. Parameter yang diamati

Parameter yang diamati dalam penelitian ini terdiri atas serapan fosfor dan kualitas tanaman, terdiri:

- Serapan Fosfor.
- Efisiensi pemanfaatan fosfor.
- Kadar klorofil.
- Aktivitas nitrat reduktase (ANR).
- Kadar serat kasar.
- Kadar protein kasar.
- Produksi Bahan Kering
3.6.1. Serapan fosfor

Untuk mengetahui serapan fosfor berdasarkan formula:

\[
\text{Serapan fosfor} = \text{Kadar fosfor} \times \text{produksi Bahan Kering}
\]

3.6.2. Efisiensi pemanfaatan fosfor

\[
\text{Efisiensi pemanfaatan fosfor} = \frac{\text{g P Terserap}}{\text{g Bahan Kering Biomas}}
\]

Pupuk yang diberikan diasumsikan tidak hilang atau tercuci dan tidak menguap.
Efisiensi yang diamati adalah efisiensi pemanfaatan serapan hara dari pemberian pupuk fosfor.

3.6.3. Kadar klorofil

Kadar klorofil dalam mg klorofil/gr daun segar ditetapkan dengan persamaan:

\[
\text{Klorofil total} = \frac{\text{As} \times 1000}{34,5} \times \frac{50}{1000} \times \frac{100}{5} \times \frac{1}{2} (\text{mg klorofil/g berat daun})
\]

Keterangan:
As = Absorbansi Larutan Sampel
3.6.4. Aktivitas nitrat reduktase (ANR)

Pengukuran aktivitas nitrat reduktase dilakukan sesuai petunjuk Hartiko (1987). Aktivitas Nitrat Reduktase (ANR) dinyatakan sebagai jumlah mol nitrit yang terbentuk per gram segar daun per jam.

\[
\text{ANR} = \text{As} \times \frac{1000}{B} \times \frac{1}{T} \times \frac{5}{0,1} \text{ mol NO}_2/\text{g/jam}
\]

Keterangan:
\(\text{ANR} = \) Aktivitas Nitrat Reduktase
\(\text{T} = \) Waktu Inkubasi (3 jam)
\(\text{B} = \) Berat Sampel
\(\text{As} = \) Absorbanı Larutan Sampel

3.6.5. Kadar serat kasar

Kadar serat kasar diketahui dengan menggunakan analisis proksimat Weendes.

3.6.6. Kadar protein kasar

Kadar protein kasar diketahui dengan menggunakan analisis metode Kjeldahl, kadar protein kasar dihitung berdasar : % N x 6,25.

3.6.7. Produksi bahan kering

Produksi bahan kering diambil setelah defoliasi yaitu 6 minggu setelah perlakuan pemupukan P. Bahan kering diketahui melalui pengeringan oven
dengan suhu 105^0C selama 16 jam hingga berat konstan (AOAC 967.03, 1990 dalam Cherney, 2000).

Produksi bahan kering = % BK x Produksi bahan segar

3. 7. Analisis Data

Data yang diperoleh dianalisis menggunakan uji ragam dilanjutkan dengan Uji Duncan taraf 5%. Untuk mengetahui respon dari pemupukan fosfor dilakukan uji lanjut dengan menggunakan Uji Polinomial Ortogonal (Gomez dan Gomez, 1995).

Model matematisnya adalah sebagai berikut:

$$Y_{ijk} = \mu + \alpha_i + e_{ik} + \beta_j + (\alpha\beta)_{ij} + \delta_{ijk}$$

Keterangan:

- Y_{ijk} = nilai pengamatan dari faktor rumput ke-i, aras dosis pupuk P ke-j dan ulangan ke-k.
- μ = nilai rata-rata seluruh perlakuan.
- α_i = pengaruh perlakuan rumput ke-i.
- e_{ik} = galat petak utama ke-i dan ulangan ke-k.
- β_j = pengaruh perlakuan dosis pupuk P ke-j.
- $(\alpha\beta)_{ij}$ = pengaruh interaksi antara rumput ke-i dan perlakuan dosis pupuk P ke-j.
- δ_{ijk} = galat yang disebabkan oleh pengaruh rumput ke-i dan perlakuan dosis pupuk P ke-j dan ulangan ke-k.
BAB IV

HASIL DAN PEMBAHASAN

4.1. Hasil Penelitian

4.1.1. Serapan Fosfor

Data serapan fosfor berbagai jenis rumput pakan dengan berbagai dosis pemupukan P tertera pada Tabel 2. Berdasarkan hasil uji ragam ternyata bahwa jenis rumput, dosis pemupukan P, serta interaksi antara jenis rumput pakan dengan dosis pemupukan P tidak berpengaruh secara nyata terhadap serapan fosfor.

Tabel 2. Serapan Fosfor Berbagai Jenis Rumput Pakan pada Tanah Masam dengan pemupukan P

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>0</th>
<th>150</th>
<th>225</th>
<th>300</th>
<th>Rerata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg / pot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. brizantha (p)</td>
<td>180,81</td>
<td>237,39</td>
<td>201,90</td>
<td>204,60</td>
<td>206,18</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>196,45</td>
<td>231,45</td>
<td>183,98</td>
<td>238,15</td>
<td>212,51</td>
</tr>
<tr>
<td>P. muticum (p)</td>
<td>160,51</td>
<td>188,59</td>
<td>157,84</td>
<td>191,43</td>
<td>174,59</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>203,16</td>
<td>196,90</td>
<td>205,31</td>
<td>182,48</td>
<td>196,96</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>201,31</td>
<td>202,83</td>
<td>196,88</td>
<td>212,29</td>
<td>203,33</td>
</tr>
<tr>
<td>P. muticum (d)</td>
<td>147,25</td>
<td>154,07</td>
<td>158,70</td>
<td>164,13</td>
<td>156,04</td>
</tr>
<tr>
<td>Rerata</td>
<td>181,58</td>
<td>201,87</td>
<td>184,10</td>
<td>198,85</td>
<td></td>
</tr>
</tbody>
</table>

... Berdasarkan hasil uji Duncan (Tabel 2, lampiran 1) menunjukkan bahwa rerata serapan fosfor pada rumput *Brachiaria brizantha* poliploid tidak berbeda
nyata dengan *Brachiaria decumbens* poliploid tidak berbeda nyata dengan *B. decumbens* diploid, *Panicum maticum* poliploid juga tidak berbeda nyata dengan *P. maticum* diploid (*P > 0,05*).

Respon perlakuan pemupukan P pada berbagai jenis rumput pakan terhadap serapan fosfor tercantum pada Tabel 3 (Lampiran 2 - 7).

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Persamaan regresi</th>
<th>Fhitung</th>
<th>R^2 (%)</th>
<th>R(%)</th>
<th>Rabel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. brizantha (p)</td>
<td>$Y = 195,04 + 0,0659X$</td>
<td>0,53</td>
<td>5,00</td>
<td>22,36<sup>ns</sup></td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>$Y = 198,40 + 0,0836X$</td>
<td>0,75</td>
<td>7,00</td>
<td>26,45<sup>ns</sup></td>
<td>66,60</td>
</tr>
<tr>
<td>P. maticum (p)</td>
<td>$Y = 158,48 + 0,00017X$</td>
<td>0,45</td>
<td>4,30</td>
<td>20,74<sup>ns</sup></td>
<td>66,60</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>$Y = 199,52 - 0,00009X$</td>
<td>0,15</td>
<td>1,50</td>
<td>12,24<sup>ns</sup></td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>$Y = 199,38 + 0,0236X$</td>
<td>0,38</td>
<td>3,60</td>
<td>18,97<sup>ns</sup></td>
<td>66,60</td>
</tr>
<tr>
<td>P. maticum (d)</td>
<td>$Y = 144,54 + 0,0001X$</td>
<td>0,40</td>
<td>3,80</td>
<td>19,50<sup>ns</sup></td>
<td>66,60</td>
</tr>
</tbody>
</table>

^{ns} = korelasi antara berbagai dosis pupuk P dengan serapan P tidak nyata (*P > 5%)*

Data Tabel 3 menunjukkan bahwa respon berbagai jenis rumput pakan dengan perlakuan pemupukan P terhadap serapan fosfor, merupakan persamaan linear tidak nyata. Hal ini berarti pemupukan P hingga dosis 300 kg P$_2$O$_5$ kg / ha / tahun tidak berpengaruh terhadap serapan fosforknya.

4.1.2. Efisiensi Pemanfaatan Fosfor

Data efisiensi pemanfaatan fosfor berbagai jenis rumput pakan dengan berbagai dosis pemupukan P tertera pada Tabel 4 (Lampiran 8). Berdasarkan hasil uji ragam ternyata jenis rumput, demikian pula interaksi antara jenis rumput dengan dosis pupuk P tidak berpengaruh terhadap efisiensi pemanfaatan fosfor.
Dosis pemupukan P nampak kecenderungan berpengaruh terhadap efisiensi pemanfaatan fosfor (P ≤ 0,06).

<table>
<thead>
<tr>
<th>Pupuk P</th>
<th>Dosis pupuk P$_2$O$_5$ (kg/ha)</th>
<th>Rerata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>B. brizantha (p)</td>
<td>0,219</td>
<td>0,280</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>0,267</td>
<td>0,272</td>
</tr>
<tr>
<td>P. maticum (p)</td>
<td>0,253</td>
<td>0,283</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>0,252</td>
<td>0,248</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>0,235</td>
<td>0,252</td>
</tr>
<tr>
<td>P. maticum (d)</td>
<td>0,243</td>
<td>0,252</td>
</tr>
<tr>
<td>Rerata</td>
<td>0,245</td>
<td>0,265</td>
</tr>
</tbody>
</table>

Respon perlakuan pemupukan P pada berbagai jenis rumput pakan terhadap efisiensi pemanfaatan fosfor tercantum pada Tabel 5 (Lampiran 9 - 14).

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Persamaan regresi</th>
<th>F_{hitung}</th>
<th>R^2 (%)</th>
<th>R(%)</th>
<th>R_{tabel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. brizantha (p)</td>
<td>Y = 0,233 + 0,00009X</td>
<td>0,89</td>
<td>8,20</td>
<td>28,63ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>Y = 0,264 - 0,00005X</td>
<td>3,43</td>
<td>0,0</td>
<td>0,0ns</td>
<td>66,60</td>
</tr>
<tr>
<td>P. maticum (p)</td>
<td>Y = 0,250 + 0,00014X</td>
<td>2,29</td>
<td>18,60</td>
<td>43,13ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>Y = 0,257 - 0,000063X</td>
<td>0,67</td>
<td>6,30</td>
<td>25,09ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>Y = 0,238 + 0,00005X</td>
<td>2,03</td>
<td>16,90</td>
<td>41,10ns</td>
<td>66,60</td>
</tr>
<tr>
<td>P. maticum (d)</td>
<td>Y = 0,239 + 0,00005X</td>
<td>0,67</td>
<td>6,30</td>
<td>5,09ns</td>
<td>66,60</td>
</tr>
</tbody>
</table>

ns = korelasi antara berbagai dosis pupuk P dengan efisiensi penggunaan P tidak nyata (P > 5%)

Berdasarkan Tabel 5 ternyata respon semua jenis rumput pakan berupa persamaan regresi linear tidak nyata. Hal ini berarti peningkatan dosis pupuk P
hingga dosis 300 kg P$_2$O$_5$ / ha / tahun tidak berpengaruh terhadap efisiensi pemanfaatan fosfor.

4.1.3. Kadar Klorofil

Data kadar klorofil berbagai jenis rumput pakan dengan berbagai dosis pupuk P tertera pada Tabel 6. Berdasarkan hasil uji ragam ternyata jenis rumput berpengaruh sangat nyata terhadap kadar klorofil (P < 0,01). Dosis pemupukan P, demikian pula interaksi antara jenis rumput dengan dosis pupuk P tidak berpengaruh secara nyata terhadap kadar klorofil.

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Dosis pupuk P$_2$O$_5$ (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>B. brizantha (p)</td>
<td>1,160</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>1,300</td>
</tr>
<tr>
<td>P. muticum (p)</td>
<td>0,894</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>1,174</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>1,237</td>
</tr>
<tr>
<td>P. muticum (d)</td>
<td>0,822</td>
</tr>
</tbody>
</table>

Keterangan: superskrip yang berbeda menunjukkan berbeda nyata, berdasarkan uji Duncan 5%.

Berdasarkan hasil uji Duncan (Tabel 6, Lampiran 15) menunjukkan bahwa rerata kadar klorofil rumput Brachiaria brizantha poliploid tidak berbeda nyata dengan B. brizantha diploid, Brachiaria decumbens poliploid dengan diploid juga
tidak berbeda nyata, demikian pula kadar klorofil *Panicum munitum* poliploid dengan diploid tidak berbeda nyata.

Respon perlakuan pemupukan P pada berbagai jenis rumput pakan terhadap kadar klorofilnya tercantum pada Tabel 7 (Lampiran 16 - 21).

Tabel 7. Respon Berbagai Jenis Rumput Pakan dengan Perlakuan Pemupukan P terhadap Kadar Klorofil.

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Persamaan regresi</th>
<th>F_hitung</th>
<th>R²(%)</th>
<th>R(%)</th>
<th>R tabel(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. brizantha (p)</td>
<td>Y = 1,16 - 0,000081X</td>
<td>0,02</td>
<td>0,2</td>
<td>4,47ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>Y = 1,24 - 0,000678X</td>
<td>1,02</td>
<td>9,3</td>
<td>30,49ns</td>
<td>66,60</td>
</tr>
<tr>
<td>P. munitum (p)</td>
<td>Y = 0,82 + 0,000241X</td>
<td>0,20</td>
<td>2,0</td>
<td>14,14ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>Y = 1,19 + 0,000423X</td>
<td>0,40</td>
<td>3,9</td>
<td>19,75ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>Y = 1,26 - 0,000454X</td>
<td>1,31</td>
<td>11,6</td>
<td>34,06ns</td>
<td>66,60</td>
</tr>
<tr>
<td>P. munitum (d)</td>
<td>Y = 0,77 + 0,000799X</td>
<td>4,51</td>
<td>31,1</td>
<td>55,77ns</td>
<td>66,60</td>
</tr>
</tbody>
</table>

ns = korelasi antara berbagai dosis pupuk P dengan kadar klorofil tidak nyata (P > 5%)

Berdasarkan Tabel 7 ternyata respon semua jenis rumput pakan merupakan persamaan regresi linear tidak nyata. Hal ini berarti penambahan dosis pupuk P hingga 300 kg P₂O₅ / ha / tahun tidak mengubah kandungan klorofil dalam berbagai jenis rumput pakan.

4. 1. 4. Aktivitas Nitrat Reduktase

Data aktivitas nitrat reduktase berbagai jenis rumput pakan dengan berbagai dosis pemupukan P tertera pada Tabel 8 (Lampiran 22). Berdasarkan hasil uji ragam ternyata bahwa jenis rumput, dosis pemupukan P, demikian pula interaksi antara jenis rumput dengan dosis pemupukan P tidak berpengaruh terhadap aktivitas nitrat reduktase.
Tabel 8. Aktivitas Nitrat Reduktase Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Pemupukan P.

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Dosis pupuk P₂O₅ (kg/ha)</th>
<th>Rerata</th>
<th>µ mol NO₂/g/jam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>150</td>
<td>225</td>
</tr>
<tr>
<td>B. brizantha (p)</td>
<td>25,511</td>
<td>22,662</td>
<td>25,178</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>22,607</td>
<td>20,165</td>
<td>29,179</td>
</tr>
<tr>
<td>P. muticum (p)</td>
<td>27,898</td>
<td>26,899</td>
<td>25,031</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>14,412</td>
<td>25,715</td>
<td>25,956</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>22,663</td>
<td>23,273</td>
<td>24,735</td>
</tr>
<tr>
<td>P. muticum (d)</td>
<td>24,087</td>
<td>26,307</td>
<td>25,012</td>
</tr>
<tr>
<td>Rerata</td>
<td>22,863</td>
<td>24,170</td>
<td>25,838</td>
</tr>
</tbody>
</table>

Respon perlakuan pemupukan P pada berbagai jenis rumput pakan terhadap aktivitas nitrat reduktasenya tercantum pada Tabel 9 (Lampiran 23 - 28).

Tabel 9. Respon Berbagai Jenis Rumput Pakan dengan Perlakuan Pemupukan P terhadap Aktivitas Nitrat Reduktase (ANR)

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Persamaan regresi</th>
<th>F_Hitung</th>
<th>R² (%)</th>
<th>R (%)</th>
<th>R tabel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. brizantha (p)</td>
<td>Y = 25,7 - 0,0143X</td>
<td>0,87</td>
<td>8</td>
<td>28,28 ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>Y = 22,5 + 0,0041X</td>
<td>0,05</td>
<td>0,5</td>
<td>7,07 ns</td>
<td>66,60</td>
</tr>
<tr>
<td>P. muticum (p)</td>
<td>Y = 27,2 - 0,00038X</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00 ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>Y = 15,7 + 0,0474X</td>
<td>31,01</td>
<td>75,6</td>
<td>86,95*</td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>Y = 21,9 + 0,0168X</td>
<td>3,03</td>
<td>23,2</td>
<td>48,17 ns</td>
<td>66,60</td>
</tr>
<tr>
<td>P. muticum (d)</td>
<td>Y = 25,2 - 0,00482X</td>
<td>0,27</td>
<td>2,7</td>
<td>16,43 ns</td>
<td>66,60</td>
</tr>
</tbody>
</table>

* = korelasi antara berbagai dosis pupuk P dengan ANR nyata (P < 5%)
ns = korelasi antara berbagai dosis pupuk P dengan ANR tidak nyata (P > 5%)

reduktasenya. Jenis rumput pakan yang lain (B. brizantha poliploid, B. decumbens poliploid dan diploid, P. mtcum poliploid dan diploid) responnya berupa persamaan linear tidak nyata. Hal ini berarti pemupukan P hingga 300 kg P₂O₅/ha/tahun tidak mengubah aktivitas nitrat reduktasena.

4.1.5. Kadar Protein Kasar

Tabel 10. Kadar Protein Kasar Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Pemupukan P

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Dosis pupuk P₂O₅(kg/ha)</th>
<th>Rerata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>B. brizantha (p)</td>
<td>13,95</td>
<td>12,81</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>12,49</td>
<td>11,70</td>
</tr>
<tr>
<td>P. mtcum (p)</td>
<td>14,93</td>
<td>15,19</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>10,37</td>
<td>8,82</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>11,72</td>
<td>11,59</td>
</tr>
<tr>
<td>P. mtcum (d)</td>
<td>16,31</td>
<td>14,95</td>
</tr>
<tr>
<td>Rerata</td>
<td>13,29</td>
<td>12,51</td>
</tr>
</tbody>
</table>

Keterangan: superskrip yang berbeda menunjukkan berbeda nyata berdasarkan uji Duncan 5%.

Berdasarkan hasil uji Duncan (Tabel 10 Lampiran 29) menunjukkan bahwa tidak terdapat perbedaan nyata kadar protein kasar pada B. brizantha poliploid
dengan *B. brizantha* diploid, *B. decumbens* poliploid dengan *B. decumbens* diploid, dan *P. muticum* poliploid *P. muticum* diploid.

Respon berbagai jenis rumput pakan terhadap kadar protein kasar tercantum pada Tabel 11 (Lampiran 30 - 35).

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Persamaan regresi</th>
<th>(F_{hitung})</th>
<th>(R^2(%))</th>
<th>R(%)</th>
<th>(R_{table}(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. brizantha (p)</td>
<td>(Y = 13,8 - 0,0005X)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00<sup>ns</sup></td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>(Y = 12,9 - 0,00732X)</td>
<td>2,04</td>
<td>16,9</td>
<td>41,10<sup>ns</sup></td>
<td>66,60</td>
</tr>
<tr>
<td>P. muticum (p)</td>
<td>(Y = 15,0 - 0,00143X)</td>
<td>0,07</td>
<td>0,7</td>
<td>8,36<sup>ns</sup></td>
<td>66,60</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>(Y = 9,66 + 0,00616X)</td>
<td>1,60</td>
<td>13,8</td>
<td>37,14<sup>ns</sup></td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>(Y = 11,3 + 0,0104X)</td>
<td>3,41</td>
<td>25,4</td>
<td>50,39<sup>ns</sup></td>
<td>66,60</td>
</tr>
<tr>
<td>P. muticum (d)</td>
<td>(Y = 16,0 + 0,00030X)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00<sup>ns</sup></td>
<td>66,60</td>
</tr>
</tbody>
</table>

^{ns} = korelasi antara berbagai dosis pupuk P dengan kandungan protein kasar tidak nyata (P > 5%)

Berdasarkan Tabel 11 diketahui respon semua jenis rumput pakan terhadap kadar protein kasar merupakan persamaan regresi linear tidak nyata. Hal ini berarti bahwa penambahan dosis pupuk P hingga dosis 300 kg P₂O₅ / ha / tahun tidak mengubah kadar protein kasar rumput pakan.

4.1.6. Kadar Serat Kasar

Data kadar serat kasar berbagai jenis rumput pakan dengan berbagai dosis pemupukan P tertera pada Tabel 12. Berdasarkan hasil uji ragam ternyata jenis rumput pakan, dosis pemupukan P, serta interaksi antara jenis rumput dengan
dosis pemupukan P berpengaruh sangat nyata terhadap kadar serat kasar (P < 0,01).

Tabel 12. Kadar Serat Kasar Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Pemupukan P.

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Dosis pupuk P<sub>2</sub>O<sub>5</sub> (kg/ha)</th>
<th>Rerata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>B. brizantha (p)</td>
<td>23,78<sup>i</sup></td>
<td>24,56<sup>ib</sup></td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>26,02<sup>e</sup></td>
<td>26,27<sup>f</sup></td>
</tr>
<tr>
<td>P. maticum (p)</td>
<td>26,95<sup>cd</sup></td>
<td>25,18<sup>fghi</sup></td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>27,99<sup>abcd</sup></td>
<td>28,00<sup>abcd</sup></td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>27,16<sup>b</sup></td>
<td>26,65<sup>def</sup></td>
</tr>
<tr>
<td>P. maticum (d)</td>
<td>25,34<sup>fg</sup></td>
<td>25,19<sup>fghi</sup></td>
</tr>
<tr>
<td>Rerata</td>
<td>26,21<sup>o</sup></td>
<td>25,81<sup>o</sup></td>
</tr>
</tbody>
</table>

Keterangan: superskrip yang berbeda menunjukkan berbeda nyata berdasarkan uji Duncan 5%.

Berdasarkan hasil uji Duncan (Tabel 12, Lampiran 36) ternyata bahwa kadar serat kasar rumput pakan B. brizantha poliploid berbeda nyata dengan B. brizantha diploid, B. decumbens poliploid dengan B. decumbens diploid dan P. maticum poliploid dengan P. maticum diploid.

Respon perlakuan pemupukan P pada berbagai jenis rumput pakan terhadap kadar serat kasar dapat dilihat pada Tabel 13 (Lampiran 37 - 42).
<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Persamaan regresi</th>
<th>F_{hitung}</th>
<th>R^2 (%)</th>
<th>R(%)</th>
<th>R_{tabel} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. brizantha (p)</td>
<td>$Y = 23,70 + 0,0132X$</td>
<td>12,66</td>
<td>55,90</td>
<td>74,77*</td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>$Y = 25,70 + 0,00119X$</td>
<td>0,37</td>
<td>3,60</td>
<td>18,97ns</td>
<td>66,60</td>
</tr>
<tr>
<td>P. muticum (p)</td>
<td>$Y = 26,00 + 0,00556X$</td>
<td>1,82</td>
<td>15,40</td>
<td>39,24ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>$Y = 27,91 + 0,00172X$</td>
<td>0,62</td>
<td>5,90</td>
<td>24,29ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>$Y = 27,40 - 0,00063X$</td>
<td>0,03</td>
<td>0,30</td>
<td>5,48ns</td>
<td>66,60</td>
</tr>
<tr>
<td>P. muticum (d)</td>
<td>$Y = 25,50 + 0,00241X$</td>
<td>0,38</td>
<td>3,60</td>
<td>18,97ns</td>
<td>66,60</td>
</tr>
</tbody>
</table>

* = korelasi antara berbagai dosis pupuk P dengan kadar serat kasar nyata ($P < 5\%$)
ns = korelasi antara berbagai dosis pupuk P dengan kadar serat kasar tidak nyata ($P > 5\%$).

Berdasarkan Tabel 13 ternyata dengan pemupukan P respon rumput Brachiaria brizantha poliploid berupa persamaan regresi linear positip, ini berarti peningkatan dosis pupuk P berpengaruh meningkatkan kadar serat kasar. Rumput pakan B. brizantha diploid, B. decumbens poliploid dan diploid, P. muticum poliploid dan diploid responnya berupa persamaan regresi linear tidak nyata. Hal ini berarti peningkatan dosis pupuk P hingga 300 kg P$_2$O$_5$ / ha / tahun tidak berpengaruh terhadap kadar serat kasar ke lima jenis rumput tersebut.

4.1.7. Produksi Bahan Kering

Data produksi bahan kering berbagai jenis rumput pakan dengan berbagai dosis pemupukan P tertera pada Tabel 14. Berdasarkan hasil uji ragam ternyata jenis rumput pakan berpengaruh nyata terhadap produksi bahan kering ($P < 0,05$). Dosis pemupukan P serta interaksi antara jenis rumput dengan dosis pemupukan P tidak berpengaruh secara nyata terhadap produksi bahan kering.
Tabel 14. Produksi Bahan Kering Berbagai Jenis Rumput Pakan pada Tanah Masam dengan Pemupukan P

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Dosis pupuk P₂O₅ (kg/ha)</th>
<th>Rerata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>B. brizantha (p)</td>
<td>82,553</td>
<td>84,961</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>73,443</td>
<td>85,065</td>
</tr>
<tr>
<td>P. maticum (p)</td>
<td>63,823</td>
<td>66,768</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>80,824</td>
<td>80,071</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>85,713</td>
<td>80,196</td>
</tr>
<tr>
<td>P. maticum (d)</td>
<td>59,709</td>
<td>60,937</td>
</tr>
</tbody>
</table>

Rerata: 74,341 76,333 74,096 75,512

Keterangan: superskrip yang berbeda menyatakan berbeda nyata berdasarkan uji Duncan 5%.

Berdasarkan hasil uji Duncan (Tabel 14, lampiran 43) menunjukkan bahwa rerata produksi bahan kering pada rumput Brachiaria brizantha poliploid tidak berbeda nyata dengan B. brizantha diploid, Brachiaria decumbens poliploid tidak berbeda nyata dengan B. decumbens diploid, Panicum maticum poliploid tidak berbeda nyata dengan P. maticum diploid (P > 0,05).

Tabel 15. Respon Berbagai Jenis Rumput Pakan dengan Perlakuan Pemupukan P terhadap Produksi Bahan Kering

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>Persamaan regresi</th>
<th>Fₚribing</th>
<th>R²(%)</th>
<th>R(%)</th>
<th>Rₚ tabel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. brizantha (p)</td>
<td>Y = 83,63 - 0,00468X</td>
<td>7,33</td>
<td>0,70</td>
<td>8,36ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>Y = 75,10 + 0,0319X</td>
<td>2,20</td>
<td>18,00</td>
<td>42,42ns</td>
<td>66,60</td>
</tr>
<tr>
<td>P. maticum (p)</td>
<td>Y = 65,38 - 0,01219X</td>
<td>0,18</td>
<td>1,00</td>
<td>10,00ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. brizantha (d)</td>
<td>Y = 77,62 + 0,0001X</td>
<td>1,76</td>
<td>0,20</td>
<td>4,47ns</td>
<td>66,60</td>
</tr>
<tr>
<td>B. decumbens (d)</td>
<td>Y = 83,76 - 0,00902X</td>
<td>0,32</td>
<td>3,10</td>
<td>17,60ns</td>
<td>66,60</td>
</tr>
<tr>
<td>P. maticum (d)</td>
<td>Y = 60,12 + 0,00450X</td>
<td>-2,67</td>
<td>0,30</td>
<td>5,47ns</td>
<td>66,60</td>
</tr>
</tbody>
</table>

ns = korelasi antara berbagai dosis pupuk dengan produksi bahan kering tidak nyata (P > 5%)
Berdasarkan Tabel 15 (Lampiran 44 - 49) ternyata respon semua jenis rumput pakan merupakan persamaan regresi linear tidak nyata, hal ini berarti penambahan dosis pupuk P hingga dosis 300 kg P₂O₅ / ha / tahun tidak mengubah produksi bahan kering berbagai jenis rumput pakan.

4.1.8. Responsibilitas Kumulatif Rumput Pakan Poliploid

Responsibilitas berbagai rumput pakan poliploid dalam kondisi cekaman kemasaman tanah ternyata berbeda-beda diukur berdasarkan beberapa parameter penelitian, demikian pula dengan pemupukan P dalam berbagai dosis, ternyata responsnya berbeda pula. Berikut ini urutan responsibilitas rumput pakan poliploid tersebut.

<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>klorofil</th>
<th>ANR</th>
<th>PK</th>
<th>SK</th>
<th>PKK</th>
<th>Scrapan P</th>
<th>EPP</th>
<th>rerata</th>
<th>urutan</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. brizantha (p)</td>
<td>1,160 (2)</td>
<td>25,511 (3)</td>
<td>13,95 (2)</td>
<td>23,78 (3)</td>
<td>82,553 (3)</td>
<td>180,81 (2)</td>
<td>0,219 (1)</td>
<td>2,14</td>
<td>1 (2)</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>1,300 (3)</td>
<td>22,607 (1)</td>
<td>12,49 (1)</td>
<td>26,82 (2)</td>
<td>73,443 (2)</td>
<td>196,45 (3)</td>
<td>0,267 (3)</td>
<td>2,14</td>
<td>2 (1)</td>
</tr>
<tr>
<td>P. maticum (p)</td>
<td>0,894 (1)</td>
<td>27,898 (3)</td>
<td>14,93 (3)</td>
<td>26,95 (1)</td>
<td>63,823 (1)</td>
<td>160,51 (1)</td>
<td>0,253 (2)</td>
<td>1,71</td>
<td>3 (3)</td>
</tr>
</tbody>
</table>

Keterangan: angka dalam () menunjukkan skor masing-masing jenis rumput pakan poliploid angka dalam () menunjukkan urutan responsibilitas berbagai jenis rumput pakan poliploid

Di antara berbagai jenis rumput pakan poliploid yang tumbuh dalam kondisi cekaman kemasaman tanah, rumput pakan *B. brizantha* dan *B. decumbens* memberikan respon lebih tinggi, berdasarkan beberapa parameter penelitian. Rumput pakan *P. maticum* menempati urutan paling bawah.
<table>
<thead>
<tr>
<th>Jenis rumput</th>
<th>klorofil</th>
<th>ANR</th>
<th>PK</th>
<th>SK</th>
<th>PBK</th>
<th>Serapan P</th>
<th>EPP</th>
<th>urutan</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. brizantha (p)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(1) (1)</td>
</tr>
<tr>
<td>B. decumbens (p)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(2) (3)</td>
</tr>
<tr>
<td>P. muticum (p)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(3) (2)</td>
</tr>
</tbody>
</table>

Keterangan: angka dalam { } menunjukkan urutan responsibilitas berbagai jenis rumput pakan poliploid terhadap pemupukan P.

Diantara berbagai rumput poliploid yang tumbuh dalam kondisi cekaman kemasaman tanah dengan pemupukan P dalam berbagai dosis, ternyata respon berbagai jenis rumput pakan berurutan B. brizantha, diikuti B. decumbens dan P. muticum, atau B. brizantha, diikuti P. muticum dan B. decumbens. Hal ini berarti dalam kondisi cekaman kemasaman tanah, pemupukan P memberikan respon paling tinggi pada rumput B. brizantha poliploid berdasarkan berbagai parameter penelitian.

4.2. Pembahasan

Pembahasan terhadap hasil penelitian dipilah dalam dua sisi pandang, yaitu dari sisi media tanaman rumput pakan dan sisi metabolisme tanaman rumput pakan.

4.2.1. Media Tanaman Rumput Pakan

Tanaman rumput pakan yang digunakan dalam penelitian ditumbuhkan dalam media campuran tanah, dan pupuk kandang dalam perbandingan 4 : 1. Tanah yang digunakan adalah tanah sekitar Tembalang jenis latosol. Media tanam ini mendapat perlakuan pemasaman dengan menggunakan tawas [Al₂(SO₄)₃.H₂O] sehingga pH mencapai 3,5 dalam kondisi kapasitas lapang. Berdasarkan kajian...
dari beberapa sumber, media tumbuh tanaman yang bersifat masam mempunyai beberapa pengaruh negatif.

Berdasarkan berbagai pendapat tersebut, diduga tanaman rumput pakan yang digunakan dalam percobaan mengalami hambatan dalam hal kemampuan memperoleh sumber daya air maupun unsur hara, serta hambatan kemampuan penggunaan sumberdaya tersebut.

4.2.2. Metabolisme Tanaman Rumput Pakan

Metabolisme tanaman rumput pakan meliputi metabolisme primer dan metabolisme sekunder. Metabolisme primer menghasilkan produk metabolit yang dibutuhkan oleh sel dan langsung dipergunakan untuk pertumbuhan dan hidup. Metabolisme sekunder menghasilkan produk yang tidak dipergunakan langsung oleh sel bagi pertumbuhannya. Dalam masing-masing proses tersebut di muka terlibat berbagai enzim, maupun senyawa lain hasil metabolisme; sehingga suatu proses dapat terpengaruh oleh proses yang lain (Arbianto, 1994; Robinson, 1995).

Dalam kondisi cekaman kemasaman tanah akibat ion aluminium, proses metabolisme tanaman rumput mengalami berbagai kendala, berupa terhambatnya pengambilan air dan zat hara akibat rusaknya ujung akar, terhambatnya penggunaan zat hara untuk proses metabolisme, gangguan fungsi enzim. Kendala metabolisme ini termasuk juga proses fosforilasi yang merupakan proses penting masuk dalam proses respirasi (Suseno, 1974; Façanha dan Façanha, 2002)

4.2.2.1. Serapan Fosfor dan Efisiensi Pemanfaatan Fosfor

Penyerapan fosfor oleh tumbuhan dan pemanfaatannya di dalam jaringan tumbuhan tergantung pada banyak hal, antara lain pH media tanam serta
ketersediaan unsur hara (Salisbury dan Ross, 1995). Hasil penelitian menunjukkan bahwa peningkatan pemupukan P hingga dosis 300 kg P$_2$O$_5$ / ha / tahun ternyata tidak berpengaruh terhadap serapan fosfor maupun efisiensi pemanfaatan fosfor. Keadian ini diduga karena dalam kondisi cekaman kemasaman media tanam, serapan fosfor maupun unsur hara lain mengalami hambatan. Hambatan ini terjadi akibat jerapan fosfor oleh ion-ion Al (Hakim et al., 1986; Foth, 1994), atau karena kerusakan ujung akar tanaman, terutama pada membran dasar sel (Cregan, 2000; FAO, 2000; Duncan 2002; Façanha dan Façanha, 2002).

4.2.2.2. Kandungan Klorofil

4.2.2.3. Aktivitas Nitrat Reduktase

Proses reduksi nitrat adalah suatu reaksi endothermik, proses reduksi ini bergantung pada adanya sumber energi. Terdapat dua kemungkinan sumber energi, yang keduaanya mempunyai peran, bergantung pada bagian tumbuhan. NADH₂ / NADPH₂ molekul hidrogennya berasal dari proses fotolisa penguraian air, kemungkinan lain NADH₂ / NADPH₂ berasal dari hasil reduksi tahap-tahap proses respirasi (Suseno, 1974).

Hasil penelitian menunjukkan bahwa tingkat pemupukan P tidak berpengaruh terhadap aktivitas nitrat reduktase pada ke lima jenis rumput pakan,
kecuali Brachiaria brizantha diploid. Keadaan demikian diduga bahwa pemupukan P hingga dosis 300 kg P₂O₅ kg/ha/tahun tidak berpengaruh terhadap fotolisa air, maupun proses respirasi, disebabkan hambatan serapan senyawa fosfor akibat kemasaman media tanam.

4.2.2.4. Protein Kasar

Protein adalah bentuk polimer dari asam-asam amino. Asam amino disintesa dalam tumbuhan, reaksi dasar pembentukan asam amino adalah reaksi-reaksi amonia dengan asam α keto. Reaksi ini berlangsung dalam dua tahap, yang pertama penambahan amonia dalam pembentukan asam α imino, kemudian direduksi menjadi asam amino, keseluruhan proses ini disebut aminasi reuktif (Suseno, 1974; Arbianto, 1994). Sumber utama dari asam α keto di dalam tumbuhan adalah siklus Kreb’s, demikian juga NADH2 / NADPH2 sebagai pereduksi juga berasal dari proses respirasi. Jadi aminasi reuktif ada hubungan dengan respirasi dan fotosintesa, karena keduanya dapat membentuk asam piruvat. Apabila dalam tumbuhan cukup tersedia nitrat atau amonia, maka faktor yang menghambat laju pembentukan asam amino adalah faktor-faktor yang menghambat siklus Kreb’s, yaitu : kadar karbohidrat rendah akibat terhambatnya fotosintesa, kondisi anaerobik, dan adanya senyawa toksik terhadap respirasi (Suseno, 1974).

Hasil penelitian menunjukkan bahwa tingkat pemupukan P tidak berpengaruh terhadap kadar protein kasar, diduga hal ini karena pemupukan P hingga dosis 300 kg P₂O₅ / ha / tahun tidak mengubah laju respirasi maupun
fotosintesa, yang merupakan proses penghasil asam α keto dan NADH2 / NADPH2. Kondisi ini terjadi akibat serapan air, unsur hara (termasuk P), serta pemanfaatan unsur hara mengalami hambatan akibat kemasaman media tanam (Façanha dan Façanha, 2002).

4. 2. 2. 5. Serat Kasar

Serat kasar dalam tumbuhan terbentuk karena proses lignifikasi jaringan tumbuhan. Pada tumbuhan proses lignifikasi terjadi seiring dengan proses pertambahan umur, sehingga makin tua umur tumbuhan semakin besar pula hasil lignifikasinya. Selain itu proses lignifikasi juga dapat terjadi sebagai respon tumbuhan terhadap lingkungan sekitar yang tidak menguntungkan / mencekam. Dalam kondisi tercekam pada umumnya proses pemenuhan datang lebih awal dari biasanya (Robinson, 1995; Sitompul dan Guritno, 1995).

Hasil penelitian menunjukkan bahwa peningkatan pupuk P pada kelima tanaman rumput pakan tidak berpengaruh terhadap kandungan serat kasar, kecuali Brachiaria brizantha poliploid peningkatan pupuk P meningkatkan kandungan serat kasar. Hal ini berarti dengan atau tanpa pemberian pupuk, laju proses lignifikasi berlangsung dengan kecepatan yang sama, kecuali Brachiaria brizantha poliploid yang responsif dengan pemupukan P. Pada rumput ini diduga peningkatan pemupukan P, meningkatkan pula tingkat cekaman media tanam, sehingga tumbuhan beradaptasi dengan lignifikasi yang lebih intensif.
BAB V

KESIMPULAN

1. Tidak terdapat perbedaan respons rumput pakan poliploid maupun diploid terhadap berbagai dosis pemupukan fosfor dalam kondisi cekaman kemasaman tanah, berdasar parameter serapan fosfor, dan efisiensi pemanfaatan fosfor, kandungan klorofil, aktivitas nitrat reduktase, kandungan protein kasar, dan produksi bahan kering.

2. Berdasarkan parameter kandungan serat kasar rumput pakan *Brachiaria brizantha* poliploid memberikan respon lebih tinggi dibandingkan rumput pakan yang lain.

DAFTAR PUSTAKA

