NILAI DIAGNOSTIK KOMBINASI GEJALA DEMAM DAN GEJALA/TANDA KLINIK LAIN DI DAERAH ENDEMIK MALARIA DENGAN KEJADIAN LUAR BIASA DI KECAMATAN PURWONEGORO DAN BANJARNEGARA, KABUPATEN BANJARNEGARA

WENDY BUDIAWAN

TESIS
Untuk memenuhi salah satu syarat memperoleh Gelar Dokter Spesialis Penyakit Dalam Program Pendidikan Dokter Spesialis-1

PROGRAM PENDIDIKAN DOKTER SPESIALIS - 1
FAKULTAS KEDOKTERAN UNIVERSITAS DIPONEGORO
RUMAH SAKIT DOKTER KARIADI
SEMARANG
2004
HALAMAN PENGESAHAN

1. JUDUL PENELITIAN
 : Nilai diagnostik kombinasi gejala demam dan gejala/tanda klinik lain di daerah endemik malaria dengan kejadian luar biasa di Kecamatan Purwonegoro dan Banjarnegara, Kabupaten Banjarnegara

2. RUANG LINGKUP
 : Penyakit Tropik dan Infeksi Penyakit Dalam

3. PELAKSANA PENELITIAN
 a. Nama Lengkap
 : Wendy Budiawan
 b. Peserta
 : PPDS-1 Ilmu Penyakit Dalam FK Universitas Diponegoro / Rumah Sakit Dokter Kariadi Semarang.

4. PEMBIMBING PENELITIAN
 : Dr. M. Hussein Gasem, PhD, SpPD-KPTI

Semarang, September 2003
Peneliti

(Wendy Budiawan)

Pembimbing

(Dr. M. Hussein Gasem, PhD, SpPD-KPTI)
Penelitian ini dilaksanakan
di Kecamatan Purwonegoro dan Banjarnegara
Kabupaten Banjarnegara
sebagai salah satu syarat untuk memperoleh gelar
Dokter Spesialis Penyakit Dalam
di Fakultas Kedokteran Universitas Diponegoro /
Rumah Sakit Dokter Kariadi
Semarang

Ketua Bagian Ilmu Penyakit Dalam
Fakultas Kedokteran UNDIP

(DR. Dr. Darmono, SpPD-KEMD)

KPS PPDS-1 Ilmu Penyakit Dalam
Fakultas Kedokteran UNDIP

(Dr. Murni Indrasti, SpPD-KGH)

iii

UPT-PUSTAK-UNDIP

No. Daft: 317/1/TPK/11
Tgl. 08/12/11
UCAPAN TERIMA KASIH

Dari penelitian ini, diharapkan dapat dijadikan pedoman untuk diagnosis klinik malaria di lapangan secara mudah, cepat, efisien, dan efektif, melalui identifikasi gejala dan tanda klinik. Identifikasi ini dapat diterapkan secara praktis di lapangan oleh siapa saja, tanpa memerlukan pengetahuan dan ketrampilan khusus, sehingga kasus malaria dapat dideteksi lebih dini dan selektif secara klinis, sebelum diagnosis dipastikan melalui pemeriksaan sediaan darah malaria. Hal ini berarti penghematan biaya operasional di lapangan dalam penemuan kasus aktif (Active Case Detection), sehingga mengurangi kemungkinan pengobatan yang irasional, dan dapat meningkatkan efektifitas pengambilan sediaan darah malaria.

Kami menyadari bahwa penelitian ini tidak mungkin terlaksana tanpa bantuan berbagai pihak, sehingga pada kesempatan ini, saya menyampaikan terima kasih yang sebesar-besarnya kepada:

iv
1. Dr. Muhammad Hussein Gasem, PhD, SpPD-KPTI, sebagai Kepala Sub Bagian Penyakit Tropik Infeksi sekaligus sebagai pembimbing penelitian ini.

2. Dr. Edi Dharmana, MSc,PhD dan staf bagian Parasitologi FK UNDIP / RSU Dr. Kariadi Semarang, atas segala bantuanannya.

3. Drg. Henry Setiawan, MSc, yang telah membantu dalam pengolahan data statistik.

5. Dr. H. Masrifan Djamil MPH, sebagai Kepala Dinas Kesehatan Tk. II Banjarnegara yang memberi ijin dan membantu pelaksanaan penelitian di wilayah kerjanya.

7. Prof.Dr. KRT Boedhi-Darmojo, SpPD-KKV, K-Ger, Prof.DR.Dr.R.Djokomoejianto, SpPD-KEMD, Prof.Dr.Soenarto, SpPD-KHOM,KR, Prof.DR.Dr. Imam Parsudi A, SpPD-KGH, Prof. Dr. Pasiyan, SpPD-KPTI atas segala bimbingan dan pengarahan yang sangat berharga selama saya mengikuti pendidikan di Bagian Ilmu Penyakit Dalam FK UNDIP.

8. Dr. Murni Indrasti, SpPD-KGH, selaku Ketua Program Studi Ilmu Penyakit Dalam FK UNDIP yang telah banyak memberikan bimbingan dan pengarahan selama kami mengikuti pendidikan keahlian ini.

9. Semua Staf Pengajar Bagian Ilmu Penyakit Dalam FK UNDIP / RS.Dr.Kariadi Semarang, atas semua bimbingan dan pengarahan selama mengikuti pendidikan di Bagian Ilmu Penyakit Dalam FK UNDIP

12. Sejawat residen Bagian Ilmu Penyakit Dalam FK UNDIP /RS Dr.Kariadi Semarang, atas segala bantuan dan kerjasama yang aktif selama mengikuti pendidikan keahlian.

13. Kedua orang tua yang selama ini mendoakan dan memberikan dorongan semangat untuk menyelesaikan pendidikan.

Akhirnya kepada semua pihak yang tidak dapat saya sebutkan namanya satu persatu, saya mengucapkan terima kasih, semoga karya akhir ini dapat dimanfaatkan sebagai sumbangsib dalam menunjang diagnosis malaria di lapangan pada khususnya, dan Ilmu Penyakit Dalam pada umumnya. Amien
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab / Daftar</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bab I Pendahuluan</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bab I Latar Belakang</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bab I Rumusan Masalah</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Bab I Manfaat Penelitian</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Bab I Tujuan Penelitian</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Bab II Tinjauan Pustaka</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Bab II Definisi</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Bab II Etiologi dan Patogenesis</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Bab II Manifestasi Klinik Penyakit Malaria</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Bab II Diagnosis Malaria</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Bab II Pemeriksaan Mikroskopik (Konvensional)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Bab II Quantitative Buffy Coat (QBC)</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Bab II Diagnosis Serologik</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Bab II Rapid Diagnostic Test (RDT)</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Bab II Polymerase Chain Reaction (PCR)</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Bab III Bahan dan Metodologi Penelitian</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Bab III Desain Penelitian</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Bab III Tempat dan Waktu</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Bab III Baku Emas</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Bab III Populasi Studi</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>
ABSTRACT

Background Malaria is still endemic in Central Java. Since 1998, malaria outbreaks have been reported in some regencies such as Banjarnegara. Early diagnosis and prompt treatment is a cornerstone of malaria management especially during the outbreaks. Therefore, clinical diagnosis is important to detect malaria cases before confirmed by microscopic examination. Developing an easy clinical criterion based on symptoms and signs would be a useful tool in confirming the clinical diagnosis of malaria in rural areas.

Objectives To select some clinical symptoms and signs that have high diagnostic values for malaria and to test which the combined symptoms and signs show the best performance in the clinical diagnosis of malaria.

Method A cross-sectional method was used in this study. The field studies were done during the malaria outbreaks in the villages of Banjarnegara and Purwonegoro Subdistricts, Banjarnegara Regency, in February, 2002. Active case detection (ACD) was conducted to recruit all suspected malaria patients in the villages. All data were collected based on the structured questionnaires and then the blood slides were taken. Data was analyzed using descriptive statistics, a bivariate, and multiple logistic regression analysis (SPSS Program for MS Windows Release 11.0) were done thereafter. Sensitivity, specificity, positive and negative predictive values were calculated using 2 x 2 tables. Receiver Operating Characteristic (ROC) curve was developed to select the various cut-off points of the combined symptoms and signs.

Results One hundred and five respondents were recruited and 61 (58.1%) of them were confirmed malaria cases (slides positive for P. falciparum or P. vivax). Mean age ± 40 years (range 35-44 years). The significant symptoms and signs which can be used for clinical diagnosis of malaria were as follows: pale, cough, chill, sweating, cool feeling, and running nose. Based on all significant symptoms and signs, except cough and running nose, we proposed 11 significant combinations of symptoms and signs. In the ROC curve, the combination of pale, chill, and cool feeling is the best combined clinical symptoms and signs for confirming the clinical diagnosis of malaria.

Conclusion The combined symptoms and signs consisting of pale, chill, and cool feeling has specificity of 93.5% and positive predictive value of 87.5%. This combination can be used to confirm malaria clinical diagnosis in a person with fever or history of fever in recent 72 hours during the malaria outbreaks in Banjarnegara Regency.
ABSTRAK

Obyektif Untuk memilih beberapa gejala dan tanda klinik dengan nilai diagnostik malaria yang tinggi dan menguji kombinasi gejala dan tanda klinik terbaik.

Kesimpulan Kombinasi gejala dan tanda klinik : pucat, menggigil, dan rasa dingin memiliki spesifisitas 93,5% dan nilai prediksi positif 87,5%. Kombinasi ini dapat digunakan untuk menegakkan diagnosis klinik malaria pada seorang dengan demam / riwayat demam dalam 72 jam terakhir saat Kejadian Luar Biasa malaria di Kabupaten Banjarnegara.
DAFTAR TABEL DAN GRAFIK

Tabel 1. Jumlah penderita malaria berdasarkan karakteristik 21
Tabel 2. Gejala dan tanda klinik penderita berdasarkan hasil pemeriksaan darah malaria dan analisis bivariat 23
Tabel 3. Jumlah responden berdasarkan hasil pemeriksaan darah dan kombinasi gejala / tanda klinik Lamp 30
Tabel 4. Nilai diagnostik malaria berdasarkan kombinasi beberapa gejala / tanda klinik 31
Grafik 1. ROC kombinasi gejala / tanda klinik berdasarkan nilai sensitifitas dan spesifisitas 31
BAB I
PENDAHULUAN

L.1 Latar Belakang

Infeksi malaria masih merupakan problem kesehatan negara-negara tropik maupun sub tropik di dunia dan negara berkembang seperti di Indonesia. Diperkirakan sekitar 40 % penduduk dunia masih tinggal di daerah yang memiliki risiko tinggi untuk terinfeksi malaria. Berdasarkan laporan dari WHO (1993), jumlah penderita malaria yang didiagnosis secara klinis di seluruh dunia tercatat 200-300 juta setiap tahun, dengan jumlah kematian mencapai 2-3 juta, terutama ibu-ibu hamil dan anak-anak.¹

Indonesia terletak di daerah tropik, mempunyai iklim menguntungkan bagi berkembangbiaknya nyamuk penular malaria, sampai saat ini telah diidentifikasi 80 spesies Anopheles dan 18 di antaranya telah dikonfirmasikan sebagai vektor malaria. Insidens malaria di Indonesia masih cukup tinggi¹,² terutama di daerah pedesaan di 118 Dati II luar Jawa Bali, khususnya Indonesia bagian timur dan di Jawa Bali masih terdapat 216 desa di 32 Kabupaten Dati II (Abednego,1996).²

Kabupaten Banjarnegara merupakan salah satu dari 35 Daerah Tingkat II yang terletak pada jalur pegunungan di bagian tengah wilayah Jawa Tengah sebelah barat, sedangkan Kecamatan Purwonegoro dan Banjarnegara terletak di bagian tengah dan selatan Kabupaten Banjarnegara, yang merupakan lembah Sungai Serayu dan bagian dari Pegunungan Serayu.4,5

Akhir-akhir ini timbul masalah yang cukup serius yaitu adanya Kejadian Luar Biasa (KLB) malaria (peningkatan jumlah kasus malaria) di Kecamatan Kemranjen, Somagede, Sumpiuh dan Tambak di Kabupaten Banyumas, Jawa Tengah yang meluas sampai Kecamatan Purwonegoro, Kabupaten Banjarnegara.

Prevalensi penyakit malaria di Propinsi Jawa Tengah pada tahun 1999 tercatat sebesar 1,09 per seribu, sedangkan di Kabupaten Banjarnegara pada periode tiga tahun terakhir tercatat sebesar 1,59 per seribu pada tahun 1997, 2,72 per seribu pada tahun 1998, dan 5,46 per seribu pada tahun 1999.7
Angka Annual Parasite Index (API) kecamatan Banjarnegara th 2002 adalah 51,7 %, dengan Slide Positive Rate (SPR) : 19,9 %, sedangkan API kecamatan Purwonegoro th 2002 : 23,6 %, dengan SPR : 15,5 %.

Kecepatan penemuan dan pengobatan penderita merupakan kunci keberhasilan program pemberantasan malaria, karena dapat memutuskan rantai penularan. Penemuan penderita secara dini dapat dilakukan dengan mengidentifikasi gejala dan tanda klinik lainnya disamping demam, dengan spesifisitas yang tinggi dapat menunjang diagnosis malaria.

Dengan penelitian ini diharapkan dapat dibuat suatu diagnosis presumtif malaria berdasarkan kombinasi gejala dan tanda klinik malaria, dan dapat diaplikasikan secara mudah, praktis, dan efektif di lapangan oleh petugas kesehatan masyarakat, seperti yang dilakukan di Zaire dan Tanzania Juru Malaria Desa (JMD), kader, maupun masyarakat awam, sehingga sangat membantu petugas di lapangan dalam pendeteksian khusus yang lebih dini, selektif, dan dapat menghindari kemungkinan pengobatan yang tidak rasional, serta meningkatkan nilai Slide Positive Rate (SPR), terutama di daerah endemik malaria dengan kejadian luar biasa.
1.2 Rumusan Masalah

Dari uraian latar belakang di atas, maka permasalahan yang timbul yaitu gejala dan tanda klinik malaria yang paling utama perlu diketahui untuk mempermudah penemuan dini penderita malaria, sehingga pertanyaan yang perlu dijawab dalam penelitian ini adalah:

1. Bagaimana manifestasi klinik malaria akut di daerah endemik dengan Kejadian Luar Biasa?

2. Bagaimana nilai diagnostik beberapa kombinasi gejala / tanda klinik malaria pada berbagai titik potong pada kurva ROC (Receiver Operator Characteristic)?

3. Kombinasi gejala / tanda klinik mana yang terbaik / terpilih?

1.3 Manfaat Penelitian

Dengan adanya kombinasi gejala dan tanda klinik malaria maka dapat membantu dalam:

1. Deteksi dan terapi dini malaria secara klinik di daerah endemik dengan Kejadian Luar Biasa terutama di Kabupaten Banjarnegara tanpa memerlukan fasilitas penunjang diagnostik maupun tenaga analis yang trampil.

2. Meningkatkan Slide Positive Rate (SPR) di lapangan terutama di daerah dengan Kejadian Luar biasa karena dapat dilakukan tanpa memerlukan pengetahuan dan ketrampilan khusus.

3. Mengurangi kemungkinan kesalahan diagnosis di lapangan yang mengakibatkan pengobatan yang tidak rasional.
I.4 Tujuan Penelitian

Tujuan Umum:
Mengetahui manifestasi klinik penderita malaria akut pada daerah endemik dengan
Kejadian Luar Biasa.

Tujuan Khusus:
1. Mengetahui nilai diagnostik kombinasi gejala demam dengan gejala / tanda klinik
 lain pada berbagai titik potong dalam kurva ROC.
2. Untuk mengetahui kombinasi gejala / tanda klinik terbaik untuk membantu
 menegakkan diagnosis klinik malaria.
BAB II
TINJAUAN PUSTAKA

II.1 Definisi

Malaria merupakan penyakit infeksi yang disebabkan oleh protozoa dari genus plasmodium dengan gambaran klinik demam paroksismal yang periodik atau kontinyu disertai dengan atau tanpa anemia, splenomegalii.9,10

II.2 Etiologi dan Patogenesis

Diawali dengan gigitan nyamuk Anopheles betina maka dilepaskanlah sporozoit ke dalam darah dan dalam beberapa menit melekat dan menyerang sel hati melalui pengikatan reseptor hepatosit untuk protein trombospordin dan serum properdin yang terletak pada permukaan basolateral hepatosit.13,14 Pengikatan ini dapat terjadi oleh karena adanya protein pada permukaan sporozoit yang mengandung suatu rana homolog terhadap rana pengikat dari trombospordin. Di dalam hati, sporozoit tumbuh dengan pembelahan yang kuat (proses \textit{schizogoni}). Dalam 5-7 hari skizon-skizon ini menjadi matur dan melepaskan beribu-ribu merozoit yang kemudian memasuki sirkulasi. Merozoit yang dilepaskan ini akan masuk dalam sel RES di limpa dan mengadakan fagositosis serta filtrasi. Merozoit yang lolos dari filtrasi dan fagositosis akan menginvasi eritrosit dan selanjutnya parasit berkembang biak secara aseksual dalam eritrosit. Bentuk aseksual parasit dalam eritrosit inilah yang bertanggung jawab dalam patogenesis terjadinya malaria pada manusia. Bentuk aseksual dalam eritrosit ini dikenal sebagai bentuk tropozoit (\textit{ring-form trophozoit}), bila pada fase ini diperiksa dengan mikroskop elektron akan tampak suatu tonjolan (\textit{knob}) pada sel darah merah yang terinfeksi \textit{P. falciparum} yang merupakan perubahan morfologi yang menyolok.12

Parasit dalam eritrosit secara garis besar mengalami 2 stadium, yaitu stadium cincin pada 24 jam pertama dan stadium matur pada 24 jam kedua. Permukaan eritrosit yang terinfeksi parasit pada stadium pertama akan terdapat antigen RESA (\textit{Ring Erythrocyte Surface Antigen}) yang akan menghilang setelah parasit masuk stadium matur. Pada stadium matur permukaan membran eritrosit akan mengalami
penonjolan dan membentuk apa yang disebut sebagai *knob* dengan *Histidine Rich Protein-1* sebagai komponen utamanya.⁹

Pada dasarnya setiap orang dapat terkena malaria. Perbedaan prevalensi menurut umur dan jenis kelamin sebenarnya berkaitan dengan perbedaan derajat kekebalan karena variasi keterpaparan gigitan nyamuk.¹⁰ Pada daerah endemis malaria yang stabil, malaria berat terutama terdapat pada anak sedangkan orang dewasa umumnya hanya menderita malaria ringan. Di daerah dengan endemisitas rendah, malaria berat terjadi tanpa memandang usia.¹⁵

Beberapa penelitian menunjukkan bahwa wanita mempunyai respon imun yang lebih kuat dibandingkan dengan laki-laki, namun kehamilan menambah risiko malaria. Malaria pada wanita hamil mempunyai dampak yang buruk terhadap kesehatan ibu dan anak.⁸ Keadaan ini diduga disebabkan oleh menurunnya imunitas terutama imunitas seluler dengan mekanisme yang belum diketahui secara pasti. Diduga penyebabnya ialah penurunan imunitas lokal plasenta uterus serta meningkatnya kadar hormon steroid.¹⁵

Faktor-faktor genetik pada manusia dapat mempengaruhi terjadinya malaria dengan pencegahan invasi parasit ke dalam sel, mengubah respon imunologis atau mengurangi keterpaparan terhadap vektor. Beberapa faktor genetik bersifat protektif terhadap malaria ialah golongan darah Duffy negatif, hemoglobin S yang menyebabkan *sickle cell anemia*, thalasemia (alfa dan beta), hemoglobinopati lainnya (HbF dan HbE), defisiensi G-6PD, ovalositosis.¹⁵,¹⁶

Mekanisme imunologi malaria berat melibatkan imunitas seluler dan humoral yang kompleks. Limpa memegang peranan penting dalam mekanisme imunologi
malaria akut. Pada malaria falciparum limpa memfagositosis eritrosit tanpa parasit maupun yang mengandung parasit. Proses pembersihan oleh limpa merupakan mekanisme penting dalam pertahanan tubuh dan patogenesis anemia pada malaria.17

Beberapa studi menunjukkan bahwa malaria berat jarang ditemukan pada anak dengan marasmus atau kwashiorkor. Defisiensi zat besi dan riboflavin juga dilaporkan mempunyai efek protektif terhadap malaria.18

II.3 Manifestasi Klinis Penyakit Malaria

Malaria sebagai penyakit infeksi, yang disebabkan oleh plasmodium mempunyai gejala utama demam, yang diduga berhubungan dengan proses skizogoni (pecahnya merozoit/skizon) atau pengaruh GPI (Glycosyl phosphatidylinositol) atau terbentuknya sitokin dan atau toksin lainnya. Pada beberapa penderita demam tidak terjadi, misalnya di daerah hiperendemik, banyak orang dengan parasitemia tanpa gejala. Gambaran karakteristik dari malaria, adalah demam periodik atau terus menerus, anemia, dan splenomegali. Berat-tingannya manifestasi malaria tergantung jenis plasmodium yang menyebabkan infeksi.19

Klasifikasi pemeriksaan limpa menurut metoda \textit{Hacket} : 20

- H0 : tak teraba pada inspirasi dalam
- H1 : limpa teraba pada inspirasi dalam
- H2 : limpa teraba pada garis datar bawah kost sampai setengah jarak antara kost dan garis datar umbilikus
- H3 : limpa teraba antara garis setengah kost-umbilikus sampai garis datar umbilikus
- H4 : limpa teraba dari garis datar umbilikus sampai setengah jarak umbilikus dan simpthesis.
- H5 : limpa teraba antara garis setengah umbilikus-simpthesis sampai garis setinggi simpthesis.

II.4 Diagnosis Malaria

Diagnosis malaria dapat ditegakkan berdasarkan beberapa hal, antara lain:

Gambaran klinik sesuai dengan malaria, mikroskopik, serologik, dan rapid manual test. Sebagai diagnosis pasti, bila ditemukan adanya parasit malaria pada preparat darah tepi dengan pemeriksaan mikroskopik (metode konvensional).²⁰

II.4.1 Pemeriksaan Mikroskopik (Metode Konvensional)

Diagnosis malaria saat ini masih dilakukan dengan menggunakan metode konvensional, yaitu dengan pewarnaan Giemsa, yang dikembangkan oleh Ross, sejak tahun 1903. Ada 2 macam preparat, yaitu:

- Preparat darah tebal menggunakan 3 tetes darah dan dengan preparat ini lebih banyak kemungkinan parasit diketemukan, bahkan dikatakan 20 kali lebih cepat daripada preparat darah tipis.

- Preparat darah tipis, lebih tepat untuk mengkonfirmasi jenis/spesies parasit. Selain itu juga dapat melihat perubahan bentuk eritrosit. Jadi dengan preparat ini dapat membedakan keempat spesies plasmodium.

Metode konvensional ini memerlukan biaya yang relatif murah, tetapi membutuhkan waktu cukup lama untuk proses pewarnaan dan untuk interpretasinya diperlukan tenaga terlatih dan berpengalaman.¹⁹,²¹
II.4.2 Quantitative Buffy Coat (QBC)

Metode ini merupakan tes diagnostik cepat untuk deteksi parasit malaria dengan cara stratifikasi sentrifugal. Darah yang diambil pada lambung kapiler akan membentuk stratifikasi (lapisan) yang disebut buffy coat dan parasit malaria terkonsentrasi pada lapisan ini. Pemeriksaan ini berdasar pada DNA dan RNA parasit dengan pengecatan acridine orange kemudian dilihat dengan mikroskop fluorescence di mana nukleus terlihat hijau dan sitoplasma terlihat merah. Metode ini 10 kali lebih sensitif daripada metode konvensional oleh karena darah yang digunakan sampel 55-65 μl bila dibandingkan metode konvensional yang hanya menggunakan 0,1-0,25 μl. Sensitifitas metode ini berkisar 92% dan spesifisitas 83,5%.\(^\text{19}\)

II.4.3 Diagnosis Serologik

Dengan metode ini dapat mendeteksi antibodi maupun antigen malaria, ELISA merupakan metode yang dapat digunakan pada diagnosis serologik ini dengan mendeteksi antigen pada malaria. Metode ini memerlukan waktu relatif lama sekitar 2-4 jam selain itu juga memerlukan sarana laboratorium yang lengkap.\(^\text{19}\)

II.4.4 Rapid Diagnostic Test (RDT)

Metode yang akhir-akhir ini banyak dikembangkan adalah Rapid Diagnostic Test (RDT) dengan teknik imunokromatografi.\(^\text{22}\)

II.4.5 Polymerase Chain Reaction (PCR)

Metoda ini menggunakan teknik biologi molekuler dan dapat mendeteksi DNA malaria melalui reaksi berantai polimerase, dan
visualisasinya menggunakan elektroforesis serta pembacaannya di bawah iluminasi sinar ultraviolet. Metoda ini menggunakan peralatan (thermocycler), dan reagen yang mahal dengan waktu yang dibutuhkan sekitar 4 jam dan membutuhkan ketrampilan yang memadai.
II.5 Kerangka Teori

Hisapan Nyamuk *Anopheles* betina

- Sporozoit

- Hipnozoit *(P. vivax)*
 - Hati
 - Skizon
 - Pecah
 - Merozoit
 - Trofozoit

Asimptomatik | Gejala dan Tanda Klinik (+)

Keterangan:
- ○ = Malaria
- □ = Penyakit demam lain yang prevalens di daerah kejadian luar biasa
- * = Gejala dan tanda klinik mendukung, sesuai dengan definisi operasional (tanpa pemeriksaan urin)
- ** = Klinis sesuai dengan definisi operasional
- *** = Sesuai dengan definisi operasional
- **** = Hanya dilakukan pemeriksaan fisik

Falciaparum:
- Hiperpireksia
- Urin merah kehitaman
- Kesadaran ↓
- Kejang
- Syok
- Oliguria, dll

Ikterus
- Demam (hektik, intermittente, kontinu)
- Menggigil (keringat banyak)
- *Flu-like Syndrome*
- Splenomegali
- Hepatomegali
- Lemas
- dll

- ISK *
- DHF / DF **
- Demam Tifoid ****
- Leptospirosis ****
- Penyakit virus lainnya ****
 - (Hepatitis akut, Chikungunya, Hanta, Epstein Barr, Cytomegalovirus)
II. 6 Kerangka Konsep

Penderita dengan demam / riwayat demam (intermitten, hektik, kontinyu) 72 jam terakhir dengan ≥ 1 gejala / tanda klinik:
- Menggigil
- Berkeringat banyak
- Sakit kepala
- Nyeri otot / tulang
- Gangguan saluran cerna
- Lemas, Pucat, Kuning, dan lain-lain

Pemeriksaan penyaring secara klinik #, untuk penyakit demam lain yang prevalens di daerah endemik malaria dengan Kejadian Luar Biasa:
- ISK *
- DHF / DF **
- Demam Tifoid ***
- Leptospirosis ****
- Penyakit virus lainnya (Hepatitis akut, Hanta, Chikungunya, Epstein Barr, Cytomegalovirus)

- Eksklusi ♦

Pemeriksaan darah malaria (mikroskopik)

Keterangan:
* = Gejala dan tanda klinik sesuai dengan definisi operasional (tanpa pemeriksaan urin)
** = Klinis DHF / DF, sesuai dengan definisi operasional
*** = Klinis sesuai dengan definisi operasional
**** = Hanya dilakukan pemeriksaan fisik
♦ = Sampel tetap diperiksa secara mikroskopis untuk kepentingan pelayanan / pengobatan
= Tanpa pemeriksaan konfirmasi diagnostik
BAB III
BAHAN DAN METODOLOGI PENELITIAN

III.1 Desain Penelitian
Penelitian ini merupakan penelitian eksplanatori dengan menggunakan metoda observasional dan rancangan studi potong lintang (*cross sectional*).

III.2 Tempat dan Waktu
Waktu penelitian dimulai Bulan Pebruari 2002 sampai jumlah sampel terpenuhi.

III.3 Baku Emas (*Gold Standard*)
Baku emas pada penelitian ini adalah pemeriksaan mikroskopik konvensional.
Pemeriksaan dinyatakan positif bila ditemukan parasit Plasmodium pada sediaan darah tepi dengan pemeriksaan mikroskop cahaya (tropozoit, bentuk cincin, skizone dan atau gametosito).

III.4 Populasi Studi
Sebagai populasi studi pada penelitian ini adalah semua anggota populasi penelitian yang dipilih dan memenuhi kriteria sampel.
III.5 Kriteria Inklusi – Eksklusi

Kriteria Inklusi :

a. Penderita dengan dugaan malaria, yaitu : adanya demam/riwayat demam ≥ 1 hari dalam 72 jam terakhir dengan atau tanpa gejala atau tanda klinik di bawah ini :
 - Rasa dingin dan atau menggigil
 - Berkeringat banyak
 - Sakit kepala / pusing
 - Nyeri otot / sendi / tulang
 - Gangguan saluran cerna (anoreksia, mual, muntah, diare, nyeri perut)
 - Pucat
 - Hepatomegali dan atau Splenomegali
 - Kuning

b. Usia > 14 tahun

c. Bersedia mengikuti kegiatan / studi ini

Kriteria Eksklusi :

- Penderita dengan riwayat pengobatan anti malaria dalam 2 (dua) minggu terakhir

III.6 Besar Sampel

Jumlah sampel minimal dihitung dengan menggunakan rumus :\(^{23}\)

$$N = \frac{(Z_{\alpha})^2 \cdot P \cdot (1-P)}{d^2}$$
\(Z_\alpha = 1,96 \) (tingkat kepercayaan 95 %)

d = tingkat ketepatan absolut = 0,10

\(P = \) Proporsi penyakit malaria di Kec.Purwonegoro, Banjarnegara

(Data Dinkes Prop.Jateng 2002) = 0,45 (45%)

\(P (1-P) = 0,1875 \)

Jumlah sampel minimal : \(N = (1,96)^2 (0,1875) / (0,10)^2 = 95 \) orang

Jumlah sampel yang dipilih : 105 orang

III.7 Bahan dan Alat

a. Kuesioner

b. Alat pemeriksaan fisik (stetoskop, senter, termometer, dll)

c. Kapas alkohol, lancet

d. Gelas obyek dan Giemsa

e. Mikroskop cahaya

III.8 Definisi Operasional

1. Demam yaitu peningkatan suhu tubuh > 37,2\(^\circ\)C

2. Demam intermittent yaitu bila suhu badan turun ke tingkat yang normal selama beberapa jam dalam sehari

3. Demam hektik yaitu bila suhu tubuh berangsur-angsur naik ke tingkat yang tinggi pada malam hari dan turun ke tingkat yang normal pada pagi / siang hari dan sering disertai keluhan menggigil dan berkeringat
4. Demam kontinyu yaitu demam terus-menerus tidak pernah mencapai normal dengan penurunan tidak lebih dari 1°C \(^{24}\)

5. Hiperpireksia yaitu suatu keadaan dengan peningkatan suhu tubuh mencapai 41,2°C atau lebih \(^{26}\)

6. Splenomegali yaitu terabanya lien di bawah arkus costa pada waktu inspirasi dalam dan diukur dengan sentimeter menurut Hacket \(^{24}\)

7. Metode konvensional yaitu metode yang biasa dipergunakan untuk pemeriksaan Plasmodium malaria dengan menggunakan preparat darah tebal dan tipis, pengecatan dengan Giemsa dan mikroskop cahaya \(^{24}\)

8. Urin merah kehitaman (hemoglobinuria) yaitu berubahnya warna urin pada penderita malaria falsiparum berat oleh karena banyaknya pemecahan hemoglobin sehingga menimbulkan hemoglobinuria \(^{24}\)

9. Klinis Dengue Haemorrhagic Fever : \(^{24}\)
 - Demam mendadak tinggi 2-7 hari dengan manifestasi perdarahan spontan (termasuk uji bendung \(^{+}\))
 - Hepatomegali
 - Dengan atau tanpa syok

10. Flu-like Syndrome :
 Kumpulan gejala seperti influenza (flu), antara lain : demam, sakit kepala/pusing, mual-muntah, batuk, pilek, nyeri otot / sendi / tulang. \(^{24}\)

11. Kejadian Luar Biasa (KLB) adalah timbulnya atau meningkatnya kejadian/kesakitan yang bermakna secara epidemiologi dalam kurun waktu dan daerah tertentu. \(^{25}\)
12. Demam Tifoid: meliputi demam lebih dari 7 hari yang timbul bertahap, lidah kotor dengan tepi hiperemis, meteorismus, nyeri abdomen, hepatomegalii dan atau splenomegalii, bradikardia relatif.

13. Infeksi Saluran Kemih secara klinis, dengan kriteria demam disertai gejala polakisuria, disuria. (tanpa pemeriksaan urin).

14. Yang termasuk dalam Kejadian Luar Biasa (KLB) adalah: peningkatan kejadian penyakit / kematian, 2 x atau lebih dibandingkan dengan periode selanjutnya (jam, hari, minggu, bulan, tahun).

15. Yang dimaksud dengan pucat, adalah suatu keadaan yang dinilai berdasarkan penampakan pada wajah, konjungtiva palpebra, warna lidah, dan kuku.

16. Sensitivitas (Se) adalah proporsi subyek yang sakit dengan hasil uji diagnostik positif (positif benar) dibandingkan dengan seluruh subyek yang sakit (positif benar + negatif semu), atau kemungkinan bahwa hasil uji diagnostik akan positif bila dilakukan pada sekelompok subyek yang sakit. Sensitivitas menunjukkan kemampuan uji diagnostik untuk mendeteksi adanya penyakit.

17. Spesifikitas (Sp) adalah proporsi subyek sehat yang memberikan hasil uji diagnostik negatif (negatif benar) dibandingkan dengan seluruh subyek yang tidak sakit (negatif benar + positif semu) atau kemungkinan bahwa hasil uji diagnostik akan negatif bila dilakukan pada sekelompok subyek yang sehat. Spesifikitas menunjukkan kemampuan uji diagnostik untuk menentukan bahwa subyek tidak sakit.

18. Nilai Prediksi Positif (NPP) adalah probabilitas seseorang menderita penyakit bila uji diagnostiknya positif.
19. Nilai Prediksi Negatif (NPN) adalah probabilitas seseorang tidak menderita penyakit bila hasil uji diagnostiknya negatif.23

III.9 Cara Pengumpulan Data dan Cara Kerja

Seratus lima responden dengan gejala demam yang diduga malaria akut pada daerah Kejadian Luar Biasa (KLB) di Kec. Purwonegoro dan Banjarnegara, Kab. Banjarnegara, Jawa Tengah yang memenuhi kriteria sampel, dipilih sebagai calon untuk sampel studi.28

Sebelum kegiatan dimulai, dijelaskan terlebih dahulu kepada responden tentang tujuan kegiatan, prosedur pemeriksaan, dan manfaat yang akan diperoleh. Responden yang setuju diikutsertakan dalam studi, diminta bukti persetujuan secara tertulis dengan membubuhkan tanda tangan dan atau cap jempol.

Penderita tersebut kemudian dicatat nama, umur, jenis kelamin, lama menderita sakit, alamat, dan anamnesis lain yang diperlukan untuk kepentingan studi sesuai kuesioner yang sudah disediakan.

Kemudian dilakukan pemeriksaan fisik sesuai dengan kuesioner yang sudah dipersiapkan.

Pengambilan sampel darah untuk pemeriksaan mikroskopik darah tebal dan tipis, dilakukan atas persetujuan tertulis dari penderita atau orang yang bertanggung jawab terhadap penderita.

Setelah dilakukan pengecatan dengan Giemsa 10\%, preparat darah tebal dan tipis langsung diperiksa pada mikroskop cahaya dengan pembesaran 100 x
olah seorang petugas lab Dinkes Banjarnegara. Sediaan darah dianggap positif jika ditemukan parasit pada mikroskop minimal pembesaran 100 x.

Sediaan darah tebal dan tipis selanjutnya dibawa ke Semarang untuk pemeriksaan mikroskopik ulang oleh seorang petugas laboratorium yang telah berpengalaman dari Bagian Parasitologi FK-UNDIP.

Sediaan darah dianggap negatif jika tidak ditemukan parasit pada mikroskop dengan pembesaran minimal 100 x.

Hasil pemeriksaan dicatat pada formulir penelitian yang telah disediakan dan dianalisis secara studi potong lintang.

Setelah jumlah sampel terpenuhi, dibuat laporan hasil penelitian.
III.10 Alur Penelitian

DEMAM / RIWAYAT DEMAM dalam 72 jam terakhir

GEJALA / TANDA KLINIK

SEDIAAN APUS DARAH TEPI

+ → ANALISIS DESKRIPTIF

- → ANALISIS BIVARIAT

ANALISIS REGRESI

UJI DIAGNOSTIK

ROC

KOMBINASI GEJALA / TANDA KLINIK TERBAIK
BAB IV
HASIL PENELITIAN

IV.1 KARAKTERISTIK RESPONDEN

Jumlah penderita malaria berdasarkan karakteristiknya antara lain : umur, pekerjaan, jenis kelamin, dan tingkat pendidikan seperti tertera pada tabel 1.

Tabel 1. Jumlah penderita malaria berdasarkan karakteristik

<table>
<thead>
<tr>
<th>KARAKTERISTIK</th>
<th>MALARIA (%)</th>
<th>TOTAL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(+)</td>
<td>(-)</td>
</tr>
<tr>
<td>1. UMUR (tahun)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><25</td>
<td>14</td>
<td>13,3</td>
</tr>
<tr>
<td>25 – 34</td>
<td>11</td>
<td>10,5</td>
</tr>
<tr>
<td>35 – 44</td>
<td>15</td>
<td>14,3</td>
</tr>
<tr>
<td>45 – 54</td>
<td>13</td>
<td>12,4</td>
</tr>
<tr>
<td>≥ 55</td>
<td>8</td>
<td>7,6</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>58,1</td>
</tr>
<tr>
<td>2. PEKERJAAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tani</td>
<td>45</td>
<td>42,9</td>
</tr>
<tr>
<td>Dagang</td>
<td>2</td>
<td>1,9</td>
</tr>
<tr>
<td>Buruh</td>
<td>2</td>
<td>1,9</td>
</tr>
<tr>
<td>Swasta</td>
<td>2</td>
<td>1,9</td>
</tr>
<tr>
<td>Tidak Bekerja</td>
<td>10</td>
<td>9,5</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>58,1</td>
</tr>
<tr>
<td>3. JENIS KELAMIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laki – laki</td>
<td>35</td>
<td>33,3</td>
</tr>
<tr>
<td>Perempuan</td>
<td>26</td>
<td>24,8</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>58,1</td>
</tr>
</tbody>
</table>
4. PENDIDIKAN

<table>
<thead>
<tr>
<th></th>
<th>38</th>
<th>36,2</th>
<th>30</th>
<th>28,6</th>
<th>68</th>
<th>64,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>6</td>
<td>5,7</td>
<td>1</td>
<td>0,95</td>
<td>7</td>
<td>6,7</td>
</tr>
<tr>
<td>SLTP</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2,9</td>
<td>3</td>
<td>2,9</td>
</tr>
<tr>
<td>SLTA</td>
<td>1</td>
<td>0,95</td>
<td>1</td>
<td>0,95</td>
<td>24,7</td>
<td></td>
</tr>
<tr>
<td>PERGURUAN TINGGI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIDAK SEKOLAH</td>
<td>16</td>
<td>15,2</td>
<td>10</td>
<td>9,5</td>
<td>26</td>
<td>24,7</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>58,1</td>
<td>44</td>
<td>41,9</td>
<td>105</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Umur Responden

Distribusi responden yang menderita malaria positif sebanyak 61 orang dan malaria negatif 44 orang, dengan distribusi umur 14 – 74 tahun, sebagian besar responden berumur 35 – 44 tahun sejumlah 15 orang (14,3%), kemudian di bawah 25 tahun sejumlah 14 orang (13,3%). Banyaknya malaria negatif dapat dijelaskan bahwa tidak semua penderita demam di daerah endemik malaria dengan Kejadian Luar Biasa adalah malaria, masih mungkin disebabkan oleh penyakit akut yang lain.

Pekerjaan Responden

Didapatkan bahwa mayoritas responden adalah petani sebanyak 77 orang (73,3%), di mana sebanyak 45 orang (42,9%) menderita malaria.

Jenis Kelamin Responden

Jumlah responden laki-laki adalah 60 orang (57,1%), sedangkan wanita sebanyak 45 orang (42,9%). Laki-laki lebih banyak yang menderita malaria yaitu 35 orang (33,3%) dibandingkan perempuan sebanyak 26 orang (24,8%).

Tingkat Pendidikan Responden

Sebagian besar pendidikan responden adalah setingkat SD yaitu 68 orang (64,8%) dan yang menderita malaria 38 orang (36,2%). Dari 10 orang (9,5%) setingkat sekolah menengah (SLTP dan SLTA) yang menderita malaria 6 orang (5,7%).1 orang (0,9%) berpendidikan perguruan tinggi dan menderita malaria, serta 16 orang (15,2%) dari 26 orang yang tidak sekolah menderita malaria.
IV.2 GEJALA / TANDA UMUM MALARIA

Tabel 2. Gejala dan tanda klinik penderita berdasarkan hasil pemeriksaan darah malaria dan analisis bivariat

<table>
<thead>
<tr>
<th>GEJALA / TANDA</th>
<th>Signifikansi (p)</th>
<th>Pearson Chi Square Value (χ²)</th>
<th>Malaria (+)</th>
<th>Malaria (-)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Σ (%)</td>
<td>Σ (%)</td>
<td>Σ (%)</td>
</tr>
<tr>
<td>1. Sakit Kepala</td>
<td>0.529</td>
<td></td>
<td>55</td>
<td>39</td>
<td>94</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>52.4</td>
<td>37.1</td>
<td>89.5</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>6</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>2. Keringat</td>
<td>0.014</td>
<td>6.855</td>
<td>56</td>
<td>32</td>
<td>88</td>
</tr>
<tr>
<td>Banyak</td>
<td></td>
<td></td>
<td>53.3</td>
<td>30.5</td>
<td>83.8</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>5</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>4.8</td>
<td>11.4</td>
<td>16.2</td>
</tr>
<tr>
<td>3. Lemas</td>
<td>0.778</td>
<td>0.251</td>
<td>53</td>
<td>38</td>
<td>91</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>50.5</td>
<td>36.2</td>
<td>86.7</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>8</td>
<td>5</td>
<td>13.3</td>
</tr>
<tr>
<td>4. Pucat</td>
<td>0.002</td>
<td>10.158</td>
<td>40</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>38.1</td>
<td>14.3</td>
<td>52.4</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>21</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>5. Myalgia</td>
<td>1.000</td>
<td>0.004</td>
<td>50</td>
<td>37</td>
<td>87</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>47.6</td>
<td>35.2</td>
<td>82.8</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>11</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>6. Atralgia</td>
<td>0.818</td>
<td>0.193</td>
<td>45</td>
<td>35</td>
<td>80</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>42.9</td>
<td>33.3</td>
<td>76.2</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>16</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>7. Rasa dingin</td>
<td>0.015</td>
<td>6.254</td>
<td>45</td>
<td>22</td>
<td>67</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>42.9</td>
<td>20.9</td>
<td>63.8</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>16</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>8. Anoreksia</td>
<td>0.298</td>
<td>1.161</td>
<td>44</td>
<td>28</td>
<td>72</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>41.9</td>
<td>26.7</td>
<td>68.6</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>17</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>9. Keringat</td>
<td>0.155</td>
<td>2.094</td>
<td>43</td>
<td>25</td>
<td>68</td>
</tr>
<tr>
<td>dingin</td>
<td></td>
<td></td>
<td>41.0</td>
<td>23.8</td>
<td>64.8</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>18</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>17.1</td>
<td>18.1</td>
<td>35.2</td>
</tr>
<tr>
<td>10. Gemetar</td>
<td>0.538</td>
<td>0.543</td>
<td>41</td>
<td>27</td>
<td>68</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>39.1</td>
<td>25.7</td>
<td>64.8</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>20</td>
<td>17</td>
<td>37</td>
</tr>
<tr>
<td>11. Menggigil</td>
<td>0.007</td>
<td>7.474</td>
<td>40</td>
<td>17</td>
<td>57</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>38.1</td>
<td>16.2</td>
<td>54.3</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>21</td>
<td>20</td>
<td>41</td>
</tr>
<tr>
<td>12. Nyeri</td>
<td>0.289</td>
<td>1.239</td>
<td>40</td>
<td>34</td>
<td>74</td>
</tr>
<tr>
<td>Pinggang</td>
<td></td>
<td></td>
<td>38.1</td>
<td>32.4</td>
<td>70.5</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>21</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>20</td>
<td>9.5</td>
<td>29.5</td>
</tr>
<tr>
<td>13. Mual</td>
<td>0.321</td>
<td>1.090</td>
<td>39</td>
<td>24</td>
<td>63</td>
</tr>
<tr>
<td>• Ya</td>
<td></td>
<td></td>
<td>37.1</td>
<td>22.9</td>
<td>60</td>
</tr>
<tr>
<td>• Tidak</td>
<td></td>
<td></td>
<td>22</td>
<td>19</td>
<td>42</td>
</tr>
<tr>
<td>14. Pusing</td>
<td>0,698</td>
<td>0,165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>30,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>27,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>18,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18,6</td>
<td>18,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>45,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>34,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>25,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,6</td>
<td>7,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>54,3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Muntah</th>
<th>0,176</th>
<th>2,250</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19</td>
<td>18,1</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>18,1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7,6</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>40,0</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>34,3</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>26,7</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>61,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Kembung</th>
<th>0,840</th>
<th>0,150</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>23,8</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>34,3</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>26,7</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>61,0</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>39,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Mencret</th>
<th>1,000</th>
<th>0,003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4,8</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>53,3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6,7</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>53,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Berdebar-debar</th>
<th>0,846</th>
<th>0,044</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28</td>
<td>26,7</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>31,4</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>26,7</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>53,3</td>
</tr>
<tr>
<td></td>
<td>46,7</td>
<td>46,7</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Rasa Panas</th>
<th>0,089</th>
<th>3,714</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
<td>52,4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5,7</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>54,3</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>39,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Obstipasi</th>
<th>1,000</th>
<th>0,031</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3,8</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>53,3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21. Batuk</th>
<th>0,003</th>
<th>9,072</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>8,6</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>53,3</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>24,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. Pilek</th>
<th>0,022</th>
<th>5,708</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>6,7</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>51,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23. Nyeri ulu hati</th>
<th>0,322</th>
<th>1,179</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23</td>
<td>21,9</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>26,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24. Gangguan abdomen</th>
<th>0,696</th>
<th>0,230</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29</td>
<td>27,6</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>30,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25. Sesak Nafas</th>
<th>0,630</th>
<th>0,598</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>54,3</td>
</tr>
<tr>
<td></td>
<td>4,8</td>
<td>4,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>26. Anyang - anyangan</th>
<th>0,693</th>
<th>0,284</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4,8</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>53,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>27. Ngantuk</th>
<th>0,432</th>
<th>0,850</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29</td>
<td>27,6</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>30,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>28. Otaqin</th>
<th>a</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61</td>
<td>58,1</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>41,9</td>
</tr>
</tbody>
</table>

24
<table>
<thead>
<tr>
<th>No.</th>
<th>Kecerdasan Medis</th>
<th>Nilai</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Odinofagia</td>
<td>0,359</td>
<td>1,161</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>6</td>
<td>5,7</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>55</td>
<td>52,4</td>
</tr>
<tr>
<td></td>
<td>Rash</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>61</td>
<td>58,1</td>
</tr>
<tr>
<td>30</td>
<td>Bleeding</td>
<td>1,000</td>
<td>0,032</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>1</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>60</td>
<td>57,2</td>
</tr>
<tr>
<td></td>
<td>Hematuria</td>
<td>1,000</td>
<td>0,065</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>7</td>
<td>6,6</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>54</td>
<td>21,4</td>
</tr>
<tr>
<td>31</td>
<td>Oliguria</td>
<td>0,259</td>
<td>1,524</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>11</td>
<td>10,4</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>50</td>
<td>47,6</td>
</tr>
<tr>
<td>32</td>
<td>Kuning - kunang</td>
<td>1,000</td>
<td>0,007</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>31</td>
<td>29,5</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>30</td>
<td>28,5</td>
</tr>
<tr>
<td>33</td>
<td>Kuku kuduk</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>61</td>
<td>58,1</td>
</tr>
<tr>
<td>34</td>
<td>Lebah pucat</td>
<td>0,340</td>
<td>1,365</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>9</td>
<td>8,6</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>52</td>
<td>49,5</td>
</tr>
<tr>
<td>35</td>
<td>Gangguan cor-pulmo</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>61</td>
<td>58,1</td>
</tr>
<tr>
<td>36</td>
<td>Pembesaran limfonodi</td>
<td>0,503</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>3</td>
<td>2,9</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>58</td>
<td>55,2</td>
</tr>
<tr>
<td>37</td>
<td>Meteorismus</td>
<td>1,000</td>
<td>0,065</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>3</td>
<td>2,9</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>58</td>
<td>55,2</td>
</tr>
<tr>
<td>38</td>
<td>Nyeri abdomen</td>
<td>0,580</td>
<td>0,655</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>2</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>59</td>
<td>56,2</td>
</tr>
<tr>
<td>39</td>
<td>Hepatomegali</td>
<td>1,000</td>
<td>0,787</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>2</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>59</td>
<td>56,2</td>
</tr>
<tr>
<td>40</td>
<td>Splenomegali</td>
<td>0,070</td>
<td>3,545</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>10</td>
<td>9,5</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>51</td>
<td>48,6</td>
</tr>
<tr>
<td>41</td>
<td>Kulit kering</td>
<td>0,229</td>
<td>1,863</td>
</tr>
<tr>
<td></td>
<td>• Ya</td>
<td>28</td>
<td>26,7</td>
</tr>
<tr>
<td></td>
<td>• Tidak</td>
<td>33</td>
<td>31,4</td>
</tr>
</tbody>
</table>
Dari hasil analisis bivariat di atas, didapatkan hanya 6 gejala / tanda klinik yang potensial untuk menunjang diagnosis klinik malaria. Setelah dilakukan ranking berdasarkan nilai p (signifikansi): p < 0,05 dan nilai Chi Square Pearson (χ^2) > 3,841 maka dapat disusun berdasarkan ranking tertinggi sebagai berikut:

1. **Pucat (p = 0,002; $\chi^2 = 10,158$)**

Responden dengan tanda klinik pucat dan malaria positif sejumlah 40 orang (38,1%), hampir 2 kali lebih banyak daripada pucat dengan malaria negatif sejumlah 15 orang (14,3%).
Hasil analisis bivariat menunjukkan nilai $p = 0,002 \ (p<0,05) \ dan \ \chi^2 = 10,158 \ (\chi^2 > 3,841)$ berarti bermakna secara statistik. Variabel pucat selanjutnya dilakukan analisis regresi bersama dengan variabel bermakna lainnya.

2. Batuk ($p = 0,003 \ ; \ \chi^2 = 9,072$)

Responden dengan gejala batuk dan malaria positif sebanyak 9 orang (8,6%), sedangkan gejala batuk dengan malaria negatif sebanyak 17 orang (16,2%), dan sebanyak 52 orang (49,5%) tidak memberikan gejala batuk walaupun malaria positif.

Hasil analisis bivariat menunjukkan nilai $p = 0,003 \ (p<0,05) \ dan \ \chi^2 = 9,072 \ (\chi^2 > 3,841)$ berarti bermakna secara statistik. Variabel batuk selanjutnya dilakukan analisis regresi bersama dengan variabel bermakna lainnya.

3. Menggigil / chill ($p = 0,010 \ ; \ \chi^2 = 7,474$)

Responden dengan gejala menggigil dan malaria positif sebanyak 40 orang (38,1%), sedangkan gejala menggigil dengan malaria negatif sebanyak 17 orang (16,2%). Hasil analisis bivariat menunjukkan nilai $p = 0,010 \ (p<0,05) \ dan \ \chi^2 = 7,474 \ (\chi^2 > 3,841)$, berarti bermakna secara statistik. Variabel menggigil selanjutnya dilakukan analisis regresi bersama dengan variabel bermakna lainnya.

4. Keringat banyak ($p = 0,014 \ ; \ \chi^2 = 6,855$)

Responden dengan gejala keringat banyak dan malaria positif sebanyak 56 orang (53,3%) sedangkan gejala keringat banyak dengan malaria negatif sebanyak 32 orang (30,5%). Hasil analisis bivariat menunjukkan nilai $p = 0,014 \ (p<0,05) \ dan \ \chi^2 = 6,855 \ (\chi^2 > 3,841)$, berarti bermakna secara statistik.
Variabel menggigil selanjutnya dilakukan analisis regresi bersama dengan variabel bermakna lainnya.

5. Rasa dingin \((p = 0,015 ; \chi^2 = 6,254) \)

Responden dengan gejala rasa dingin dan malaria positif sebanyak 45 orang \((42,9\%)\), sedangkan gejala rasa dingin dan malaria negatif sebanyak 22 orang \((15,3\%)\). Hasil analisis bivariat menunjukkan nilai \(p = 0,015 \) \((p<0,05)\) dan \(\chi^2 = 6,254 \) \((\chi^2 >3,841)\) berarti bermakna secara statistik. Variabel rasa dingin selanjutnya dilakukan analisis regresi bersama dengan variabel bermakna lainnya.

6. Pilek \((p = 0,022 ; \chi^2 = 5,708) \)

Responden dengan gejala pilek dan malaria positif sebanyak 7 orang \((6,7\%)\), sedangkan gejala pilek dengan malaria negatif sebanyak 12 orang \((11,4\%)\) dan sebanyak 54 orang \((51,4\%)\) tidak memberikan gejala pilek walaupun malaria positif.

Hasil analisis bivariat menunjukkan nilai \(p = 0,022 \) \((p<0,05)\) dan \(\chi^2 = 5,708 \) \((\chi^2 >3,841)\) berarti bermakna secara statistik. Variabel ini selanjutnya dilakukan analisis regresi bersama dengan variabel bermakna lainnya.

IV.3 ANALISIS REGRESI

Berdasarkan nilai \(\chi^2 \) dari hasil analisis bivariat maka didapatkan 4 gejala / tanda klinik \((g1,g2,g3,4)\) dengan ranking tertinggi, yaitu: pucat, chill (menggigil), keringat banyak, rasa dingin. Selanjutnya keempat gejala / tanda klinik tersebut dilakukan analisis regresi untuk mendapatkan hubungan antar variabel sehingga
diperoleh kombinasi gejala / tanda klinik yang memiliki hubungan terkuat berdasarkan nilai F. Urutan kombinasi tersebut adalah sebagai berikut:

1. Kombinasi 1+2 (K12) \Rightarrow F : 9,009
2. Kombinasi 1+3 (K13) \Rightarrow F : 8,393
3. Kombinasi 1+4 (K14) \Rightarrow F : 7,739
4. Kombinasi 1+2+3 (K123) \Rightarrow F : 7,482
5. Kombinasi 1+2+4 (K124) \Rightarrow F : 7,172
6. Kombinasi 2+3 (K23) \Rightarrow F : 6,752
7. Kombinasi 1+3+4 (K134) \Rightarrow F : 6,610
8. Kombinasi 2+4 (K24) \Rightarrow F : 6,584
9. Kombinasi 1+2+3+4 (K1234) \Rightarrow F : 6,217
10. Kombinasi 3+4 (K34) \Rightarrow F : 5,886
11. Kombinasi 2+3+4 (K234) \Rightarrow F : 5,757

IV.4 UJI DIAGNOSTIK

Dari 4 gejala/tanda klinik bermakna (g1,g2,g3,g4) ditambah 11 kombinasi gejala / tanda klinik di atas (1-11), selanjutnya dilakukan uji diagnostik untuk mendapatkan nilai Sensitifitas (Se), Spesifisitas (Sp), Nilai Prediksi Positif (Npp), Nilai Prediksi Negatif (Npn), yang dapat disusun sebagai berikut:
Tabel 4. Nilai Diagnostik Malaria Pada Berbagai Kombinasi Gejala / Tanda Klinik

<table>
<thead>
<tr>
<th>No</th>
<th>Kombinasi gejala / tanda klinik</th>
<th>Se (%)</th>
<th>Sp (%)</th>
<th>NPP (%)</th>
<th>NPN (%)</th>
<th>Akurasi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>k1234</td>
<td>31,2</td>
<td>93,2</td>
<td>86,4</td>
<td>49,4</td>
<td>57,1</td>
</tr>
<tr>
<td></td>
<td>95%CI:22,3-40,0</td>
<td>95%CI:88,4-98,0</td>
<td></td>
<td>95%CI:79,8-92,9</td>
<td>95%CI:39,8-59,0</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>k12</td>
<td>42,6</td>
<td>84,1</td>
<td>78,8</td>
<td>51,4</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>95%CI:33,2-52,1</td>
<td>95%CI:77,1-91,1</td>
<td></td>
<td>95%CI:72,0-85,5</td>
<td>95%CI:41,8-61,0</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>k13</td>
<td>62,3</td>
<td>75,0</td>
<td>77,6</td>
<td>58,9</td>
<td>67,6</td>
</tr>
<tr>
<td></td>
<td>95%CI:53,0-71,6</td>
<td>95%CI:66,7-83,3</td>
<td></td>
<td>95%CI:69,6-85,5</td>
<td>95%CI:49,5-68,3</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>k14</td>
<td>52,5</td>
<td>81,8</td>
<td>80,0</td>
<td>55,4</td>
<td>64,8</td>
</tr>
<tr>
<td></td>
<td>95%CI:42,9-62,0</td>
<td>95%CI:74,4-89,2</td>
<td></td>
<td>95%CI:72,3-87,7</td>
<td>95%CI:45,9-64,9</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>k23</td>
<td>62,3</td>
<td>70,5</td>
<td>74,5</td>
<td>57,4</td>
<td>65,7</td>
</tr>
<tr>
<td></td>
<td>95%CI:53,0-71,6</td>
<td>95%CI:61,7-79,2</td>
<td></td>
<td>95%CI:66,2-82,2</td>
<td>95%CI:48,0-66,9</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>k24</td>
<td>24,6</td>
<td>43,2</td>
<td>37,5</td>
<td>29,2</td>
<td>64,8</td>
</tr>
<tr>
<td></td>
<td>95%CI:42,9-62,0</td>
<td>95%CI:74,4-89,2</td>
<td></td>
<td>95%CI:72,3-87,7</td>
<td>95%CI:45,9-64,9</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>k34</td>
<td>70,5</td>
<td>61,4</td>
<td>71,7</td>
<td>60,0</td>
<td>66,7</td>
</tr>
<tr>
<td></td>
<td>95%CI:61,8-79,2</td>
<td>95%CI:52,0-70,7</td>
<td></td>
<td>95%CI:63,1-80,3</td>
<td>95%CI:50,6-69,4</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>k123</td>
<td>39,3</td>
<td>84,1</td>
<td>77,4</td>
<td>50,0</td>
<td>58,1</td>
</tr>
<tr>
<td></td>
<td>95%CI:30,0-48,7</td>
<td>95%CI:77,9-91,1</td>
<td></td>
<td>95%CI:69,4-85,4</td>
<td>95%CI:40,4-59,6</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>k124</td>
<td>34,4</td>
<td>93,2</td>
<td>87,5</td>
<td>50,6</td>
<td>59,1</td>
</tr>
<tr>
<td></td>
<td>95%CI:25,3-43,5</td>
<td>95%CI:88,4-98,0</td>
<td></td>
<td>95%CI:81,2-93,8</td>
<td>95%CI:41,1-60,2</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>k134</td>
<td>49,2</td>
<td>88,6</td>
<td>85,7</td>
<td>55,7</td>
<td>65,7</td>
</tr>
<tr>
<td></td>
<td>95%CI:39,6-58,7</td>
<td>95%CI:82,6-94,7</td>
<td></td>
<td>95%CI:79,0-92,4</td>
<td>95%CI:46,2-65,2</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>k234</td>
<td>49,2</td>
<td>81,8</td>
<td>79,0</td>
<td>53,7</td>
<td>62,9</td>
</tr>
<tr>
<td></td>
<td>95%CI:39,6-58,7</td>
<td>95%CI:74,4-89,2</td>
<td></td>
<td>95%CI:71,2-86,7</td>
<td>95%CI:44,2-63,3</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>g1</td>
<td>65,6</td>
<td>65,9</td>
<td>72,7</td>
<td>58,0</td>
<td>65,7</td>
</tr>
<tr>
<td></td>
<td>95%CI:56,5-74,7</td>
<td>95%CI:42,7-61,9</td>
<td></td>
<td>95%CI:64,2-81,2</td>
<td>95%CI:48,6-67,4</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>g2</td>
<td>65,6</td>
<td>61,4</td>
<td>70,2</td>
<td>56,3</td>
<td>63,8</td>
</tr>
<tr>
<td></td>
<td>95%CI:56,5-74,7</td>
<td>95%CI:52,0-70,7</td>
<td></td>
<td>95%CI:61,5-78,9</td>
<td>95%CI:46,7-65,9</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>g3</td>
<td>91,8</td>
<td>27,3</td>
<td>63,6</td>
<td>70,6</td>
<td>64,8</td>
</tr>
<tr>
<td></td>
<td>95%CI:86,6-97,0</td>
<td>95%CI:18,8-35,8</td>
<td></td>
<td>95%CI:54,4-72,8</td>
<td>95%CI:61,9-79,3</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>g4</td>
<td>73,8</td>
<td>50,0</td>
<td>67,2</td>
<td>57,9</td>
<td>63,8</td>
</tr>
<tr>
<td></td>
<td>95%CI:65,4-82,2</td>
<td>95%CI:40,4-59,6</td>
<td></td>
<td>95%CI:58,2-76,2</td>
<td>95%CI:48,5-67,3</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

- **Se** = Sensitifitas
- **Sp** = Spesifisisitas
- **NPP** = Nilai Prediksi Positif
- **NPN** = Nilai Prediksi Negatif

1 : Pucat
2 : Menggigil
3 : Keringat banyak
4 : Rasa dingin

30
IV.5 Kurva ROC (Receiver Operating Characteristic)

Berdasarkan sensitifitas dan spesifisitas dari keseluruhan gejala / tanda klinik dan kombinasinya (tabel 4), maka didapatkan 11 titik potong kombinasi gejala / tanda klinik dan 4 titik potong gejala yang dapat digambarkan dalam suatu kurva ROC total di bawah ini.

Kurva ROC total berdasarkan kombinasi gejala / tanda klinik berdasarkan nilai sensitifitas dan spesifisitas.
BAB V
PEMBAHASAN

V.1 KARAKTERISTIK RESPONDEN

Kasus malaria klinis paling sering digunakan sebagai petunjuk pengambilan sediaan darah dan pengobatan klinis sebelum konfirmasi positif dari laboratorium (mikroskopik). Supaya lebih efisien dan efektif dalam pemberantasan malaria maka diperlukan suatu kriteria diagnostik sederhana dan praktis dalam meningkatkan akurasi diagnostik untuk deteksi dini dan pengobatan yang lebih cepat (prompt treatment) untuk mengurangi kasus malaria di lapangan, terutama di daerah endemik malaria dengan Kejadian Luar Biasa (KLB) yang jauh dari fasilitas laboratorium.

Dalam penelitian ini, didapatkan 105 responden, dengan malaria positif sebanyak 61 (58,1%), dan malaria negatif sebanyak 44 (41,9%). Distribusi responden berdasarkan umur antara 14-74 tahun, sebagian besar berumur 35-44 tahun yaitu 28 (26,7%). Kisaran umur ini merupakan usia produktif di mana secara ekonomis akan mengurangi produktivitas kerja. Tingkat pendidikan responden sebagian besar adalah: SD sejumlah 68 (64,8%), berarti sebagian besar responden berpendidikan rendah. Distribusi jenis kelamin responden adalah laki-laki sebanyak 60 (57,1%) lebih banyak dari pada wanita: 45 (42,9%). Hal ini mungkin karena laki-laki lebih banyak beraktifitas di luar rumah. Mayoritas responden berprofesi sebagai petani yaitu 77 (73,3%), ini dikarenakan daerah penelitian sebagian besar adalah lahan pertanian.
V.2 ANALISIS BIVARIAT

Analisis bivariat dilakukan untuk melihat hubungan variabel dengan hasil pemeriksaan sedian darah (SD). Didapatkan 6 gejala/tanda klinik dengan urutan kemaknaan sebagai berikut:

1. Pucat
2. Batuk
3. Menggigil
4. Keringat banyak
5. Rasa dingin.
6. Pilek.

Responden dengan gejala menggigil dan malaria positif sejumlah 40 (38,1%), bermakna secara statistik, berarti gejala menggigil dapat digunakan untuk membedakan kasus malaria dan bukan malaria di daerah penelitian. Penelitian ini sama dengan penelitian Gomes dkk (1994) di Filipina, dan Pangade S, Kulon Progo, 1998 bahwa gejala menggigil bermakna untuk membedakan kasus malaria dan bukan malaria di daerah endemik malaria, tetapi berbeda dengan penelitian Herawati L di Kebumen, 1998 di mana menggigil tidak bermakna. 27

Proporsi responden dengan gejala rasa dingin dan malaria positif, lebih dari dua kali responden dengan gejala yang sama dan malaria negatif, yaitu: 45 (42,9%) berbanding 22 (15,3%), sehingga gejala rasa dingin dapat digunakan untuk membedakan malaria dan bukan malaria di daerah penelitian. Ini sesuai dengan

Responden dengan gejala batuk dan malaria positif sebanyak 9 (8,6%), kira-kira hanya setengah dari responden dengan gejala batuk dan malaria negatif, yaitu: 17 (16,2%), dan terdapat 52 (49,5%) penderita malaria tanpa memberikan gejala batuk, oleh karena itu gejala batuk tidak dapat digunakan untuk membedakan malaria dan bukan malaria secara klinis.

Gejala batuk juga dapat ditemukan pada infeksi saluran nafas akut bagian atas atau akibat penyakit yang terjadi bersamaan (komorbid), meskipun dalam beberapa studi dikatakan bahwa batuk dapat merupakan salah satu manifestasi klinik malaria (flu-like syndrome), kecuali bila menyebabkan kematian.

Responden dengan gejala pilek dan malaria positif sebanyak 7 (6,7%), sedangkan responden dengan gejala pilek dan malaria negatif sebanyak 12 (11,4%), dan terdapat 54 (51,4%) penderita malaria tanpa gejala pilek. Secara proporsional, gejala pilek dengan malaria negatif jauh lebih banyak daripada pilek dengan malaria positif, oleh karena itu gejala pilek tidak dapat digunakan untuk membedakan malaria dan bukan malaria secara klinis di daerah penelitian. Gejala pilek juga dapat merupakan salah satu manifestasi klinik dari infeksi saluran pernafasan akut bagian atas, influenza biasa (common cold), atau pada keadaan yang terjadi bersamaan (komorbid).

Gejala sakit kepala pada penelitian ini didapatkan 55 orang (52,4%) dengan malaria positif, dan 39 orang (37,1%) dengan malaria negatif, tetapi tidak bermakna secara statistik ($p=0,529, \chi^2 = 0,575$). Hal ini berbeda pada penelitian Herawati L di Kebumen, 1998, yang menyatakan gejala sakit kepala bermakna, dan penelitian di sepanjang aliran Sungai Serayu, maupun di Banyumanik, Semarang, didapatkan cukup banyak penderita malaria dengan gejala sakit kepala, walaupun tanpa demam.

Gejala nyeri otot (myalgia) pada penelitian ini tidak bermakna secara statistik ($p = 1,000, \chi^2 = 0,004$), tetapi penelitian di Papua yang juga merupakan daerah endemic malaria, gejala sakit kepala sangat menonjol, yang merupakan gejala spesifik setempat.
V.3 ANALISIS REGRESI LOGISTIK MULTIPEL

Berdasarkan pembahasan di atas, maka dari 6 gejala/tanda klinik, yaitu: pucat, batuk, menggigil, keringat banyak, rasa dingin, dan pilek, ternyata hanya 4 gejala/tanda klinik bermakna, yang dapat digunakan untuk membedakan malaria dan bukan malaria di daerah penelitian. Adapun urutan gejala/tanda klinik tersebut, sesuai dengan ranking hasil analisis bivariat, adalah sebagai berikut:

1. Pucat
2. Menggigil
3. Keringat banyak
4. Rasa dingin

Selanjutnya dilakukan analisis regresi logistik multipel untuk mengetahui sejauh mana hubungan antar ke-4 variabel (interaksi), agar didapatkan kombinasi gejala/tanda klinik terbaik yang dapat diterapkan di lapangan.

V.4 NILAI DIAGNOSTIK

Dari hasil analisis regresi logistik multipel, selanjutnya dilakukan uji diagnostik untuk mendapatkan nilai Sensitifitas (Se), Spesifisitas (Sp), Nilai Prediksi Positif (Npp), dan Nilai Prediksi Negatif (NPN) pada setiap kombinasi gejala/tanda klinik.

Berdasarkan uji diagnostik di atas, maka didapatkan kombinasi tanda klinik pucat dan bergeringat banyak memiliki sensitifitas (Se) dan spesifisitas (Sp) yang relatif seimbang, yaitu: 62,3 % dan 75,0 %, tetapi karena tujuan penelitian ini bukan untuk skrining terhadap responden, tetapi untuk membantu menegakkan diagnosis klinik malaria, maka dipilih gejala/tanda klinik dengan nilai spesifisitas dan nilai prediksi positif terbaik, yaitu: pucat, menggigil, dan rasa dingin dengan spesifisitas (Sp): 93,2% dan nilai prediksi positif 87,5%, artinya bila didapatkan seseorang dengan gejala demam dan kombinasi tanda klinik/gejala: pucat, menggigil, serta rasa dingin maka kemungkinan orang tersebut menderita malaria adalah 87,5%.
V.5 Kurva ROC (Receiver Operating Characteristic)

Dengan kurva ROC, dapat ditentukan titik potong kombinasi gejala / tanda klinik yang diduga malaria pada berbagai titik potong berdasarkan nilai sensitifitas dan spesifitas.

Kurva, dimana terdapat titik potong yang terdekat dengan sudut kiri atas atau terjauh dari garis diagonal pada kurva ROC total (Sensitifitas dan Spesifitas relatif seimbang), adalah kurva dengan titik potong kombinasi gejala / tanda klinik: pucat dan keringat banyak. Berdasarkan luas Area Under the Curve (AUC), maka yang paling luas dan terpilih sebagai kurva dengan titik potong terbaik adalah kurva dengan titik potong kombinasi gejala / tanda klinik: pucat, menggigil, dan rasa dingin.

BAB VI
KETERBATASAN PENELITIAN

1. Kasus malaria bersifat fluktuatif, sehingga hasil penelitiannya hanya dapat diaplikasikan di daerah penelitian (Banjarnegara), tidak dapat diterapkan di tempat lain yang mempunyai vektor, spesies maupun gejala spesifik setempat.
2. Penelitian tidak melibatkan penderita tanpa gejala demam.
3. Tidak dilakukan pemeriksaan laboratorium sederhana untuk mendeteksi kemungkinan adanya penyakit demam lainnya yang prevalens di daerah endemik dengan KLB.
BAB VII
KESIMPULAN DAN SARAN

A. KESIMPULAN

1. Gejala / tanda klinik bermakna yang dapat digunakan untuk membantu menegakkan diagnosis malaria pada kasus demam di daerah endemik malaria dengan kejadian luar biasa, adalah: pucat, menggigil, keringat banyak, dan rasa dingin.

2. Kombinasi gejala / tanda klinik terbaik untuk membantu menegakkan diagnosis malaria di daerah endemik dengan kejadian luar biasa selain demam, adalah: pucat, menggigil, dan rasa dingin dengan nilai spesifisitas : 93,2% dan nilai prediksi positif: 87,5%.

3. Titik potong pada kurva ROC dengan sensitifitas dan spesifitas yang relatif seimbang (62,3% dan 75 %), adalah titik potong dengan kombinasi gejala / tanda klinik: pucat dan keringat banyak.

B. SARAN

1. Mengingat jumlah kasus malaria bersifat fluktuatif, karena dipengaruhi musim hujan dan kering, maka diperlukan suatu penelitian lanjutan dengan desain yang lebih baik, jumlah lebih banyak, dan waktu yang lebih lama, dengan cara mengikutsertakan penderita dengan diagnosis bukan malaria, yang berobat ke puskesmas daerah endemik malaria dengan atau tanpa kejadian luar biasa.

2. Penelitian ini dapat dilanjutkan dengan penelitian intervensi di daerah penelitian yang sama dan daerah endemik malaria lain (validasi eksternal)
DAFTAR PUSTAKA

24. Perhimpunan Ahli Penyakit Dalam : Buku Ajar Penyakit Dalam

