EVALUASI KESESUAIAN LAHAN PESISIR
UNTUK PENGEMBANGAN BUDIDAYA
TAMBAK DI KABUPATEN PURWOREJO

TESIS
Untuk Memenuhi Sebagian Persyaratan
Guna Mencapai Derajat Sarjana S -2

Program Pascasarjana Universitas Diponegoro
Program Studi : Magister Manajemen Sumberdaya Pantai

oleh :
D E W I I R I A N T I
NIM : K 4 A 0 0 2 0 0 9

PROGRAM PASCASARJANA
UNIVERSITAS DIPONEGORO SEMARANG
TAHUN 2004
EVALUASI KESESUAIAN LAHAN PESISIR UNTUK PENGEWBANGAN BUDIDAYA TAMBAK DI KABUPATEN PURWOREJO

Dipersiapkan dan disusun oleh
DEWI IRIANTI
K4A002009

Telah dipertahankan didepan Tim Penguji :
Tanggal : 28 Desember 2004

Menyetujui :

Pembimbing I

[Signature]
(Prof. Dr. Ir. Sutrisno Anggoro, MS)

Pembimbing II

[Signature]
(Ir. Sarjito, MApp.Sc)

Penguji I :

[Signature]
(Ir. Pinandoyo, MS)

Penguji II :

[Signature]
(Ir. B. Argo Wibowo, Msi)

Mengetahui,
Ketua Program Studi

[Signature]
(Prof. Dr. Ir. Sutrisno Anggoro, MS)

UPT-PUSTAK-UNDIP
No. Daft: 34II/1/MSDP/Kel/Tgl. 09/12/2004
ABSTRACT

EVALUATING OF SUITABILITY OF COASTAL LAND FOR AQUACULTURE DEVELOPING IN PURWOREJO REGENCY

Purworejo Regency is one of Southern Coastal Area Region of Central Java which coastal length is ± 21,16 Km. It has potential marine and fisheries resources for fish farming. So, they will increase production and income of the Purworejo society if were operated well. From the result of interpretation of landsat TM image through arranging utilized map shows that Purworejo Regency has a potential coastal land for aquaculture ±1.352,02 ha width. It consist of 3 (three) coastal district which are divided into 17 coastal village area. The land has just been exploit 49 ha width and produce 79.144 kg/year. The purposes of this research are to study the suitability of coastal land for brachish water, the suitability of actual land and potential land for brachish water pond. The method of the research was area observation by conforming data from lansat TM interpretation and real data on the fields, using purposive random sampling, and basis on ecological similarity condition; soil characteristic. The sampling did on 3 (three) coastal district area of Purworejo Regency (Gragag, Ngombol, and Purwodadi). The 9 sample of soils and water are taken to laboratorium for analysis by using matching method from Sitorus and CSR / FAO to get class of land ability. The suitability of the land have two order: S (suitable) and N (not suitable). S1 class (highly suitable), S2 class (moderately suitable), S3 class (marginally suitable), N1 (currently not suitable). SAR (Sodium Absorption Ratio) was used to determine a species of organism will be cultured. The result of this research shows that the potential suitable land for fishpond are 1.352,02 ha, includes category of N1 class (salinity limit factor, COD & BOD), S3 (soil porosity limit factor) and S1 (NPK rate limit factor). Actual land of Purworejo Regency are 79,07 ha width include N1 class while SAR values suitability consist of not sensitive, moderately sensitive, and sensitive organisms.

Key words: Evaluating of suitability of coastal land, aquaculture developing, Purworejo Regency
Ringkasan

EVALUASI KESESUAIAN LAHAN PESISIR UNTUK PENGEMBANGAN BUDIDAYA TAMBAK DI KABUPATEN PURWOREJO

Kabupaten Purworejo yang terletak di pantai selatan Jawa Tengah mempunyai panjang pantai ± 21,15 km dan memiliki sumberdaya perikanan dan kelautan yang dimanfaatkan sebagai kawasan pertambakan cukup potensial, sehingga jika dapat diasahakan secara baik dan benar akan mampu meningkatkan produksi dan pendapatan masyarakat di daerah tersebut. Penelitian ini bertujuan untuk mengkaji kesesuaian lahan pesisir untuk dapat dikembangkan sebagai lahan tambak, kesesuaian lahan aktual serta mengkaji lahan potensial untuk budidaya tambak sesuai dengan kesesuaian lahannya. Metode yang digunakan dalam penelitian ini adalah Observasi di lapangan, yaitu mencocokkan hasil interpretasi citra landsat TM dengan data yang ada di lapangan. Pengambilan sampel dilakukan secara purposive random sampling. Sampel air dan tanah yang diambil sebanyak 9 titik, kemudian diuji kannya di laboratorium. Untuk mengevaluasi kesesuaian lahan pesisir digunakan, metode matching dari Sitorus dan CSR/FAO. Kesesuaian lahan dibagi 2 order S (sesuai) dan order N (tidak sesuai). Untuk menentukan jenis biota yang akan dibudidaya menggunakan SAR (Sodium Absorption Ratio). Hasil interpretasi citra landsat TM yang ditumpang-susun (overlay) dengan peta tata guna lahan Kabupaten Purworejo diperoleh lahan potensial pesisir untuk pertambakan seluas ± 1.352,02 ha yang tercakup di 3 (tiga) Kecamatan pesisir (17 desa pantai), dan baru dimanfaatkan seluas 49 ha, dengan produksi mencapai 79.144 kg/th. Hasil penelitian menunjukkan bahwa klas kesesuaian lahan potensial pesisir untuk tambak di Kabupaten Purworejo seluas 1.352,02 ha, termasuk kategori klas N1 seluas 1.131,94 ha (faktor pembatas salinitas, COD dan BOD), S3 seluas 151,28 ha (faktor pembatas porositas tanah) dan S1 seluas 68,8 ha (faktor pembatas kandungan NPK dalam tanah). Lahan Aktual di Kabupaten Purworejo seluas 79,07 ha termasuk kelas kesesuaian lahan N1 dengan faktor pembatas salinitas dan COD, BOD sedangkan kesesuaian nilai SAR untuk menentukan biota yang cocok dibudidayaan termasuk kategori untuk biota tidak sensitif, kurang sensitif dan biota sensitif.

Kata-kata kunci: Evaluasi kesesuaian lahan pesisir, pengembangan tambak, Kabupaten Purworejo.
KATA PENGANTAR

Pada kesempatan ini penulis mengucapkan banyak terima kasih kepada:

1. Bapak Prof. Dr. Sutrisno Anggoro, MS selaku Pembimbing I dan Ketua Program Pasca serta Bapak Ir. Sarjito, Mapp.Sc selaku pembimbing II yang telah memberikan bimbingan, dorongan, semangat dan saran kepada penulis sehingga penulis dapat menyelesaikan tesis ini.

4. Semua pihak yang telah membantu secara moril dan materiil, yang tidak dapat kami sebutkan satu persatu sehingga dapat terselesaikannya tesis ini

Penulis menyadari bahwa tulisan ini jauh dari sempurna untuk itu saran guna penyempurnaan tulisan ini sangat kami harapkan agar tulisan ini bermanfaat. Terima kasih.

Semarang, Desember 2004

Penulis
DAFTAR ISI

KATA PENGANTAR ... Halaman i
DAFTAR ISI ... ii
DAFTAR TABEL .. iii
DAFTAR LAMPIRAN ... iv
DAFTAR GAMBAR ... v
BAB I PENDAHULUAN .. 1
 I. 1. Latar Belakang ... 1
 I. 2. Permasalahan ... 4
 I. 3. Tujuan dan Kegunaan ... 4
 I. 4. Waktu Penelitian ... 5

BAB II. TINJAUAN PUSTAKA .. 6
 II. 1. Wilayah Pesisir dan Pemanfaatannya 6
 II. 2. Tata Ruang dan Pemanfaatan Lahan Pesisir 8
 II. 3. Ekoistem Tambak .. 9
 II. 4. Eva;usi Kesesuaian Lahan 10
 II. 5. Kualitas Lahan untuk Budidaya Tambak 15
 II. 6. Faktor – faktor Pembatas Budidaya Tambak 15
 II. 6. 1. Kualitas Air ... 15
 II. 6. 2. Kualitas Tanah ... 20
 II. 6. 3. Topografi dan Pasang Surut 22

BAB III. METODOLOGI ... 23
 III. 1. Bahan dan Alat .. 23
 III. 2. Lingkup Penelitian ... 23
 III. 3. Metode Pelaksanaan Penelitian 24
 III. 3. 1. Tahap Persiapan .. 24
 III. 3. 2. Tahap Pengumpulan data 24
 III. 3. 3. Analisis data ... 26
BAB IV. HASIL DAN PEMBAHASAN .. 29
IV.1. Gambaran Umum kabupaten Purworejo 29
IV.1.1. Letak Geografis Kabupaten Purworejo 29
IV.1.2. Kondisi Sosial Ekonomi di Kabupaten Purworejo 30
IV.1.3. Penggunaan Lahan di Purworejo 33
IV.1.4. Kondisi Perikanan Budidaya Tambak dan Potensi Lahan Di Kabupaten Purworejo .. 33
IV.2. Kesesuaian Lahan Pesisir di Kabupaten Purworejo 38
IV.3. Faktor Pembatas Kualitas Air Unit Lahan Tmbak di Kabupaten Purworejo ... 47
IV.3.1. Faktor Pembatas Utama .. 47
IV.3.1.1. Salinitas .. 47
IV.3.1.2. Kadar BOD dan COD .. 48
IV.3.1.3. Faktor Pembatas pada Kualitas Tanah 49
IV.3.1.4. Porositas Tanah ... 51
IV.3.2. Faktor Pembatas Lain ... 51
IV.3.3. Nisbah BOD/COD .. 57
IV.3.4. SAR (Sodium Absorption Ratio) .. 58
IV.3.5. Pasang Surut .. 58
IV.3.6. Plankton ... 59
IV.4. Hasil Penelitian di Masing-masing Lokasi 60
IV.5. Potensi Pengembangan Tambak di Kabupaten Purworejo 66
IV.6. Penerapan Teknologi ... 70

BAB V. KESIMPULAN DAN SARAN .. 71

DAFTAR PUSTAKA .. 73
DAFTAR TABEL

II.1. Sistem Budidaya di Tambak Pembesaran .. 14
II.2. Parameter Kualitas Air ... 15
IV.1. Jumlah Desa dan Luas Wilayah Menurut Kecamatan di Kabupaten Purworejo ... 30
IV.2. Luas Wilayah dan Kepadatan Penduduk Tiap Kecamatan di kabupaten Purworejo ... 31
IV.3. Kepadatan Penduduk Per Km² di Kecamatan Pesisir di Kabupaten Purworejo ... 31
IV.4. Penggunaan Lahan di Kabupaten Purworejo .. 33
IV.5. Luas lahan Tambak dan Produksi per tahun di masing-masing Kecamatan di Kabupaten Purworejo ... 34
IV.6. Lokasi Lahan Tambak Aktual di Kabupaten Purworejo 35
IV.7. Lokasi dan luas Lahan Potensial untuk Tambak di Kabupaten Purworejo ... 36
IV.8. Hasil Penelitian Kualitas Air dan Tanah .. 40
IV.9. Hasil Penelitian Kualitas Air dan Tanah .. 41
IV.10. Hasil Penelitian Kualitas Air dan Tanah .. 42
IV.11. Klas Kesesuaian Unit Lahan di Kabupaten Purworejo 44
IV.13. Kesesuaian Unit Lahan berdasarkan Nilai SAR 46
DAFTAR LAMPIRAN

<table>
<thead>
<tr>
<th>No</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peta Rupa Bumi dan Tata Guna Lahan Kabupaten Purworejo</td>
<td>77</td>
</tr>
<tr>
<td>2</td>
<td>Peta Citra Landsat –ETM RGB 542 Kabupaten Purworejo</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>Peta Tanah Kabupaten Purworejo</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>Peta Lokasi Pengambilan Sampel</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>Peta Lokasi Pengembangan Tambak berdasarkan Kesesuaian Lahannya</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>Peta Lokasi Pengembangan Tambak berdasarkan Kesesuaian SAR</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>Standar Kualitas Air dan Tanah pada Klas Kesesuaian lahan</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>Perhitungan SAR</td>
<td>84</td>
</tr>
<tr>
<td>9</td>
<td>Hasil SAR Analisis Tambak Indokor Purworejo</td>
<td>86</td>
</tr>
<tr>
<td>10</td>
<td>Hasil SAR Karanganyar, Jatimalang, Bonorowo</td>
<td>87</td>
</tr>
<tr>
<td>11</td>
<td>Hasil SAR Kertojayan, Wero dan Keburuhan</td>
<td>88</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

1. Gambar Diagram Alir Penelitian ... Halaman 28
I. PENDAHULUAN

I.1. LATAR BELAKANG

Kabupaten Purworejo mempunyai panjang pantai ± 21,15 Km, yang mencakup 3 (tiga) Kecamatan pesisir dan terdiri dari 17 Desa pantai. Lahan yang potensial untuk pengembangan budidaya tambak ± 1.352,02 ha, dan baru dimanfaatkan seluas ± 49 Ha yang berlokasi di Kecamatan Purwodadi dan Ngombol dengan produksi mencapai 79.144 kg/tahun (BPS kabupaten Purworejo, 2003).

Oleh karena itu daerah ini sangat potensial untuk dimanfaatkan dan dikembangkan sebagai lahan usaha budidaya tambak.
Usaha budidaya tambak mempunyai tingkat teknologi yang berbeda-beda, yang pada prinsipnya adalah mengupayakan usaha budidaya tambak yang sedemikian rupa, sehingga biota yang dipelihara dapat tumbuh secara baik. Untuk itu, diperlukan persyaratan yang mendukung antara lain adanya sumber air yang cukup bermutu serta keadaan lahan yang mendukung.

Selain itu diperlukan pula informasi daya dukung lahan wilayah ini untuk mengaplikasikan teknologi yang tepat dalam rangka mengoptimalkasikan potensi lahan suatu wilayah khususnya di Kabupaten Purworejo perlu adanya informasi yang bersifat menyeluruh, informasi tersebut dapat berupa tingkat kesesuaian lahan yang dapat digunakan sebagai pedoman dalam mengembangkan suatu komoditas tertentu, khususnya dalam hal biota yang dipelihara di tambak, sehingga dapat digali potensi sumber daya lahan yang secara optimal dapat dimanfaatkan untuk budidaya yang berkelanjutan.

Fungsi dari evaluasi sumberdaya lahan adalah memberikan pengertian tentang hubungan-hubungan antara kondisi lahan dan penggunaannya serta memberikan kepada pembuat kebijakan sebagai bahan perbandingan dan alternatif pilihan penggunaan yang dapat diharapkan berhasil. Sedangkan manfaat yang mendasar dari evaluasi sumberdaya lahan untuk menilai kesesuaian bagi suatu penggunaan tertentu, serta memprediksi konsekwensi-konsekwensi dapat diramalkan sehingga peringatan-peringatan terhadap lahan yang seharusnya tidak diusahakan/dipergunakan (Sitorus, 1985).

2
Penelitian kualitas air dan tanah tambak sebagai salah satu dasar untuk penentuan kesesuaian lahan budidaya tambak, yang pada hakikatnya merupakan proses untuk pendugaan potensi sumberdaya lahan dan menilai kualitas lahan bagi usaha pertambakan dengan penelitian kualitas air dan tanah. Adapun kerangka dasar dari kesesuaian lahan tambak ini adalah membandingkan persyaratan yang diperlukan bagi pertambakan dengan sifat dan karakteristik sumberdaya yang ada pada lahan di wilayah tambak yang diteliti.

Evaluasi kesesuaian lahan budidaya tambak ini merupakan langkah yang strategis bagi pembinaan dan pengembangan budidaya tambak yang ramah lingkungan pantai selatan Jawa Tengah khususnya di Kabupaten Purworejo. Hal ini menjadi lebih penting artinya mengingat beragamnya sifat atau karakteristik lahan di pesisir dengan semakin berkembangnya kegiatan di kawasan pesisir, baik yang dapat berdampak positif maupun negatif pada lahan tambak.

Data tersebut selanjutnya digunakan sebagai salah satu dasar evaluasi kesesuaian lahan tambak di Kabupaten Purworejo. Hal ini akan dapat dimanfaatkan untuk penataan penggunaan lahan budidaya tambak sehingga di Kabupaten Purworejo, untuk itu perlu dilakukan penelitian tentang evaluasi kesesuaian lahan pesisir untuk pengembangan budidaya tambak di Kabupaten Purworejo.

I.2. PERMASALAHAN

Permasalahan yang dihadapi pada saat ini bagi budidaya tambak di Kabupaten Purworejo adalah:
1. Di Kabupaten Purworejo masih banyak lahan potensial yang dapat dikembangkan untuk usaha budidaya tambak.
2. Di Kabupaten Purworejo masih banyak tambak aktual yang belum menggunakan teknik budidaya yang benar/sesuai dengan kesesuaian lahannya.
4. Perlu dikaji/dievaluasi sejauh mana lahan pesisir yang ada sesuai untuk pengembangan budidaya tambak.

I.3. TUJUAN DAN KEGUNAAN

I.3.1. Tujuan

Tujuan dari penelitian ini adalah untuk mengkaji:
1. Tingkat kesesuaian lahan pesisir di Kabupaten Purworejo untuk dapat dikembangkan sebagai lahan budidaya tambak.
3. Lahan potensial untuk budidaya tambak di pesisir Kabupaten Purworejo apakah sesuai dengan daya dukung lahannya.

4. Untuk mengkaji/mengevaluasi lahan potensial sesuai untuk pengembangan budidaya tambak.

I.3.2. Kegunaan

Penelitian ini berguna:

1. Untuk memberikan informasi karakteristik sumberdaya lahan pesisir di Kabupaten Purworejo sesuai dengan daya dukungnya, untuk pengembangan budidaya tambak.

2. Untuk memberikan informasi/masukan teknologi budidaya tambak yang sesuai dengan kesesuaian lahannya.

I. 4. WAKTU DAN TEMPAT PENELITIAN

Penelitian ini dilakukan pada bulan Juni s/d Agustus 2004 dengan lokasi di wilayah pesisir kabupaten Purworejo, Jawa Tengah.
BAB II
TINJAUAN PUSTAKA

II. 1. Wilayah Pesisir dan Pemanfaatannya

Menurut Soegiarto (1976) *dalam* Dahuri *et al.* (1996) ; dan pada
Keputusan Menteri Kelautan dan Perikanan No. 34, tahun 2002,
wilayah pesisir adalah merupakan daerah pertemuan antara darat dan
laut; ke arah darat wilayah pesisir meliputi bagian darat, baik kering
maupun terendam air, yang masih dipengaruhi sifat-sifat laut seperti
pasang surut, angin laut dan perembesan air asin; sedangkan ke arah laut
wilayah pesisir mencakup bagian laut yang masih dipengaruhi oleh
proses-proses alami yang terjadi di darat seperti sedimentasi dan aliran
air tawar, maupun yang disebabkan oleh kegiatan manusia di darat
seperti penggundulan hutan dan pencemaran berpijak dari hal tersebut
diatas garis batas secara nyata tidak ada, sehingga batasan tersebut hanya
garis khayal yang letaknya ditentukan oleh kondisi dan situasi setempat.
Bentuk wilayah ini merupakan hasil keseimbangan dinamis memenuhi
perubahan sifat ekologis yang tinggi dan pada skala yang sempit akan
dijumpai kondisi ekologi yang berbeda.

Maswardi dan Adiwidjaya (2002), menyatakan bahwa wilayah
pesisir merupakan lokasi yang heterogen baik dari segi keragaman
hayatinya maupun karakter lahannya yang merupakan peluang usaha
dibidang budidaya perairan dengan komoditas yang sesuai dengan
spesifik lokal. Dengan adanya pengembangan dan pengelolaan wilayah
pesisir untuk usaha budidaya diharapkan masyarakat yang bermukim di wilayah pesisir dapat memperoleh dampak positifnya yaitu meningkatkan pendapatan dan kesejahteraannya. Dengan demikian bahwa komoditas yang dapat dikembangkan dan dikelola daerah wilayah pesisir adalah komoditas yang bernilai ekonomis penting, tingkat pengelolaan dan pembididayaannya dapat disesuaikan dengan lokasi dan potensi yang ada.

dan air laut akibat dari air pasang sehingga daerah ini merupakan daerah yang subur dan kaya akan bahan-bahan organik.

II. 2. Tata Ruang dan Pemanfaatan lahan pesisir

Perencanaan tata ruang pesisir dan pulau-pulau kecil sesuai pendekatan bahwa penataan tata ruang ditujukan untuk meningkatkan kesejahteraan masyarakat melalui pemanfaatan ruang pesisir dan pulau-pulau kecil secara berkelanjutan (Kepmen Perikanan dan Kelautan No. 34 tahun 2002). Sebagai salah satu bentuk rekayasa teknik pemanfaatan ruang untuk menetapkan batas-batas fungsional suatu peruntukan sesuai dengan potensi sumberdaya, daya dukung dan proses-proses ekologis yang berlangsung sebagai satu kesatuan dalam suatu sistem maka disebut pemintakatan (zonasi).

Penyusunan rencana pemintakatan ini adalah untuk membagi wilayah pesisir dalam zona-zona yang sesuai dengan peruntukan dan kegiatan yang bersifat saling mendukung (compatible) serta memisahkan dari kegiatan yang saling bertentangan (incompatible). Penentuan zona tersebut difokuskan berdasarkan kegiatan utama dan prioritas pemanfaatan sumberdaya pesisir guna mempermudah pengendalian dan pemanfaatan. Pemintakatan menjelaskan fokus kegiatan dan nama zona yang dipilih berdasarkan kondisi dan kegiatan yang diijinkan atau dapat dilakukan dengan persyaratan tertentu. Penetapan rencana pemintakatan dimaksudkan untuk memelihara keberlanjutan sumberdaya pesisir dalam
jangka panjang serta mengeliminir berbagai factor tekanan terhadap ekosistem pesisir akibat kegiatan yang tidak sesuai (incompatible).

Dalam penetapan rencana tata ruang detail (RTRD) pertambakan perlu dibuat secara rinci termasuk didalamnya pola pengaturan irigasi (sumber air laut dan sungai). Hal ini untuk menghindari gejala penurunan mutu lingkungan (terutama air) yang diakibatkan oleh system irigasi yang tidak memperhatikan aspek lingkungan. Pada tiap hamparan tambak didalam RTRD, muara saluran pasok dan saluran buang air dipisah dibagian tepi luar batas hamparan tambak (Nirmama, 1998)

II.3. Ekosistem Tambak

Ekosistem adalah suatu komonitas tumbuh-tumbuhan, hewan dan organisme lainnya serta interaksi fungsional antar mereka, maupun dengan lingkungannya. Ekosistem dan sumberdaya pesisir dan laut merupakan suatu himpunan integral dari komponen hayati dan nirhayati, mutlak dibutuhkan oleh manusia untuk hidup dan meningkatkan mutu kehidupan (Bengen, 2002).

Ekosistem pertambakan merupakan bagian ekosistem daerah estuaria, dimana pembentukan diawali suatu aliran sungai yang menuju ke laut. Daerah ini merupakan pertemuan antara air tawar dari daratan yang mengalir di sungai dengan air laut akibat dari pasang surut, maka akan mengakibatkan daerah ini menjadi subur dan kaya bahan-bahan organik (Pethick, 1984).
II. 4. Evaluasi Kesesuaian Lahan

Hardjowigeno (2003), menyatakan bahwa evaluasi kesesuaian atau kemampuan lahan dilakukan dengan cara membandingkan persyaratan penggunaan lahan dengan kualitas (karakteristik) lahan yang ada, lebih lanjut dijelaskan apabila lahan tersebut masuk kelas sesuai untuk penggunaan lahan dimaksud dan sebaliknya bila ada salah satu kualitas atau karakteristik lahan yang tidak sesuai maka lahan tersebut termasuk dalam kelas tidak sesuai.

Ada system evaluasi lahan yang sering dipakai di Indonesia yaitu klasifikasi kemampuan lahan (Land capability classification) dan klasifikasi kesesuaian lahan (land suitability classification). Klasifikasi kemampuan lahan digunakan untuk penggunaan lahan bersifat umum (dalam arti luas), sedangkan klasifikasi kesesuaian lahan digunakan untuk penggunaan lahan yang lebih bersifat khusus yaitu untuk budidaya tambak.

Menurut Sitorus (1985), bahwa pada umumnya pelaksanaan evaluasi lahan adalah memilih system-sistem yang sudah ada tergantung dari kepentingan evaluasi yang akan dilakukan dan kemudian dimodifikasiakan dengan keadaan setempat dan disesuaikan dengan ketersediaan data.

Evaluasi sumberdaya lahan berfungsi memberikan pengertian tentang hubungan-hubungan antara kondisi lahan dan penggunaannya serta memberikan kepada perencana berbagai perbandingan dan berbagai alternatif pilihan penggunaan yang dapat diharapkan berhasil. Manfaat yang mendasar dari evaluasi sumberdaya lahan untuk menilai kesesuaian
bagi suatu penggunaan tertentu serta memprediksi konsekwensi-konsekwensi dapat meramalkan sehingga dapat diperintah-perintah agar supaya tidak diusahaakan (Sitorus, 1985).

Evaluasi lahan ini mengacu pada model evaluasi kualitas lahan dari Sitorus (1985), merupakan proses untuk menduga potensi sumber daya lahan untuk berbagai penggunaannya. Adapun kerangka dasar dari evaluasi sumber daya lahan adalah membandingkan persyaratan yang diperlukan untuk suatu penggunaan lahan tertentu dengan sifat sumber daya yang ada pada lahan tersebut. Sebagai dasar pemikiran utama dalam prosedur evaluasi adalah kenyataan bahwa berbagai penggunaan lahan membutuhkan persyaratan yang berbeda-beda.

Sitorus (1985), menyatakan bahwa proses evaluasi lahan, daerah survei sebaiknya dibagi ke dalam satuan-satuan evaluasi lahan atau satuan-satuan pemetaan lahan yang diharapkan akan memberikan respons yang sama dalam hubungannya dengan tipe penggunaan lahan tertentu lebih lanjut dijelaskan bahwa kerangka sistem dari kesesuaian lahan secara hirarki dapat dibedakan menjadi empat Kategori Order.

sedikit resiko kerusakan terhadap sumber daya lahannya (Sitorus, 1985). Yang termasuk order N adalah lahan yang mempunyai kesulitan sedemikian rupa sehingga mencegah penggunaannya untuk suatu tujuan yang telah dipertimbangkan.

Pembagian kelas dalam tingkatan kesesuaian lahan merupakan pembagian lebih lanjut dari kesesuaian lahan di dalam order. Banyaknya kelas di dalam suatu order tidak terbatas, tetapi dianjurkan oleh Sitorus (1985), hanya memakai tiga kelas untuk order S dan dua kelas untuk order N.

a. Kelas S1: sangat sesuai (highly suitable), adalah lahan tidak mempunyai pembatas yang serius untuk suatu penggunaan secara lestari atau hanya mempunyai pembatas yang tidak berarti, dan dipengaruhi secara nyata terhadap produksinya, serta tidak menaikkan masukan yang lebih besar dari yang telah diberikan.

b. Kelas S2: cukup sesuai (moderately suitable), adalah lahan yang mempunyai pembatas-pembatas yang agak serius untuk mempertahankan tingkat pengelolaan yang harus diterapkan. Pembatas-pembatas yang ada akan mengurangi produksi atau keuntungan, akan meningkatkan jumlah masukan yang diperlukan.

c. Kelas S3: hampir sesuai (marginally suitable), adalah lahan yang mempunyai pembatas-pembatas yang serius untuk mempertahankan tingkat pengelolaan yang harus dipertimbangkan. Pembatas-
pembatas yang ada akan mengurangi produksi atau keuntungan, atau lebih meningkatkan jumlah masukan yang diperlukan.

d. Kelas N1: tidak sesuai saat ini (currently not suitable), adalah lahan yang mempunyai pembatas yang lebih serius yang masih memungkinkan untuk diatas, akan tetapi upaya perbaikan ini tidak dapat dilakukan dengan tingkat pengelolaan menggunakan modal normal. Keadaan pembatasnya sedemikian serius sehingga mencegah penggunaannya secara berkelangsungan.

e. Kelas N2: tidak sesuai untuk selamanya (permanently not suitable), adalah lahan yang mempunyai pembatas permanen, sehingga mencegah segala kemungkinan penggunaannya secara berkelangsungan.

II. 5. Kualitas lahan untuk Budidaya Tambak

Maswardi dan Adiwijaya (2002), Nirnama (2002), Suyanto dan Mujimian (2001), menjelaskan bahwa budidaya di tambak berdasarkan pemberian pakan, padat penebaran dan pengelolaan air, dapat dibedakan menjadi tiga macam, yaitu: sistem ekstensif, sistem semi-intensif dan sistem intensif (Tabel 2.1.).

Tabel 2.1. SISTEM BUDIDAYA TAMBAK DI PEMBESARAN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ekstensif</th>
<th>Semi-intensif</th>
<th>Intensif</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakan</td>
<td>Alami</td>
<td>Alami+tambahan</td>
<td>Makanan teruji (pellet)</td>
</tr>
<tr>
<td>Pengelolaan air</td>
<td>Pasang surut</td>
<td>Pasangsurut+pompa</td>
<td>Pompa+aerasi</td>
</tr>
<tr>
<td>Padat penebaran</td>
<td>1000 - 10000 Ha</td>
<td>10000 - 50000 Ha</td>
<td>50000 - 200000 Ha</td>
</tr>
<tr>
<td>Luas tambak</td>
<td>2 - 20 Ha</td>
<td>1 - 5 Ha</td>
<td>0,1 - 1 Ha</td>
</tr>
<tr>
<td>Produksi</td>
<td>100 - 500 kg/Ha/th</td>
<td>50 - 4000 kg/Ha/th</td>
<td>5000- 15000 kg/Ha/th</td>
</tr>
</tbody>
</table>

II. 6. Faktor-Faktor Pembatas Budidaya Tambah Udang

II. 6.1. Kualitas Air

Air sebagai tempat hidup udang yang dipelihara harus memenuhi persyaratan kualitas dan kuantitas, sehingga udang dapat hidup dan berkembang dengan baik. Parameter minimal yang harus diperhatikan menurut Adiwijaya *dkk* (2003), Poernomo (1988), Suyanto dan Mujiman (2003), adalah salinitas, suhu, kecerahan, oksigen, pH, NH₃, NO₂ dan H₂S disajikan pada Tabel 2.2.

Tabel 2.2. PARAMETER KUALITAS AIR UNTUK TAMBAK UDANG

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Satuan</th>
<th>Batas Toleransi</th>
<th>Optimun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinitas</td>
<td>°‰</td>
<td>10 – 35</td>
<td>15 – 25</td>
</tr>
<tr>
<td>Suhu</td>
<td>°C</td>
<td>26 – 32</td>
<td>29 – 30</td>
</tr>
<tr>
<td>Kecerahan</td>
<td>Cm</td>
<td>25 – 60</td>
<td>30 – 40</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>7,5 - 8,5</td>
<td>8,0 - 8,5</td>
</tr>
<tr>
<td>O₂ terlarut</td>
<td>mg/l</td>
<td>3 – 10</td>
<td>4 – 7</td>
</tr>
<tr>
<td>NH₃</td>
<td>mg/l</td>
<td><1,0</td>
<td>0</td>
</tr>
<tr>
<td>NO₂</td>
<td>mg/l</td>
<td><0,25</td>
<td>0</td>
</tr>
<tr>
<td>H₂S</td>
<td>mg/l</td>
<td><0,001</td>
<td>0</td>
</tr>
</tbody>
</table>

Beberapa parameter kualitas air yang sangat penting untuk diperhatikan agar sesuai dengan kebutuhan optimal udang, sehingga akan tumbuh secara optimal dengan mortalitas yang rendah pula yaitu:

a. Salinitas

Kandungan salinitas di perairan tambak akan dipengaruhi oleh precipitasi, evaporasi sebagai akibat suhu tinggi dan kekuatan tiuan angin, rembesan dan bocoran serta tipe dan lamanya penggantian air. Anggoro (1993)
menyatakan bahwa hubungan antara salinitas dan pertumbuhan udang sangat erat kaitannya dengan tekanan osmotik air. Semakin tinggi salinitas perairan, maka semakin tinggi pula tekanan osmotiknya. Tekanan osmotik inilah yang akan mempengaruhi kehidupan udang windu di dalam tambak, sebab tekanan osmotik lingkungan perairan akan mempengaruhi tekanan osmotik darah di dalam tubuh udang. Untuk menghindari pengaruh tekanan osmotik, perubahan salinitas air seyogyanya dilakukan secara bertahap, agar udang mampu untuk menyesuaikan diri dengan lingkungannya.

b. Suhu

Menurut Soetomo (1990), suhu air sangat berpengaruh terhadap sifat fisik, kimia dan biologi tambak, yang akibatnya mempengaruhi fisiologis kehidupan udang. Secara umum laju pertumbuhan udang akan meningkat sejalan dengan kenaikan suhu sampai pada batas tertentu. Kenaikan suhu yang melebihi batas akan menyebabkan aktifitas metabolisme organisme air meningkat, hal ini akan menyebabkan berkurangnya gas-gas terlarut di dalam air yang berguna dalam kehidupan udang. Walaupun udang dapat menyesuaikan diri dengan kenaikan suhu, akan tetapi kenaikan suhu melebihi 35° C dalam waktu lama akan menambah daya racun air terhadap udang dan dapat menimbulkan kematian.
c. Derajat Keasaman (pH)

d. Oksigen Terlarut (Dissolved Oxygen)

Kandungan oksigen terlarut (DO) dalam suatu perairan merupakan parameter pengubah kualitas air yang paling kritis dalam budidaya udang, sebab dapat mempengaruhi kelangsungan udang yang dipelihara. Oksigen yang terlarut di dalam perairan sangat dibutuhkan untuk proses respirasi, baik oleh tumbuhan air, udang, maupun organisme lain yang hidup di dalam air.

Daya larut oksigen sendiri dipengaruhi oleh suhu dan salinitas. Oksigen terlarut tertinggi terjadi pada suhu 0° C dan menurun jika suhu meningkat. Pada setiap peningkatan salinitas 9 gr/l akan menurunkan daya larut oksigen dalam air murni kira-kira sebesar 0,5 %.
e. Zat Beracun

- Amoniak (NH₃-H)

Amonia merupakan hasil katabolisme protein yang diekspresikan oleh organisme dan merupakan salah satu hasil dari penguraian zat organik oleh bakteri. Tingkat keseimbangannya sangat dipengaruhi oleh pH air, suhu, salinitas dan kadar Ca. Kadar NH₃ akan meningkat pada pH dan suhu tinggi serta kadar garam dan kesadahan rendah. Kadar amonia tinggi dalam air secara langsung dapat mematikan organisme perairan yakni melalui pengaruhnya terhadap permeabilitas sel, mengurangi konsentrasi ion dalam tubuh, meningkatkan konsumsi oksigen dalam jaringan, merusak insang dan mengurangi kemampuan darah mengangkut oksigen % (Boyd, 1981).

- Nitrit (NO₂-N)

- BOD (Biological Oxygen Demand)

BOD merupakan suatu analisis empiris yang secara umum merupakan proses-proses biologi yang benar-benar terjadi dalam air. Nilai BOD adalah jumlah oksigen yang diperlukan oleh bakteri untuk menguraikan
hampir semua zat organik terlarut dalam air (Boyd, 1981). Lebih lanjut dijelaskan pula bahwa tinggi nilai BOD menunjukkan indikasi kurang mampunya perairan untuk memenuhi keperluan oksigen bagi organisme perairan secara cukup.

- **COD (Chemical Oxygen Demand)**

COD adalah jumlah oksigen yang diperlukan untuk mengoksidasi zat-zat organik yang terlarut dalam satu liter sampel air. Nilai COD merupakan ukuran bagi pencemaran air oleh zat-zat organik melalui proses mikrobiologi dan mengakibatkan berkurangnya oksigen dalam air (Boyd, 1981)

f. **SAR (Sodium Absorption Ratio)**

Untuk mendapatkan pertumbuhan yang optimal, maka makhluk hidup memerlukan air tanah yang mengandung unsur hara dalam proporsi yang seimbang, meskipun hal ini sangat bervariasi bagi setiap makhluk hidup. SAR merupakan ketidak seimbangan kadar sodium (Na) terhadap kadar kalsium (Ca) dan Magnesium (Mg) didalam air tanah. SAR menyebabkan kehidupan hewan akan mengalami stres atau mati sehingga disebut bahaya sodium. Bahaya salinitas dan bahaya sodium berkaitan satu sama lain. Air yang bersalinitas rendah tetapi tetapi SAR nya tinggi atau air bersalinitas tinggi SAR nya rendah hal ini masih dapat ditolerir. Air yang digunakan untuk makhluk hidup tidak boleh lebih dari nilai 10 (Wardoyo, 1988).
II.6.2. Kualitas Tanah

Tanah merupakan salah satu faktor penting yang dapat mempengaruhi produktivitas tambak, sebab tanah mempunyai kemampuan untuk menyerap atau melepaskan zat hara tanaman yang dibutuhkan oleh fitoplankton atau vegetasi air lainnya yang hidup di dalam tambak.

Kualitas tanah berfungsi sebagai:

1. Menyediakan unsur hara yang sangat dibutuhkan untuk pertumbuhan pakan alami udang di tambak
2. Menjadi media pertumbuhan pakan alami berupa klekap atau yang lainnya
3. Untuk menahan air.

Beberapa parameter kualitas tanah yang diukur, menurut Poernomo (1988) dan Mintardjo *et al.* (1984), meliputi:

a. Tekstur Tanah

b. pH Tanah

Mintardjo *ddk* (1984) menjelaskan bahwa pH tanah adalah sifat keasaman dan kebasaan tanah atau biasa juga disebut reaksi tanah. Lebih lanjut dijelaskan bahwa tanah yang baik untuk dijadikan lahan tambak udang mempunyai pH kurang lebih 6,5 - 8,5. Adapun pH tanah yang normal untuk budidaya udang adalah 7,0 - 8,5 sedangkan pH yang terbaik adalah berkisar antara 7,5 - 8,3.

c. Ketersediaan Unsur Hara

Unsur hara yang terdapat di lokasi pertambakan sangat bermanfaat dalam menentukan kualitas tambak. Tambah sebaiknya dibangun di daerah yang cukup mengandung unsur hara, karena di daerah tersebut klekap dan tanaman air lainnya yang berperan sebagai pakan alami dapat tumbuh dengan baik. Jenis unsur hara makro yang dibutuhkan bagi pertumbuhan klekap dan tanaman air nitrogen (N), fosfor (P) dan Kalium (K).

- **Fosfat**

 Fosfat merupakan salah satu unsur yang sangat penting bagi pertumbuhan alga, sehingga merupakan faktor pembatas bagi pertumbuhan klekap di tambak, makin besar Fosfat yang tersedia dalam tanah, makin baik pertumbuhan alganya (Mintardjo *ddk.*, 1984).

- **Nitrogen**

 Nitrogen merupakan zat lemas yang berfungsi untuk meningkatkan pertumbuhan tanaman, menyehatkan klorofil, meningkatkan kadar protein
dalam tubuh tanaman, meningkatkan berkembang biaknya mikroorganisme yang penting bagi kelangsungan pelapukan bahan organik. Kekurangan N akan menimbulkan jaringan mati, mongering, pertumbuhan kerdil (Sutedjo dan Kartasapoetra, 2002).

- Kalium

Unsur Kalium merupakan unsure hara yang mudah mengadakan persenyawaan dengan unsure atau zat lainnya. Unsur ini berfungsi untuk mempercepat pembentukan zat karbohidrat dalam tanaman, mempertinggi resistensi terhadap hama penyakit (Sutedjo dan Kartasapoetra, 2002).

II.6.3. Topografi dan Pasang Surut

Menurut Poernomo (1988), lokasi pertambakan sebaiknya jangan di tempat yang tanahnya bergelombang atau curam, sebab akan memerlukan banyak biaya untuk penggalian dan peralatan tanah, selain itu lokasi tambak sebaiknya dipilih yang mempunyai elevasi tertentu agar memudahkan pengelolaan air, sehingga tambak cukup mendapatkan air pada saat terjadi pasang harian dan dapat dikerdingkan pada saat surut harian. Lahan yang hanya dapat diairi pada saat terjadi pasang tertinggi kurang baik untuk dijadikan tambak.
BAB III
METODOLOGI

III. 1. Bahan dan Alat

Bahan/Materi yang dipergunakan dalam survei ini adalah:
- Peta Citra Satelit Landsat TM, liputan 21 Agustus 2003
- Peta rupa bumi skala 1 : 25.000 (lampiran 1).
- Peta penggunaan lahan skala 1 : 25.000.
- Peta tanah 1 : 250.000 (Lampiran 3).

Peralatan yang digunakan dalam penelitian ini adalah sebagai berikut:

a. GPS, untuk penunjuk arah dan mengetahui posisi lintang dalam pengambilan titik sampel.

b. Refraktometer, untuk mengukur salinitas air.

c. Termometer, sebagai alat pengukur suhu.

d. Potential redoks meter, dan kertas lakmus sebagai alat pengukur pH.

c. Alat – alat meliputi sekop (dradge), pisau, tas plastik hitam, botol sampel.

III.2. Lingkup penelitian

III.3. Metode Pelaksanaan Penelitian:

Pelaksanaan penelitian ini dibagi menjadi 3 (tiga) tahapan, yaitu tahap persiapan, tahap pengumpulan data sekunder dan primer (pengambilan sampel air dan tanah dilokasi penelitian) dan tahap analisis data, dengan perincian untuk masing-masing tahap sebagai berikut:

III.3.1. Tahap persiapan

Pada tahap ini merupakan tahap persiapan sebelum melakukan pengamatan di lapangan yang meliputi:

a. Studi pustaka dan survey lapangan bertujuan untuk memahami masalah dan daerah pengamatan.

b. Penyiapan /penyediaan peta yang berkaitan dengan lokasi pengamatan (peta rupa bumi, dan peta penggunaan lahan Kabupaten Purworejo).

d. Penyiapan alat –alat yang akan digunakan untuk pengambilan sampel.

III.3.2. Tahap Pengumpulan data

Tahap ini merupakan tahap pengumpulan data dengan metode observasi lapangan, dimana mencocokkan dari hasil interpretasi citra (data sekunder) dengan data lapangan (Ground truth).

Pengambilan sampel kualitas air dan tanah (penentuan titik sampling), dilakukan secara purpseive random sampling sebagai
dasarnya kondisi keseragaman ekologis dari lahan tambak yaitu berdasarkan sifat tanah sebagaimana yang tampak dalam peta hasil overlay antara peta rupa bumi dengan existing peta penggunaan lahan di Kabupaten Purworejo disamping dengan pertimbangan luasan lahan pesisir.

Data kualitas tanah meliputi tekstur, soil test dan bahan organik, sedangkan data kualitas air meliputi; salinitas, suhu, pH, oksigen, BOD, COD, amoniak, nitrit, potensial redoks dan SAR (Sodium Absorbton Ratio).

III.3. Analisis Data

Dari permasalahan yang dihadapi maka langkah-langkah yang dilakukan dalam pelaksanaan Evaluasi Kesesuaian Lahan untuk Pengembangan Budidaya Tambak di Kabupaten Purworejo adalah sebagai berikut:

1. Untuk mengetahui perbedaan karakteristik lahan untuk pengembangan tambak, menggunakan analisis dengan peta interpretasi citra yang di overlay dengan peta tata guna lahan di Kabupaten Purworejo.

2. Untuk mengetahui kesesuaian lahan pesisir di Kabupaten Purworejo digunakan metode kualitatif (Sitorus, 1985) adalah dengan memadukan analisis hasil laboratorium sampel tanah dan air serta kriteria kelayakannya, sehingga diperoleh parameter karakteristik lahan, kemudian parameter yang dihasilkan dianalisis dengan metode matching untuk mendapatkan klas kemampuan lahan.

Penilaian klas kemampuan lahan tersebut, didasarkan pada kualitas lahan tambak modifikasi dari metode klas kesesuaian lahan mengikuti petunjuk Reconnaissance Land Resources Surveys (CSR/FAO, 1983) dalam Djomantoro dan Rachmawati (2002), dan
Sitorus (1985), dengan sistem kesesuaian lahan yang digunakan, dibedakan dalam ordo sesuai (S) dan ordo tidak sesuai (N) dimana ordo S dibedakan dalam 3 kelas dan ordo N menjadi 2 kelas.

Pengukuran SAR (Sodium absorption Ratio), air dan tanah dapat dihitung dengan formula dari Wardoyo (1988) sebagai berikut:

\[
SAR = \frac{Na^+}{\sqrt{Ca^{++} + Mg^{++}}} \times \frac{2}{2}
\]

Nilai SAR:
- \(> 8 - 16 \); untuk biota yang tidak sensitif
- \(> 2 - < 8 \); untuk biota yang kurang sensitif
- \(\leq 2 \); untuk biota yang sensitif

Sedangkan untuk menghitung nisbah BOD dan COD sebagai berikut:

\[
\text{Nisbah } BOD/COD = 2 \frac{B}{C}
\]

Nilai:
- \(\geq 0,50 \); degradasi bahan organik normal
- \(< 0,50 \); degradasi bahan organik tidak normal
Gambar 1. : Diagram Alir Penelitian
BAB IV
HASIL DAN PEMBAHASAN

IV. 1. Gambaran Umum Kabupaten Purworejo

IV.1.1. Letak Geografis Kabupaten Purworejo

Kabupaten Purworejo merupakan daerah pesisir selatan Propinsi Jawa Tengah, secara astronomis terletak antara 109° 47' 28" Bujur Timur (BT) dan 7° 32'- 7° 54' Lintang Selatan (LS), dengan luas wilayah 1.034.82 km² yang mempunyai panjang pantai 21,15 km, dengan batas wilayah:

- Utara : berbatasan dengan Kabupaten Wonosobo
- Selatan : berbatasan dengan Samudera Hindia
- Barat : berbatasan dengan Kabupaten Kebumen
- Timur : berbatasan dengan Kabupaten Jogyakarta

Wilayah pesisir dan laut Kabupaten Purworejo mempunyai wilayah pantai meliputi 3 Kecamatan pesisir yang terdiri dari 27 desa pesisir. Desa diwilayah pesisir tersebut adalah sebagai berikut:

Luas Wilayah dan jumlah desa di Kabupaten Purworejo menurut Kecamatan dapat dilihat tabel IV.1. berikut ini:

Tabel IV.1. Jumlah Desa dan Luas Wilayah menurut Kecamatan Di Kabupaten Purworejo

<table>
<thead>
<tr>
<th>No</th>
<th>Kecamatan</th>
<th>Jumlah Desa</th>
<th>Luas Wilayah (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grabag</td>
<td>32</td>
<td>64,92</td>
</tr>
<tr>
<td>2</td>
<td>Ngombol</td>
<td>57</td>
<td>55,27</td>
</tr>
<tr>
<td>3</td>
<td>Purwodadi</td>
<td>40</td>
<td>53,96</td>
</tr>
<tr>
<td>4</td>
<td>Begelen</td>
<td>17</td>
<td>63,76</td>
</tr>
<tr>
<td>5</td>
<td>Kaligesing</td>
<td>21</td>
<td>74,73</td>
</tr>
<tr>
<td>6</td>
<td>Purworejo</td>
<td>25</td>
<td>52,72</td>
</tr>
<tr>
<td>7</td>
<td>Banyuurip</td>
<td>27</td>
<td>45,08</td>
</tr>
<tr>
<td>8</td>
<td>Bayen</td>
<td>26</td>
<td>43,21</td>
</tr>
<tr>
<td>9</td>
<td>Kutoarjo</td>
<td>27</td>
<td>37,59</td>
</tr>
<tr>
<td>10</td>
<td>Butuh</td>
<td>41</td>
<td>46,09</td>
</tr>
<tr>
<td>11</td>
<td>Pitutuh</td>
<td>49</td>
<td>77,42</td>
</tr>
<tr>
<td>12</td>
<td>Kemiri</td>
<td>40</td>
<td>92,05</td>
</tr>
<tr>
<td>13</td>
<td>Bruno</td>
<td>18</td>
<td>108,43</td>
</tr>
<tr>
<td>14</td>
<td>Gabang</td>
<td>25</td>
<td>71,86</td>
</tr>
<tr>
<td>15</td>
<td>Loano</td>
<td>21</td>
<td>53,65</td>
</tr>
<tr>
<td>16</td>
<td>Bener</td>
<td>28</td>
<td>94,08</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>494</td>
<td>1034,82</td>
</tr>
</tbody>
</table>

Sumber: BPS Kabupaten Purworejo Tahun 2003

Kabupaten Purworejo mempunyai lahan pesisir pantai yang terbentang sebelah timur berbatasan dengan Kabupaten Kulonprogo Daerah Istimewa Yogyakarta dan sebelah barat Kabupaten Kebumen, dimana Kabupaten Purworejo mempunyai panjang pantai 21,15 km, mempunyai lahan potensial untuk tambak yang terletak dekat pantai ± 1.050 Ha atau panjang ± 21 km lebar ± 500 m.

IV.1. 2. Kondisi Sosial Ekonomi Kabupaten Purworejo

Kabupaten Purworejo terdiri dari 16 Kecamatan dan 494 desa, dengan jumlah penduduk 770.993 jiwa, dari luas wilayah secara
keseluruhan pada setiap Kecamatan dan kepadatan penduduknya dapat
dilihat pada tabel IV. 2. Berikut ini:

Tabel IV.2. Luas Wilayah dan Kepadatan Penduduk Tiap Kecamatan di
Kabupaten Purworejo

<table>
<thead>
<tr>
<th>No.</th>
<th>Kecamatan</th>
<th>Luas Wilayah (km²)</th>
<th>Jumlah Penduduk</th>
<th>Kepadatan (per Km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grabag</td>
<td>64,92</td>
<td>50.407</td>
<td>774</td>
</tr>
<tr>
<td>2</td>
<td>Ngombol</td>
<td>55,27</td>
<td>37.059</td>
<td>664</td>
</tr>
<tr>
<td>3</td>
<td>Purwodadi</td>
<td>53,96</td>
<td>41.359</td>
<td>766</td>
</tr>
<tr>
<td>4</td>
<td>Begelen</td>
<td>63,76</td>
<td>35.345</td>
<td>554</td>
</tr>
<tr>
<td>5</td>
<td>Kaligesing</td>
<td>74,73</td>
<td>35.717</td>
<td>476</td>
</tr>
<tr>
<td>6</td>
<td>Purworejo</td>
<td>52,72</td>
<td>88.728</td>
<td>1.673</td>
</tr>
<tr>
<td>7</td>
<td>Banyuuring</td>
<td>45,08</td>
<td>40.796</td>
<td>897</td>
</tr>
<tr>
<td>8</td>
<td>Bayen</td>
<td>43,21</td>
<td>47.472</td>
<td>1.102</td>
</tr>
<tr>
<td>9</td>
<td>Kutoarjo</td>
<td>37,59</td>
<td>64.050</td>
<td>1.869</td>
</tr>
<tr>
<td>10</td>
<td>Butuh</td>
<td>46,09</td>
<td>45.769</td>
<td>986</td>
</tr>
<tr>
<td>11</td>
<td>Pitutuh</td>
<td>77,42</td>
<td>52.494</td>
<td>674</td>
</tr>
<tr>
<td>12</td>
<td>Kemiri</td>
<td>92,05</td>
<td>55.689</td>
<td>605</td>
</tr>
<tr>
<td>13</td>
<td>Bruno</td>
<td>108,43</td>
<td>43.762</td>
<td>402</td>
</tr>
<tr>
<td>14</td>
<td>Gabang</td>
<td>71,86</td>
<td>41.930</td>
<td>582</td>
</tr>
<tr>
<td>15</td>
<td>Loano</td>
<td>53,65</td>
<td>35.913</td>
<td>667</td>
</tr>
<tr>
<td>16</td>
<td>Bener</td>
<td>94,08</td>
<td>54.323</td>
<td>574</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>1034,82</td>
<td>770.993</td>
<td></td>
</tr>
</tbody>
</table>

Sumber : BPS Kabupaten Purworejo Tahun 2003

Sedangkan kepadatan penduduk di wilayah 3 Kecamatan pesisir
kabupaten Purworejo adalah wilayah kecamatan Grabag, Ngombol dan
Purwodadi pada tabel IV. 3 berikut ini:

Tabel IV.3. Kepadatan Penduduk Per Km² di Kecamatan Pesisir di
Kabupaten Purworejo

<table>
<thead>
<tr>
<th>No.</th>
<th>Kecamatan</th>
<th>Luas Wilayah (km²)</th>
<th>Jumlah Penduduk</th>
<th>Kepadatan penduduk (per Km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grabag</td>
<td>27,25</td>
<td>14.343</td>
<td>774</td>
</tr>
<tr>
<td>2</td>
<td>Ngombol</td>
<td>14,00</td>
<td>3.892</td>
<td>664</td>
</tr>
<tr>
<td>3</td>
<td>Purwodadi</td>
<td>27,25</td>
<td>3.737</td>
<td>766</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>55,41</td>
<td>19225</td>
<td>566,27</td>
</tr>
</tbody>
</table>

Sumber : BPS Kabupaten Purworejo Tahun 2003
Di Kabupaten Purworejo kepadatan penduduk di 3 wilayah kecamatan pesisir yaitu Grabag, Ngoso, dan Purwodadi berkisar antara 664 sampai dengan 766 jiwa/km² dimana penduduk tersebut bermata pencaharian mayoritas pertanian, sedangkan dibidang Perikanan hanya sebagian kecil dan tingkat pendidikan di wilayah pesisir mayoritas berpendidikan sekolah dasar (SD).

Kabupaten Purworejo merupakan daerah pesisir dan pegunungan sehingga masyarakat kabupaten Purworejo mempunyai kultur budaya pesisir dan pegunungan sedangkan sosial budaya yang masih dilestarikan adalah upacara sedekah laut yang dilakukan pada saat tertentu yang biasanya dilakukan bersamaan dengan hari besar islam.

serta sektor industri. Sedangkan sektor pertanian pada tahun 2002 hanya tumbuh sebesar 3,49%.

IV.1.3. Penggunaan Lahan di Kabupaten Purworejo

Tabel IV. 4. Penggunaan Lahan di Kabupaten Purworejo

<table>
<thead>
<tr>
<th>No.</th>
<th>Penggunaan Lahan</th>
<th>Luas Areal (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bangunan</td>
<td>10116,5</td>
</tr>
<tr>
<td>2</td>
<td>Tegalan/kebun/lading</td>
<td>51598,14</td>
</tr>
<tr>
<td>3</td>
<td>Padang Rumput</td>
<td>175,66</td>
</tr>
<tr>
<td>4</td>
<td>Tambak</td>
<td>27,00</td>
</tr>
<tr>
<td>5</td>
<td>Kolam/Tebat/Empang</td>
<td>92,40</td>
</tr>
<tr>
<td>6</td>
<td>Tanaman sayur</td>
<td>640,20</td>
</tr>
<tr>
<td>7</td>
<td>Hutan Negara</td>
<td>6857,88</td>
</tr>
<tr>
<td>8</td>
<td>Perkebunan Negara/swasta</td>
<td>12,45</td>
</tr>
<tr>
<td>9</td>
<td>Tanah lainnya</td>
<td>3254,71</td>
</tr>
</tbody>
</table>

Sumber: BPS kabupaten Purworejo Tahun 2003

Di Kabupaten Purworejo merupakan pesisir pantai selatan yang mempunyai sifat geografis yang khusus. Didalam pengembangan budidaya tambak di wilayah ini perlu diperhatikan sifat-sifat khusus tersebut antara lain: fluktuasi pasang surut relatif rendah sehingga
menyebabkan daerah genangannya menjadi terbatas dan salinitas rendah. Terjadinya banjir musiman di 3 sungai besar (Sungai Bogowonto, Cokroyasan dan wawar), dan jika musim kemarau muara sungai tertutup oleh pasir/sedimen.

Di Kabupaten Purworejo produksi perikanan budidaya terdiri dari produksi ikan air tawar dan ikan air payau, berdasarkan data yang dikumpulkan oleh BPS Kabupaten Purworejo tahun 2003, data luas dan produksi tambak menurut Kecamatan disajikan pada tabel IV.5 sebagai berikut:

Tabel IV.5. Luas lahan tambak dan produksi per tahun di masing-masing Kecamatan di Kabupaten Purworejo

<table>
<thead>
<tr>
<th>No.</th>
<th>Kecamatan</th>
<th>Luas lahan tambak (Ha)</th>
<th>Produksi Per Tahun (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grabag</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Ngombol</td>
<td>6</td>
<td>14894</td>
</tr>
<tr>
<td>3</td>
<td>Purwodadi</td>
<td>43</td>
<td>64250</td>
</tr>
<tr>
<td>4</td>
<td>Begelen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Kaligesing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Purworejo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Banyuurip</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Bayen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Kutoarjo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Butuh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Pitutuh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Kemiri</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Bruno</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Gabang</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Loano</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Bener</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jumlah</td>
<td>49</td>
<td></td>
<td>79.144</td>
</tr>
</tbody>
</table>

Akan tetapi dari survei Sarjito *dkk*, (2003) yang dilaksanakan kerjasama antara Dinas Perikanan dan Kelautan Propinsi Jawa Tengah dengan Fakultas Ilmu Kelautan dan Perikanan UNDIP Semarang melaporkan bahwa kondisi tambak aktual di Kabupaten Purworejo seluas 79,06 Ha yang tertera pada tabel IV. 6. sebagai berikut:

Tabel IV. 6. Lokasi Lahan Tambak Aktual di Kabupaten Purworejo

<table>
<thead>
<tr>
<th>No.</th>
<th>Lokasi Tambak Aktual</th>
<th>Luas Lahan (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Desa Karanganyar, Kec. Purwodadi</td>
<td>5,19</td>
</tr>
<tr>
<td>2</td>
<td>Desa Gedangan, Kec. Purwodadi</td>
<td>7,95</td>
</tr>
<tr>
<td>3</td>
<td>Jatimalang, Kec. Purwodadi</td>
<td>5,17</td>
</tr>
<tr>
<td>4</td>
<td>Indokorn, Kec. Ngombol</td>
<td>16,33</td>
</tr>
<tr>
<td>5</td>
<td>Desa Keburuh, Kec. Ngombol</td>
<td>2,42</td>
</tr>
<tr>
<td>6</td>
<td>Lokasi Bonorowo</td>
<td>35,75</td>
</tr>
<tr>
<td>7</td>
<td>Kali Rowo</td>
<td>6,25</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>79,06</td>
</tr>
</tbody>
</table>

Sumber: Sarjito *dkk*, 2003

Di Kabupaten Purworejo kondisi budidaya masih sangat terbelakang dan lahan pesisir masih belum banyak digunakan dengan baik untuk usaha pengembangan budidaya tambak, sedangkan berdasarkan dari interpretasi citra landsat TM yang ditumpang susun (overly) dengan peta penggunaan lahan, peta tanah dan peta rupa bumi bahwa lahan potensial pesisir di Kabupaten Purworejo mempunyai lahan potensial untuk tambak seluas ±1352,02 Ha, yang menyebab mulai dari sungai Bogowonto sampai dengan sungai Wawar. Luasan lahan tambak potensial yang dapat dikembangkan untuk usaha budidaya tambak di Kabupaten Purworejo, berdasarkan interpretasi citra
landsat TM tersebut terdapat di 3 (tiga) kecamatan wilayah pesisir dengan rincian tertera pada tabel IV.7 berikut ini:

Tabel IV. 7. Lokasi dan Luas Lahan Potensial untuk Tambak di Kabupaten Purworejo

<table>
<thead>
<tr>
<th>No.</th>
<th>Lokasi Tambak potensial</th>
<th>Luas Lahan (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Desa Karanganyar, Gedangan, Kec. Purwodadi</td>
<td>100,3</td>
</tr>
<tr>
<td>2</td>
<td>Desa Jatimalang, Kalirowo Kec. Purwodadi</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>Indokor</td>
<td>137,6</td>
</tr>
<tr>
<td>4</td>
<td>Desa Keburuhan</td>
<td>81,36</td>
</tr>
<tr>
<td>5</td>
<td>Bonorowo</td>
<td>672,16</td>
</tr>
<tr>
<td>6</td>
<td>Desa Kertajaya</td>
<td>110,6</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>1352,02</td>
</tr>
</tbody>
</table>

Dari tabel IV.7, diatas maka di Kabupaten Purworejo dalam penggunaan lahan untuk pengembangan budidaya tambak masih belum optimal. Pada hal di Kabupaten Purworejo mempunyai lahan pesisir di 3 (tiga) wilayah Kecamatan yaitu Kecamatan Purwodadi, Ngombol dan Grabag yang tersebar di 17 wilayah desa pantai. Di wilayah tersebut terlintas jalan hotmik (aspal)/dandels yang mempunyai lebar ± 8 m dan panjang ± 24 km sejajar garis pantai yang menghubungkan antara Jogyakarta dan Kebumen. Lahan sebelah utara jalan tersebut umumnya sudah digunakan untuk pemukiman, dan sebelah selatan jalan digunakan untuk pertanian dan sebagian kecil untuk pemukiman. Lahan potensial untuk perikanan terletak didekat pantai seluas ± 1.352,02 Ha (hasil interpretasi citra landsat TM).
Lahan pantai yang potensial untuk usaha perikanan di sebelah timur muara sungai Cokroyasan seluas ± 550 Ha yang terbentang sepanjang ± 11 km, hingga berbatasan dengan Kabupaten Kulonprogo DIY, ditengah-tengah lahan tersebut mengalir sungai lereng yang sejajar dengan pantai. Di kanan kiri sungai lereng merupakan hamparan tanah aluvial, sedangkan yang dekat garis pantai merupakan hamparan tanah pasir (sand dune). Hamparan tanah aluvial dimanfaatkan oleh masyarakat sekitar untuk tanaman padi sawah, palawijio dan sebagian kecil untuk usaha budidaya tambak. Tanah aluvial tersebut tergenang beberapa bulan saja setiap tahunnya apabila musim hujan.

Lahan pantai yang potensial disebelah barat muara sungai cokroyasan seluas ± 500 Ha, terbentang sepanjang 10 km hingga sampai muara sungai wawar. Lahan tersebut merupakan tanah pasir (sand dune) keadaan saat ini belum banyak dimanfaatkan, sebagian kecil lahan dibagian timur digunakan untuk penambangan pasir besi.

Dari hasil penelitian di 9 (sembilan) titik sampel di 3 kecamatan wilayah pesisir sebagai berikut: Kecamatan Purwodadi dengan kondisi wilayah pertambakan yang diambil 3 titik sampling di wilayah tambak aktal yaitu di desa Karanganyar, Gedangan dan Jatimalang.

Wilayah Kecamatan Ngombol diambil 4 titik sampling yaitu 2 (dua) titik tambak aktal dan 2 (dua) titik untuk wilayah pengembangan, untuk tambak aktal Desa Keburuhan dan indokor/pantai puncu sedangkan untuk wilayah pengembangan di desa Wero dan Desa Pagak.

Sedangkan di Kecamatan Grabag karena kondisi wilayah tersebut adalah banyak tambang besi sehingga diambil satu titik untuk wilayah pengembangan yaitu Desa Kertajayan. Untuk menambah lengkapnya data untuk pengembangan usaha budidaya tambak maka diambil satu titik pada bendungan Bonorowo yang merupakan sumber air bagi wilayah kabupaten Purworejo untuk pengembangan usaha budidaya tambak.

IV. 2. Kesesuaian Lahan Pesisir di Kabupaten Purworejo

Dari hasil penelitian analisis laboratorium bahwa klas kesesuaian lahan di Kabupaten Purworejo termasuk kategori S1, S3 dan N1, unit lahan ini mayoritas klas kesesuaian lahan klas N1 dengan faktor pembatas adalah Salinitas dan kandungan BOD dan COD tertera pada tabel IV.8, IV. 9 dan IV.10.

Unit lahan klas N1 terdapat pada station penelitian PW1 (Karanganyar), PW2 (Gedangan), PW3 (Jatimalang), PW5 (Indokor),
PW6 (Keburuan) dan PW 9 (Bonorowo). Karakteristik lahan sebagai faktor pembatas adalah salinitas yang rendah (0 – 7 %), kandungan COD dan BOD dalam air. Untuk mengatasi rendahnya salinitas air dengan irigasi dari, saluran, (Sarjito dkk, 2003) pengincaran dengan tujuan terjadi penguapan sehingga salinitas naik atau biota yang akan dibudidaya dilakukan aklimatisasi dahulu dengan salinitas yang sesuai. Sedangkan untuk mengatasi tingginya kandungan BOD da COD dalam air dengan sirkulasi air, pemanfaatan kincir sehingga dapat meningkatkan kandungan oksigen dalam perairan atau dilakukan reklamasi (Anggoro dkk, 2003).

Unit lahan yang termasuk kelas kesesuaian lahan S1 (sangat sesuai saat ini) adalah unit lahan pada PW4 (desa Pagak, Kecamatan Purwodadi).

Unit lahan klas kesesuaian S3 pada PW 7 (desa Wero) dan PW 8 (Kertajayan), karakteristik faktor pembatas porositas tanah. Untuk mengatasi faktor pembatas ini maka dengan malakukan perbaikan tekstur tanah yaitu dengan betonisasi, atau dengan menggunakan lapisan plastik. Hasil penelitian ini tertera pada tabel IV. 8, IV.9, IV .10 dan IV .11.
Tabel IV. 8. HASIL PENELITIAN KUALITAS AIR DAN TANAH TAMBAK

<table>
<thead>
<tr>
<th>Lokasi : Karanganyar, Kec. Purwokerto</th>
<th>Lokasi : Gedangan, Purwokerto</th>
<th>Lokasi : Jatimalang, Purwokerto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posisi : 07° 59' 311" 110° 01' 022"</td>
<td>Posisi : 07° 53' 054" 110° 00' 994"</td>
<td>Posisi : 07° 52' 628" 109° 59' 048"</td>
</tr>
<tr>
<td>PW.1</td>
<td>PW.2</td>
<td>PW.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KUALITAS AIR</th>
<th>Klas kesesuaian lahan</th>
<th>KUALITAS AIR</th>
<th>Klas kesesuaian lahan</th>
<th>KUALITAS AIR</th>
<th>Klas kesesuaian lahan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinitas %</td>
<td>7</td>
<td>7</td>
<td>N1</td>
<td>6</td>
<td>N1</td>
</tr>
<tr>
<td>Suhu °C</td>
<td>28</td>
<td>28</td>
<td>S2</td>
<td>28</td>
<td>S2</td>
</tr>
<tr>
<td>PH</td>
<td>7,4</td>
<td>7,1</td>
<td>S1</td>
<td>6,5</td>
<td>S3</td>
</tr>
<tr>
<td>DO (ppm)</td>
<td>4,34</td>
<td>7,59</td>
<td>S1</td>
<td>7,82</td>
<td>S1</td>
</tr>
<tr>
<td>BOD (ppm)</td>
<td>33</td>
<td>51</td>
<td>N1</td>
<td>24</td>
<td>N1</td>
</tr>
<tr>
<td>COD (ppm)</td>
<td>132,7</td>
<td>151</td>
<td>N1</td>
<td>117,27</td>
<td>N1</td>
</tr>
<tr>
<td>Nitrit (ppm)</td>
<td>0</td>
<td>0</td>
<td>S1</td>
<td>0</td>
<td>S1</td>
</tr>
<tr>
<td>Ammonia (ppm)</td>
<td>0,18</td>
<td>0</td>
<td>S1</td>
<td>0,17</td>
<td>S2</td>
</tr>
<tr>
<td>Pospat (ppm)</td>
<td>0,04</td>
<td>0,03</td>
<td>S2</td>
<td>0</td>
<td>S3</td>
</tr>
<tr>
<td>Pot. Redoks (M.V)</td>
<td>- 228,66</td>
<td>- 96</td>
<td>S1</td>
<td>- 180,66</td>
<td>S2</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>0,56</td>
<td>1,39</td>
<td>S1</td>
<td>0,34</td>
<td>S1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KUALITAS TANAH</th>
<th>Klas kesesuaian lahan</th>
<th>KUALITAS TANAH</th>
<th>Klas kesesuaian lahan</th>
<th>KUALITAS TANAH</th>
<th>Klas kesesuaian lahan</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0,32</td>
<td>0,32</td>
<td>S1</td>
<td>0,32</td>
<td>S1</td>
</tr>
<tr>
<td>P</td>
<td>56</td>
<td>56</td>
<td>S1</td>
<td>56</td>
<td>S1</td>
</tr>
<tr>
<td>K</td>
<td>530</td>
<td>530</td>
<td>S1</td>
<td>530</td>
<td>S1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tekstur tanah (%)</th>
<th>P</th>
<th>D</th>
<th>L</th>
<th>Tekstur tanah (%)</th>
<th>P</th>
<th>D</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>55</td>
<td>7</td>
<td>S2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Porositas (%)</td>
<td>48,94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nisbah BOD/COD</td>
<td>0,249</td>
<td>0,338</td>
<td>0,205</td>
<td>Degradasi bahan organik tidak normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAR (Sodium - Absorption Ratio)</td>
<td>3,124</td>
<td>3,386</td>
<td>1,584</td>
<td>Untuk biota yang kurang sensitif</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klas Kesesuaian Lahan</th>
<th>Klas Kesesuaian lahan</th>
<th>Klas Kesesuaian lahan</th>
<th>Klas Kesesuaian lahan</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Klas Kesesuaian lahan N1 (faktor pembatas salinitas, COD dan BOD).</td>
<td>- Untuk biota yang kurang sensitif</td>
<td>- Degradasi bahan organik tidak normal</td>
<td></td>
</tr>
</tbody>
</table>

40
<table>
<thead>
<tr>
<th>Lokasi: Karanganyar, Kec. Purwodadi</th>
<th>Lokasi: Gedangan, Purwodadi</th>
<th>Lokasi: Jatimalang, Purwodadi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posisi: 07° 33’ 311” 110° 01’ 022”</td>
<td>Posisi: 07° 53’ 054” 110° 00’ 994”</td>
<td>Posisi: 07° 52’ 628” 109° 59’ 048”</td>
</tr>
<tr>
<td>PW.1</td>
<td>PW.2</td>
<td>PW.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KUALITAS AIR</th>
<th>Klas kesesuaian lahan</th>
<th>KUALITAS AIR</th>
<th>Klas kesesuaian lahan</th>
<th>KUALITAS AIR</th>
<th>Klas kesesuaian lahan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinitas %</td>
<td>7</td>
<td>N1</td>
<td>7</td>
<td>N1</td>
<td>6</td>
</tr>
<tr>
<td>Suhu [°C]</td>
<td>28</td>
<td>S2</td>
<td>28</td>
<td>S2</td>
<td>28</td>
</tr>
<tr>
<td>PH</td>
<td>7,4</td>
<td>S1</td>
<td>7,1</td>
<td>S1</td>
<td>6,5</td>
</tr>
<tr>
<td>DO (ppm)</td>
<td>4,54</td>
<td>S1</td>
<td>7,59</td>
<td>S1</td>
<td>7,82</td>
</tr>
<tr>
<td>BOD (ppm)</td>
<td>33</td>
<td>N1</td>
<td>51</td>
<td>N1</td>
<td>24</td>
</tr>
<tr>
<td>COD (ppm)</td>
<td>132,7</td>
<td>N1</td>
<td>151</td>
<td>N1</td>
<td>117,27</td>
</tr>
<tr>
<td>Nitrit (ppm)</td>
<td>0</td>
<td>S1</td>
<td>0</td>
<td>S1</td>
<td>0</td>
</tr>
<tr>
<td>Amonia (ppm)</td>
<td>0,18</td>
<td>S2</td>
<td>0</td>
<td>S1</td>
<td>0,17</td>
</tr>
<tr>
<td>Pospat (ppm)</td>
<td>0,04</td>
<td>S2</td>
<td>0,03</td>
<td>S2</td>
<td>0</td>
</tr>
<tr>
<td>Pot. Redoks (M.V)</td>
<td>-228,66</td>
<td>S3</td>
<td>-96</td>
<td>S1</td>
<td>-180,66</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>0,56</td>
<td>S1</td>
<td>1,39</td>
<td>S2</td>
<td>0,34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KUALITAS TANAH</th>
<th>Klas kesesuaian</th>
<th>KUALITAS TANAH</th>
<th>Klas kesesuaian</th>
<th>KUALITAS TANAH</th>
<th>Klas kesesuaian</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0,32</td>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>56</td>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>580</td>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tekstur tanah (%)</th>
<th>P</th>
<th>D</th>
<th>L</th>
<th>P</th>
<th>D</th>
<th>L</th>
<th>P</th>
<th>D</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>55</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Porositas (%)</th>
<th>48,94</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrat: BOD/COD</td>
<td>0,249</td>
<td></td>
</tr>
<tr>
<td>SAR (Sodium - Absorption Ratio)</td>
<td>3,124</td>
<td>3,386</td>
</tr>
</tbody>
</table>

- Klas Kesesuaian lahan
 - N1 (faktor pembatas salinitas, COD dan BOD).
 - Untuk biota yang kurang sensitif
 - Degradasi bahan organik tidak normal
 - Klas kesesuaian lahan N1 (faktor pembatas salinitas, COD dan BOD).
 - untuk biota yang kurang sensitif
 - Degradasi bahan organik tidak normal
 - Klas Kesesuaian lahan N1 (faktor pembatas salinitas, COD dan BOD).
 - untuk biota sensitif
 - Degradasi bahan organik tidak normal

40
| Lokasi : Da. Pagak, Kec. Ngombol
Sampel : Tanah (pengembangan tambak)
Posisi : 07° 51' 707"
109° 57' 094"
PW.4 | Lokasi : Indocorn/Puncu
Kec. Ngombol
Sampel : Air tambak dan tanah
Posisi : 07° 51' 054"
109° 55' 048"
PW.5 | Lokasi : Da. Kehuruan,
Ngombol
Sampel : Air tambak dan tanah
Posisi : 07° 51' 013"
109° 54' 831"
PW.6 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KUALITAS AIR</td>
<td>Klas kesesuaian lahan</td>
<td>KUALITAS AIR</td>
</tr>
<tr>
<td>Salinitas %</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Suhu °C</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>PH</td>
<td>-</td>
<td>7,26</td>
</tr>
<tr>
<td>DO (ppm)</td>
<td>-</td>
<td>7,40</td>
</tr>
<tr>
<td>BOD (ppm)</td>
<td>-</td>
<td>38</td>
</tr>
<tr>
<td>COD (ppm)</td>
<td>-</td>
<td>113</td>
</tr>
<tr>
<td>Nitrit (ppm)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Ammonia (ppm)</td>
<td>-</td>
<td>0,80</td>
</tr>
<tr>
<td>Pospat (ppm)</td>
<td>-</td>
<td>0,02</td>
</tr>
<tr>
<td>Pot. Redoks (ppm)</td>
<td>-</td>
<td>-165</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>-</td>
<td>0,68</td>
</tr>
<tr>
<td>KUALITAS TANAH</td>
<td>Klas kesesuaian</td>
<td>KUALITAS TANAH</td>
</tr>
<tr>
<td>N</td>
<td>0,30</td>
<td>S1</td>
</tr>
<tr>
<td>P</td>
<td>52</td>
<td>S1</td>
</tr>
<tr>
<td>K</td>
<td>525</td>
<td>S1</td>
</tr>
<tr>
<td>Tekstur tanah %</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>Porositas %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nisbah BOD/COD</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SAR (Sodium - Absorption Ratio)</td>
<td>4,85</td>
<td>15,274</td>
</tr>
</tbody>
</table>
| Klas Kesesuaian lahan | - Klas Kesesuaian lahan S1 (tidak ada faktor pembatas)
- Untuk biota yang kurang sensitif | - Klas Kesesuaian lahan N1 (faktor pembatas salinitas, COD dan BOD).
- Untuk biota tidak sensitif
- Degradasi bahan organik tidak normal | - Klas Kesesuaian lahan N1 (faktor pembatas salinitas, COD dan BOD).
- Untuk biota yang kurang sensitif
- Degradasi bahan organik tidak normal |

41
<table>
<thead>
<tr>
<th>Lokasi : De. Wero Kec. Ngembel</th>
<th>Lokasi : De Kortujayan, Grabag</th>
<th>Lokasi : Bonorowo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampel : tanah (pengembangan tambak)</td>
<td>Sampel : tanah (pengembangan)</td>
<td>Sampel : Air bendungan dan tanah</td>
</tr>
<tr>
<td>Postisi : 07° 49' 513" 109° 57' 043"</td>
<td>Postisi : 07° 49' 616" 109° 49' 884"</td>
<td>Postisi : 07° 49' 611" 109° 49' 880"</td>
</tr>
<tr>
<td>PW.7</td>
<td>PW.8</td>
<td>PW.9</td>
</tr>
<tr>
<td>Tabel IV. 10. HASIL PENELITIAN KUALITAS AIR DAN TANAH TAMBAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUALITAS AIR</td>
<td>Klas kesuasian tanah</td>
<td>KUALITAS AIR</td>
</tr>
<tr>
<td>Salinitas %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suhu ºC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PH</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DO (ppm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BOD (ppm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>COD (ppm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrit (ppm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amonia (ppm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pospat (ppm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pot. Redoks (ppm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KUALITAS TANAH</td>
<td>Klas Kesuasian tanah</td>
<td>KUALITAS TANAH</td>
</tr>
<tr>
<td>N</td>
<td>0,25</td>
<td>S1</td>
</tr>
<tr>
<td>P</td>
<td>52</td>
<td>S1</td>
</tr>
<tr>
<td>K</td>
<td>540</td>
<td>S1</td>
</tr>
<tr>
<td>Tekstur tanah %</td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>78</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Porositas %</td>
<td>48,60</td>
<td>S3</td>
</tr>
<tr>
<td>Nisbah BOD/COD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SAR (Sodium - Absorption Ratio)</td>
<td>4,85</td>
<td>Untuk biota yang kurang sensitif</td>
</tr>
<tr>
<td>Klas Kesuasian Lahan</td>
<td>- Klas Kesuasian lahan S3 (faktor pembatas Porositas tanah). - Untuk biota yang kurang sensitif</td>
<td>- Klas Kesuasian lahan S3 (faktor pembatas porositas tanah). - Untuk biota tidak sensitif</td>
</tr>
</tbody>
</table>
Hasil penelitian di semua unit lahan bahwa tekstur tanah, di Kabupaten Purworejo kandungan pasir ≥ 60 %, porositas tinggi > 30 % (tabel IV. 8, IV. 9 dan IV. 10).

sedangkan klas kesesuaian lahan sebagai faktor pembatas parameter BOD (Biochemical Oksigen Demand) yang merupakan jumlah oksigen yang diperlukan oleh bakteri untuk mengurai (meng-oksidasi) zat organik yang terkandung dalam air dimana hasil penelitian disemua unit lahan kategori N1 (8 – 51 ppm).

Pada faktor pembatas COD (Chemical Oxygen Demand), yang merupakan jumlah oksigen yang diperlukan untuk mengoksidi sasi zat-zat organik, dari hasil penelitian variabel ini terlalu tinggi, yaitu tertinggi 240 ppm (PW 6) dan terendah 22,73 ppm (PW 9) sehingga variable ini sebagai faktor pembatas, sehingga semua unit lahan di Kabupaten Purworejo merupakan klas kesesuaian lahan N1.

Sedangkan berdasarkan perhitungan nisbah BOD/COD bahwa semua unit lahan wilayah Kabupaten Purworejo masuk kategori degradasi bahan organik tidak normal dimana nilai nisbah BOD/COD < 0,5 (Wardoyo, 1988), sedangkan hasil penelitian nilai nisbah BOD/COD di semua unit lahan Kabupaten Purworejo adalah 0,20 – 0,352 sehingga degradasi bahan organik tidak normal. Untuk mengatasi hal ini maka perlu dilakukan antara lain sirkulasi air, menggunakan kincir angin sehingga dapat meningkatkan kandungan oksigen dalam perairan
atau dilakukan reklamasi. Secara rinci kondisi kesesuaian lahan tambak di Kabupaten Purworejo tertera pada tabel IV. 11. sebagai berikut:

Tabel IV. 11. Klas kesesuaian unit lahan di Kabupaten Purworejo

<table>
<thead>
<tr>
<th>No</th>
<th>Unit Lahan</th>
<th>Lokasi</th>
<th>Sampel</th>
<th>Klas Kesesuaian lahan tambak</th>
<th>Lahan Potensial (Ha)</th>
<th>Tambak Aktual (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PW1</td>
<td>Karanganyar</td>
<td>Air dan tanah</td>
<td>N1</td>
<td>100,3</td>
<td>5,19</td>
</tr>
<tr>
<td>2</td>
<td>PW2</td>
<td>Gedangan</td>
<td>Air dan tanah</td>
<td>N1</td>
<td></td>
<td>7,95</td>
</tr>
<tr>
<td>3</td>
<td>PW3</td>
<td>Jatimalang</td>
<td>Air dan tanah</td>
<td>N1</td>
<td>250</td>
<td>5,17</td>
</tr>
<tr>
<td>4</td>
<td>PW4</td>
<td>Pagak</td>
<td>Tanah</td>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PW5</td>
<td>Indocorn</td>
<td>Air dan tanah</td>
<td>N1</td>
<td>137,6</td>
<td>16,33</td>
</tr>
<tr>
<td>6</td>
<td>PW6</td>
<td>Keburuan</td>
<td>Air dan tanah</td>
<td>N1</td>
<td>81,36</td>
<td>2,42</td>
</tr>
<tr>
<td>7</td>
<td>PW7</td>
<td>Wero</td>
<td>Tanah</td>
<td>S3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PW8</td>
<td>Kertajayan</td>
<td>Tanah</td>
<td>S3</td>
<td>110,6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PW9</td>
<td>Bonorowo</td>
<td>Air dan tanah</td>
<td>N1</td>
<td>672,16</td>
<td>35,75</td>
</tr>
</tbody>
</table>

JUMLAH | 1352,02 | 79,07 |

Dari tabel IV.11 menunjukkan bahwa kesesuaian lahan tambak aktual di Kabupaten Purworejo mayoritas termasuk klas kesesuaian lahan N1, dengan karakteristik faktor pembatas salinitas, dengan lahan potensial seluas 1.131,94 Ha (Karanganyar, Gedangan, Jatimalang, Indokor, Keburuan dan Bonorowo) dan Klas kesesuaian lahan S3 dengan karakteristik faktor pembatas porositas tanah seluas 151,28 Ha (desa Wero dan Kertajayan) dan klas kesesuaian lahan S1 karakteristik faktor pembatas adalah kandungan N,P,K dalam tanah, lahan potensial seluas 68,8 Ha (desa Pagak).

Sedangkan klas kesesuaian lahan untuk pengembangan tambak seperti tertera pada tabel IV.12.

<table>
<thead>
<tr>
<th>No</th>
<th>Lokasi Penelitian</th>
<th>Klas Kesesuaian Lahan</th>
<th>Lahan Potensial (Ha)</th>
<th>Lahan Aktual (Ha)</th>
<th>Lahan Potensial Pengembangan (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kec. Purwodadi</td>
<td>N1.a</td>
<td>100,3</td>
<td>13,14</td>
<td>87,15</td>
</tr>
<tr>
<td></td>
<td>- Karanganyar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Gedangan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kec. Purwodadi</td>
<td>N1.a</td>
<td>250</td>
<td>5,17</td>
<td>244,83</td>
</tr>
<tr>
<td></td>
<td>Jatimalang</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kec. Ngombol</td>
<td>S1.t</td>
<td>137,6</td>
<td>16,33</td>
<td>121,27</td>
</tr>
<tr>
<td></td>
<td>- Pagak</td>
<td>N1.a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Indokor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Kec. Ngombol</td>
<td>N1.a</td>
<td>81,36</td>
<td>2,42</td>
<td>78,94</td>
</tr>
<tr>
<td></td>
<td>- Keburuhan</td>
<td>S3.t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Wero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kec. Grabag</td>
<td>S3.t</td>
<td>110,6</td>
<td></td>
<td>110,6</td>
</tr>
<tr>
<td></td>
<td>Kertajayan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kec. Grabag</td>
<td>N1.a</td>
<td>672,16</td>
<td>42</td>
<td>630,13</td>
</tr>
<tr>
<td></td>
<td>Bonorowo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td></td>
<td>1352,02</td>
<td>79,07</td>
<td>1272,95</td>
</tr>
</tbody>
</table>

Keterangan :
S1 = Highly suitable (sangat sesuai) a = air tambak
S2 = moderately suitable (cukup sesuai) t = tanah
S3 = marginally suitable (hampir sesuai)
N1 = currently not suitable (tidak sesuai saat ini)

Dari tabel IV 12, bahwa di Kabupaten Purworejo lahan potensial untuk pesisir masih belum termanfaatkan seluas 1.272,95 Ha sehingga dari hasil penelitian klas kesesuaian lahan untuk pengembangan tambak N1 seluas 1.062,24 Ha, klas kesesuaian S1 seluas 60,64 ha dan klas kesesuaian S3 seluas 150,07 Ha.

Berdasarkan hasil perhitungan SAR (Sodium Absorption Ratio) diperoleh bahwa di Kabupaten Purworejo dari masing-masing wilayah pengambilan sample adalah bervariasai yaitu lokasi yang mempunyai nilai SAR < 2 adalah Desa Jatimalang (PW9) mempunyai nilai SAR 0,142 dan

45
Bonorowo (PW3) mempunyai nilai SAR 1,584, sehingga lahan tersebut dapat digunakan untuk budidaya biota yang bersifat sensitif.

Sedangkan yang mempunyai nilai SAR antara $2 \leq x \leq 8$, adalah lokasi Desa Karangan,yar (PW1), Desa Gedangan (PW2), Desa Pagak (PW4), Desa Keburuan (PW6) dan Desa Wero (PW 7), lahan ini cocok untuk budidaya biota yang kurang sensitif.

Lokasi penelitian yang mempunyai nilai SAR $8 < 16$ adalah Indokor (PW5) dan Desa Kertajayan (PW 8), sehingga lahan tersebut dapat dibudidayakan biota yang tidak sensitif. Secara rinci tertera pada tabel IV. 13 sebagai berikut:

Tabel IV. 13. Tabel. Kesesuaian Unit Lahan berdasarkan nilai SAR

<table>
<thead>
<tr>
<th>No.</th>
<th>Nilai SAR</th>
<th>Kesesuaian Biota</th>
<th>Station sample</th>
<th>Lokasi</th>
<th>Luas lahan Potensial (Ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>≤ 2</td>
<td>> 2 < 8</td>
<td>> 8 < 16</td>
<td>PW3</td>
<td>Jatimalang</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>1,584</td>
<td>-</td>
<td>-</td>
<td>PW9</td>
<td>Bonorowo</td>
<td>672,16</td>
</tr>
<tr>
<td></td>
<td>0,142</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>-</td>
<td>3,124</td>
<td>-</td>
<td>PW1</td>
<td>Karangan,yar</td>
<td>100,3</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>3,386</td>
<td>-</td>
<td>PW2</td>
<td>Gedangan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>3,22</td>
<td>-</td>
<td>PW6</td>
<td>Keburuan</td>
<td>81,36</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>4,85</td>
<td>-</td>
<td>PW7</td>
<td>Wero</td>
<td>68,8</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>4,85</td>
<td>-</td>
<td>PW4</td>
<td>Pagak</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>-</td>
<td>-</td>
<td>15,274</td>
<td>PW5</td>
<td>Indokor</td>
<td>68,8</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>9,78</td>
<td>PW8</td>
<td>Kertajayan</td>
<td>110,6</td>
</tr>
</tbody>
</table>

JUMLAH

| 1352,02 | 100 |

Dari tabel IV. 13 bahwa kesesuaian lahan dari hasil perhitungan SAR (sodium absorption ratio) adalah lahan tambak di Kabupaten Purworejo dari lahan pengembangan pesisir seluas 1352,02 Ha maka yang cocok untuk budidaya biota sensitif 68,21 % atau seluas 922,16, unit lahan untuk budidaya biota...
kurang sensitif seluas 250,46 Ha (18,52 %) dan dapat digunakan untuk biota
tidak sensitif seluas 179,4 Ha (13,27 %).

IV. 3. Faktor Pembatas Kualitas Air Unit Lahan Tambak di Kabupaten
Purworejo

IV.3.1. Faktor Pembatas utama

IV. 3. 1.1. Salinitas

Dari hasil pengamatan langsung di lapangan bahwa di 6 (enam) titik sampel dari air tambak aktual dan sumber air Bonorowo adalah mempunyai salinitas terendah 0 % sampai dengan tertinggi 7 %, sehingga masuk kategori klas kesesuaian lahan N1 (tidak sesuai saat ini), sehingga salinitas merupakan faktor pembatas yang serius, tetapi masih memungkinkan untuk diatasi. Salinitas rendah dari hasil penelitian tersebut tergolong rendah (0 % – 7 %), karena salinitas yang optimal untuk dapat digunakan usaha budidaya tambak udang adalah 15 % – 25 % (Adiwidjaya dkk, 2003).

Hasil penelitian dilapangan salinitas terendah sumber air bonorowo 0 % (PW.9), dan tertinggi 7 % (PW.1, PW.2, PW.5) sedangkan lokasi lain 6 % PW.3 dan 4 % (PW4).

Jika air tambak yang digunakan untuk usaha budidaya udang mempunyai salinitas rendah, akan menghambat pertumbuhan dan perkembangan udang yang berhubungan dengan osmoregulasi (Anggoro, 1993), sehingga udang akan mengalami gangguan
pertumbuhan, walaupun tidak menutup kemungkinan untuk budidaya benih yang sebelum ditebarkan diaklimatisasi dahulu.

Air tambak yang bersalinitas rendah dapat diatasi dengan pompanisasi, yaitu memasukkan air laut yang mempunyai salinitas lebih tinggi ke dalam tambak atau dengan pemasangan kincir. Dengan pemasangan kincir sehingga terjadi banyak penguapan dan menyebabkan salinitas air tambak naik.

Tambak yang memunyai salinitas rendah dapat digunakan untuk budidaya ikan nila, bandeng atau ikan kerapu. Menurut Agus dan Murtidjo (1997), bahwa ikan kakap putih (Lates calcarifer bloch), dapat hidup pada salinitas 2 - 32 ‰ dan lebih tahan terhadap penyakit jika dibandingkan udang. Sedangkan menurut Sugianto. 1986, menyatakan bahwa ikan nila (Tilapia nilotica. L) atau ikan mujair (Tilapia mossambica peters) dapat hidup pada salinitas 0 – 6,9 ‰ dan dapat tumbuh optimal pada salinitas < 1 ‰, sehingga lahan tambak di Kabupaten Purworejo juga cocok untuk budidaya ikan tersebut.

IV. 3.1.2. Kadar BOD dan COD

Dari hasil penelitian kandungan COD dan BOD, bahwa di 6 titik yang diambil sampel dari air tambak aktual dan sumber air Bonorowo, diperoleh kategori klas kesesuaian lahan 1 disemua titik sampel.
Hasil penelitian kandungan BOD terendah adalah 8 ppm pada lokasi penelitian Sumber air Bonorowo (PW 9) sedangkan nilai tertinggi 51 ppm pada lokasi penelitian Desa Gedangan Kecamatan Purwodadi (PW2).

Hasil penelitian Kandungan COD terendah pada lokasi penelitian 22,73 ppm adalah sumber air Bonorowo (PW 9) dan tertinggi 240 ppm pada lokasi penelitian Desa Keburuhan Kecamatan Ngombok (PW 6).

Batas toleransi kandungan BOD, untuk perairan tambak adalah 0-3 ppm dan optimal 0-1 ppm sedangkan kandungan COD untuk perairan tambak adalah 0-40 ppm dan optimal untuk 0-19 ppm (Poernomo, 1988 dan Adiwidjaya dkk, 2003).

Tingginya kandungan BOD dan COD disebabkan oleh tingginya tingkat pencemaran air akibat terakumulasinya hasil metabolisme dari sisa pakan yang tidak terkonsumsi.

Untuk mengatasi BOD dan COD adalah dengan pengolahan tanah dasar/reklamasi, aerasi dan penambahan bahan organik pada tanah.

IV. 3.1.3. Faktor Pembatas pada Kualitas Tanah

Kualitas tanah yang digunakan untuk penelitian adalah tanah wilayah pesisir untuk pengembangan tambak di wilayah pesisir, dimana tanah sampel diujikan di laboratorium penelitian tanah dan air. Hasil penelitian tersebut tertera sebagai berikut:
• **Unsur N-total**

Hasil penelitian bahwa kandungan N-total dalam tanah adalah 0,24 s/d 0,32 ppm, sehingga masuk kategori kesesuaian lahan S1 disemua lokasi penelitian (sangat sesuai) sehingga tidak ada faktor pembatas yang serius). Hal ini sesuai dengan pendapat Sutedjo dan Kartasapoetra (2002), bahwa kandungan N-total didalam tanah sebaiknya > 0,15 ppm.

• **Kandungan Fosfat**

Hasil penelitian kandungan fosfat dalam tanah antara 48 s/d 56 ppm, sehingga masuk kategori kesesuaian lahan S1 (sangat sesuai) disemua lokasi penelitian sehingga tidak ada faktor pembatas yang serius. Hal ini sesuai dengan pendapat Sutedjo dan Kartasapoetra (2002), juga menyatakan bahwa kandungan fosfat didalam tanah sebaiknya > 37,3 ppm.

• **Kandungan Kalium**

Hasil penelitian kandungan Kalium dalam tanah antara 520 s/d 600 ppm, sehingga masuk kategori kesesuaian lahan S1 disemua lokasi penelitian (sangat sesuai) sehingga tidak ada faktor pembatas yang serius. Hal ini sesuai dengan saran Sutedjo dan Kartasapoetra (2002), bahwa kandungan Kalium didalam tanah sebaiknya > 193 ppm.
IV.3.1.4. Porositas Tanah

Hasil penelitian tanah porositas antara 47,4% sampai dengan 60,98 %, sehingga masuk kategori kesesuaian "lahan S3 disemua lokasi penelitian (hampir sesuai dimana lahan tersebut mempunyai faktor pembatas yang serius).

Untuk usaha perbaikan porositas tanah seperti malakukan perbaikan tekstur tanah yaitu dengan betonisasi, atau dengan menggunakan lapisan plastik.

IV. 3. 2. Faktor Pembatas lain

IV. 3.2.1. Suhu

Suhu dari pengamatan di air tambak sumber air Bonorowo adalah 27 °C -28 °C, sehingga masuk kategori klas kesesuaian lahan S2 dan S3.

Klas kesesuaian lahan S2 (cukup sesuai dimana lahan mempunyai pembatas-pembatas yang agak serius) terdapat pada lokasi penelitian PW1, PW2, PW3, PW5 dan PW9, dan S3 (hampir sesuai dimana lahan mempunyai pembatas yang serius) pada lokasi penelitian PW6 sehingga perlu penanganan dan tidak dapat diabaikan begitu saja, karena jika diabaikan akan mengakibatkan gangguan terhadap biota yang dibudidaya.
Pertumbuhan udang dan kehidupan udang sangat dipengaruhi oleh suhu air, menurut Poernomo (1988), mengatakan bahwa udang windu dapat hidup pada kisaran suhu 22 °C – 36 °C, tetapi pada kisaran terendah dan tertinggi tersebut udang windu tersebut masih dapat hidup, tetapi dalam keadaan tidak aktif, sedangkan Adiwidjaya, dkk (2003), menyatakan bahwa kisaran suhu optimal bagi udang windu adalah 28,5 °C - 31,5 °C.

Suhu air pada setiap peningkatan suhu 10 °C akan berpengaruh terhadap peningkatan proses metabolisme dua kali lipat, salah satu indikator terjadinya peningkatan proses metabolisme adalah meningkatnya konsumsi oksigen oleh udang. Pengaruh suhu oleh reaksi kimia akan meningkatkan kadar ammonia (NH3) dalam air yang merupakan racun bagi udang (Cholik, 1988).

IV.3.2.2. Pengaruh pH

Hasil pengamatan pH di lapangan di 6 (enam) titik sampel adalah pH terendah 6,5 dan tertinggi 7,6 sehingga klas kesesuaian lahan termasuk kategori S1 dan S3 dari keenam titik sampel yang termasuk kategori klas kesesuaian lahan S3 hanya satu titik lokasi yaitu Desa Jatimalang Kecamatan Purwodadi (PW3) sedangkan 5 (lima) titik sampel lainnya kategori S1.

Dari hasil penelitian Klas kesesuaian lahan S1 (sangat sesuai saat ini), maka lahan tambak di desa Karanganyar (PW1), desa Gedangan (PW2), Indokor (PW5), desa Keburuhan (PW6) dan
Sumber air Bonorowo (PW9), lahan ini tidak mempunyai pembatas serius terhadap pH air. Sedangkan kategori klas kesesuaian lahan S3 terdapat pada tambak Desa Jatimalang (PW3), sehingga lahan ini masuk kategori hampir sesuai dimana lahan tersebut mempunyai pembatas yang serius.

Batas toleransi pH untuk lahan tambak adalah 7,5-8,5 tetapi optimal untuk usaha budidaya tambak 7,6-8,2 (Adiwidjaya *dkk*, 2003). Untuk usaha perbaikan pH dengan melakukan reklamasi dengan penambahan kapur.

IV. 3.2.3. Kadar Oksigen

Dari hasil penelitian di 6 titik pengamatan air tambak aktual dan sumber air Bonorowo mempunyai kategori klas kesesuaian lahan S1 disemua titik sampel, sehingga tidak ada faktor pembatas untuk kebutuhan oksigen bagi biota yang dibudidayakan. Hasil penelitian ini mempunyai klas kesesuaian lahan S1

Batas toleransi kadar oksigen untuk usaha budidaya tambak 3-10 ppm, sedangkan optimal untuk usaha budidaya tambak berkisaran antara 4-7 ppm (Poernomo, 1988 dan Adiwidjaya 2003).

Oksigen terlarut dalam air sangat penting perannya untuk kehidupan udang/ikan yang dipelihara di perairan, karena oksigen terlarut digunakan untuk respirasi oleh hewan yang dipelihara.

Sumber oksigen terlarut didalam air berasal dari difusi dari udara, aliran air baru kedalam tambak dan dari proses fotosintesis.
atau dari kincir angin. Sedangkan kadar oksigen yang diperlukan untuk pertumbuhan udang.

Menurut Poernomo (1988), bahwa keadaan kadar oksigen 2,1 ppm pada suhu 30 °C akan mengakibatkan gejala tidak normal pada udang yang dipelihara, dan bila terjadi keadaan ini terus menerus maka akan dapat menimbulkan kematian pada udang.

IV. 3.2.4. Kandungan Nitrit.

Kandungan nitrit dari hasil penelitian di 6 titik lokasi penelitian terendah 0 ppm (PW1, PW2, PW3, PW9) dan tertinggi 0,01 ppm (PW6, desa Keburuhan, Kecamatan Ngombol), tetapi dari hasil penelitian tersebut disemua titik masuk kategori klas kesesuaian lahan S1 (sangat sesuai), sehingga tidak ada faktor pembatas dari kandungan nitrit.

Batas toleransi kandungan nitrit untuk lahan tambak 0 - 0,25 ppm, sedangkan batas optimal kandungan nitrit untuk usaha budidaya tambak adalah 0 – 0,1 ppm.

IV. 3.2.5. Kandungan Amoniak

Amoniak merupakan zat beracun bagi organisme, gas ini akibat dari hasil dekomposisi bahan organik pemupukan, kotoran biota yang dipelihara, maupun sisa pakan yang tidak termakan.

Dari hasil penelitian bahwa kandungan amoniak di 6 titik sampel masuk kategori klas kesesuaian lahan S1 (PW2, PW6, PW9) dengan kandungan amoniak 0,0 ppm, sedangkan kategori
klas kesesuaian lahan S2 kandungan amonia 0,18 ppm adalah di desa Karanganyar (PW1) dan 0,17 ppm desa Jatimalang (PW3), sedangkan klas kesesuaian lahan N1 pada lokasi tambak Indokor (PW5) kandungan amoniak 0,80 ppm. Sedangkan Batas toleransi untuk kandungan amoniak pada lahan tambak 0-0,3 ppm sedangkan batas optimal untuk usaha budidaya tambak adalah 0-0,1 ppm.

Untuk menurunkan kadar amoniak dalam air, tambak dapat dilakukan dengan cara reklamasi, penyipnan atau sirkulasi air.

IV.3.2.6. Kandungan Fosfat

Hasil penelitian di 6 titik lokasi penelitian adalah masuk kategori klas kesesuaian lahan S2 (PW1, PW2, PW3, PW5, PW6 dan PW9), kandungan fosfat berturut-turut 0,04 ppm, 0,03 ppm, 0,0 ppm, 0,02 ppm, 0,01 ppm dan 0,01 ppm.

Kisaran optimal kandungan fosfat dalam air tambak adalah 0,10 – 0,25 ppm (Adiwidjaya dkk, 2003).

IV. 3.2.7. Potensi Redoks

Hasil dari penelitian semua lokasi penelitian potensi redoks antara (-91) – (-228,66) adalah PW1, PW2, PW3, PW5, PW6, dan PW9, masuk kategori klas kesesuaian lahan S1 (sangat sesuai) sehingga tidak ada faktor pembatas yang serius pada PW2, sedangkan PW1 masuk kategori klas kesesuaian lahan S3 dan PW3, PW5, PW6 dan PW9 masuk klas kategori S2.

Adiwidjaya dkk (2003), menyatakan bahwa kisaran optimal potensi redoks air tambak plus s/d - 200, dan potensi redoks menggambarkan intensitas oksidasi dan reduksi yang terjadi pada sedimen. Suatu substansi terakumulasi dan tidak dapat teroksidasi oleh oksigen karena cadangan oksigen terbatas. Kondisi seperti ini dapat mengakibatkan substansi tersebut melepaskan elektron yang selanjutnya mengakibatkan senyawa lain tereduksi. Sedimen dengan nilai potensial redoks rendah menunjukkan kondisi anoksik dan terjadi proses transformasi biokimiawi. Dengan kondisi redoks potensial yang semakin meningkat melebihi minus 300 mV dapat menyebabkan pertumbuhan udang tidak optimal.

IV 3.2.8. Kandungan Fe

Hasil penelitian bahwa kandungan Fe masuk kategori klas kesesuaian lahan S1 pada lokasi penelitian (PW1, PW3, PW5, PW6 dan PW6) sedangkan klas kesesuaian lahan S2 pada PW2. Hasil ini
didasarkan pada batas toleransi kandungan Fe adalah 0 - 2,5 ppm,
dan batas optimal untuk budidaya tambak adalah 0 – 1 ppm.

Apabila dalam tambak nilai Fe tinggi maka untuk mengatasi
atau menurunkan kandungan Fe dalam air, tambak dapat dilakukan
dengan reklamasi.

IV. 3.2.9. Tekstur Tanah

Tekstur tanah terdiri dari pasir, debu dan liat, dari hasil
penelitian kandungan pasir antara 7 s/d 66 %, sehingga kategori
kesesuaian lahan bervariasi dari S1 s/d S3.

Lokasi yang masuk klas kesesuaian lahan S1 hanya dilokasi
sumber air Bonorowo (PW9), sedangkan S2 pada PW1 (desa
Karanganyar, Kecamatan Purwodadi dan S3 di PW5 (Indikor), PW6
(Keburuhan), dan PW8 (kertajayan).

Adiwidjaya *dkk* (2003), menyatakan bahwa kisaran tekstur
tanah optimal untuk usaha budidaya tambak adalah kandungan pasir
antara 30 – 40 % dan tanah liat 60 – 70 %.

Untuk usaha perbaikan tekstur tanah dilakukan dengan
penambahan tanah liat, betonisasi, atau dengan menggunakan
lapisan plastik.

IV. 3.3. Nisbah BOD/COD

Hasil penelitian dari nilai nisbah BOD/COD adalah, < 0,5
disemua tempat penelitian, sehingga lahan iérsebut mengalami
degradasi bahan organik tidak normal. Hasil penelitian tersebut terendah 0,20 tertinggi 0,338 pada penelitian PW1, PW2, PW3, PW5, PW6, dan PW9.

Untuk usaha perbaikan kadar BOD dan COD dengan pengolahan tanah dasar/reklamasi, aerasi/penginciran atau penambahan bahan organik.

IV. 3.4. SAR (Sodium Absorption Ratio)

Hasil penelitian sampel air tambak yang mempunyai nilai nilai SAR < 2 adalah PW3 (desa Jatimalang) dan PW9 (Bonorowo) sehingga lahan tersebut dapat untuk budidaya biota yang sensitif. Sedangkan nilai SAR, > 2 - < 8 terdapat pada lokasi penelitian PW1 (Karanganyar), PW6 (Keburuhan), dan PW7 (desa Wero), yang mempunyai nilai > 8 – 16 pada lokasi penelitian PW8 (Kertajayan) dan PW5 (Indokor).

IV. 3.5. Pasang Surut

Pasang surut di Kabupaten Purworejo berdasarkan hasil pantauan terdekat yaitu sungai Serang dan Sungai Bogowonto (perbatasan Kabupaten Kulonprogo dan Kabupaten Purworejo), diketahui bahwa rata-rata muka air tinggi adalah 1,85 m, rata-rata elevasi muka air laut 1,05 m. Pasang surut di pesisir Yogyakarta – Purworejo bersifat semidiurnal campuran (mixed semidiurnal)
dengan indeks normal 0,39 (Nirnama, 2004). Adapun rincian Draw-down yang terjadi adalah sebagai berikut:

- Nilai HHWL (Highest High Water Level) : 1,94 m
- Nilai MHWL (Mean High Water Level) : 1,85 m
- Nilai MSL (Mean Sea Level) : 1,05 m
- Nilai MLWL (Mean Low Water Level) : 0,98 m
- Nilai LLWL (Lowest Low Water Level) : 0,94 m

Kondisi dan pola pasang surut ini sesuai dengan yang terjadi di pantai Purworejo, terutama di muara sungai Cokroyasan, sungai Wawar dan sungai lereng pantai. Adapun tinggi gelombang tahunan; satu tahunan adalah 2,1 m; 10 tahunan 2,6 m; 25 tahunan 2,8 m dan 50 tahunan 3,1 m (Nirnama, 2004).

IV. 3.6. Plankton

Menurut Sarjito *et al.* (2003), menyatakan bahwa perairan tambak di Kabupaten Purworejo ditemukan plankton terdiri dari 3 (tiga) kelas yaitu Bacillariopyceae (*Nitzchia, Thalassiothrix* dan *Synedra*), Cyanophyceae (Oscillatiria dan Spirulina) dan Crustaceae (larva udang), hal ini akan sangat berpengaruh terhadap daya dukung lahan tambak di Kabupaten Purworejo.

Lokasi yang mempunyai klas kesesuaian lahan S1 hanya PW4 desa Pagak Kecamatan Ngombol yang merupakan daerah pengembangan tambak. Sedangkan klas kesesuaian lahan S3 pada lokasi penelitian PW7 (Desa Wero) dan PW8 (Kertajayan), dengan faktor pembatas porositas tanah dan tekstur tanah.

IV.4.1. Desa Karanganyar Kecamatan Purwodadi (PW1)

Pada lokasi penelitian ini sampel yang diambil adalah air tambak dan tanah tambak dengan hasil penelitian seperti tertera pada tabel IV. 8.

Tambak Desa Karanganyar Kecamatan Purwodadi Klas kesesuaian lahan N1 (tidak sesuai saat ini), dengan faktor pembatas salinitas. Sehingga untuk mengatasi hal tersebut agar salinitas tambak naik perlu pompanisasi yaitu mengambil air laut dimasukkan ke tambak, irigasi dari saluran atau dilakukan pengenceran dengan tujuan terjadi penguapan air sehingga salinitas dapat naik.

Nilai SAR (Sodium Absorption Ratio) 3,124 dengan nilai SAR ini sehingga cocok untuk biota yang kurang sensitif seperti ikan nila, mujair, bandeng atau kerapu. Jika akan digunakan untuk
budidaya udang sebaiknya memakai teknologi tradisional plus dengan memakai plastik (Biokrate).

Dari hasil penelitian memperlihatkan bahwa nisbah BOD/COD Desa Karanganayar nilainya 0,249, sehingga degradasi bahan organik tidak normal. Untuk mengatasi hal tersebut maka dengan melaksanakan reklamasi, penginciran atau sirkulasi diperbaiki.

IV.4.2. Desa Gedangan Kecamatan Purwodadi (PW2)

Pada lokasi penelitian ini sampel yang diambil adalah air tambak dan tanah tambak, dengan hasil penelitian seperti tertera pada tabel IV. 7.

Tambak Desa Gedangan Kecamatan Purwodadi Klas kesesuaian lahan N1 (tidak sesuai saat ini), dengan faktor pembatas salinitas. Sehingga untuk mengatasi hal tersebut sama dengan yang dilaksanakan di desa Karanganyar yaitu agar salinitas tambak naik perlu pompanisasi yaitu mengambil air laut dimasukkan ke tambak, irigasi atau dengan memasang kincir agar terjadi penguapan air tambak sehingga salinitas dapat naik.

Perhitungan nisbah BOD/COD Desa Karanganyar nilainya adalah 0,338 sehingga degradasi bahan organik tidak normal. Untuk mengatasi hal tersebut maka sama dengan yang dilakukan di desa Karanganyar.
IV.4.3. Desa Jatimalang Kecamatan Purwodadi (PW3)

Pada lokasi penelitian ini sampel yang diambil adalah air tambak dan tanah tambak, dengan hasil penelitian seperti tertera pada tabel IV. 7.

Tambak Desa Jatimalang Kecamatan Purwodadi Klas kesesuaian lahan N1 (tidak sesuai saat ini) , dengan faktor pembatas salinitas. Sehingga untuk mengatasi agar salinitas tambak naik, maka perlu pompanisasi yaitu mengambil air laut dimasukkan ke tambak.

Nilai SAR (Sodium Absorption Ratio) 1,584 dengan nilai SAR ini sehingga cocok untuk biota yang sensitif seperti udang windu tetapi sebaiknya memakai teknologi tradisional plus atau dengan memakai plastik (Biokrate).

IV.4.4. Desa Pagak Kecamatan Ngombol (PW4)

Pada lokasi penelitian ini sampel yang diambil adalah tanah (wilayah pengembangan tambak), dengan hasil penelitian seperti tertera pada tabel IV. 8.

Tambak Desa Pagak Kecamatan Ngombol, berdasarkan hasil penelitian Klas kesesuaian lahan S1 (sesuai saat ini), sehingga tidak ada faktor pembatas yang serius.
IV.4.5. Tambak Indokor/pantai puncu (PW.5).

Lokasi penelitian ini sampel yang diambil adalah air dan tanah tambak, dengan hasil penelitian seperti tertera pada tabel IV. 8.

Pada tambak Indokor Kecamatan Ngombol, berdasarkan hasil penelitian masuk kategori Klas kesesuaian lahan N1 (tidak sesuai saat ini), dengan faktor pembatas salinitas. Sehingga untuk mengatasi hal tersebut agar salinitas tambak naik perlu pemanisasi yaitu mengambil air laut dimasukkan ke tambak.

Nilai SAR (Sodium Absorbtion Ratio) 15,274 dengan nilai SAR ini sehingga cocok untuk biota yang tidak sensitif. Sehingga tambak ini cocok untuk ikan bandeng, nila, kerapu atau mujair. Untuk menurunkan nilai SAR dapat dilakukan dengan pengapuran yang mengandung Ca dan Mg dengan penambahan air tambak untuk menurunkan kadar Na.

IV.4.6. Tambak Desa Keburukan (PW.6).

Lokasi sample ini yang diambil adalah air tambak dan tanah tambak hasil penelitian pada tabel IV. 8

Tambak Desa Keburukan Kecamatan Ngombol, berdasarkan hasil penelitian masuk kategori Klas kesesuaian lahan N1 (tidak sesuai saat ini), dengan faktor pembatas salinitas. Sehingga untuk mengatasi hal tersebut agar salinitas tambak naik perlu pemanisasi yaitu mengambil
air laut dimasukkan ke tambak atau menggunakan kincir agar supaya terjadi penguapan air tambak sehingga salinitas air tambak naik.

Desa Keburuhlan Kecamatan Ngombol mempunyai nilai SAR 3,220 sehingga lahan tersebut untuk biota yang kurang sensitif, misalnya budidaya nila gift/nila merah. Jika akan untuk budidaya udang adalah dengan perlakuan pemasukan air laut ke tambak dan pengapuran yang mengandung Ca dan Mg.

IV.4.7. Desa Wero Kecamatan Ngombol (PW.7).

Lokasi penelitian ini sampel yang diambil tanah (pengembangan tambak), dengan hasil penelitian pada tabel IV. 8.

Tanah potensial untuk pengembangan tambak Desa Wero, Kecamatan Ngombol, berdasarkan hasil penelitian dari sampel tanah masuk kategori Klas kesesuaian lahan S3 (hampir sesuai) , dengan faktor pembatas porositas tanah.

Nilai SAR tanah Desa Wero, Kecamatan Ngombol 4,85 sehingga hampir sama dengan Desa Keburuhlan (PW6.) Kecamatan Ngombol.

IV.4.8. Desa Kertajayan, Kecamatan Grabag (PW.8).

Lokasi penelitian ini sampel yang diambil adalah tanah (pengembangan tambak), hasil penelitian tersebut tertera pada tabel IV.9.
Desa Kertajayan Kecamatan Grabag, berdasarkan hasil penelitian masuk kategori Klas kesesuaian lahan S3 (hampir sesuai), dengan faktor pembatas porositas tanah. Nilai SAR 9,78 dengan nilai SAR ini sehingga cocok untuk biota yang tidak sensitif. Sehingga tambak ini cocok untuk budidaya bandeng nila, kerapu dan mujair Untuk menurunkan nilai SAR dapat dilakukan pengapuran yang mengandung Ca dan Mg dengan penambahan air tambak untuk menurunkan kadar Na.

IV.4.9. Sumber Air Bonorowo

Lokasi penelitian ini sampel yang diambil adalah air tambak dan tanah tambak, hasil analisis kualitas air dan tanah dapat disajikan pada tabel IV.9.

Sumber air Bonorowo Klas kesesuaian lahan N1 (tidak sesuai saat ini), dengan faktor pembatas salinitas. Sehingga untuk mengatasi agar salinitas tambak naik, maka perlu pompanisasi yaitu mengambil air laut dimasukkan ke tambak atau biota yang akan dipelihara diadaptasi dahulu.

Nilai SAR (Sodium Absorbtion Ratio) 0,142 dengan nilai SAR ini sehingga cocok untuk biota yang sensitif seperti udang windu dengan penerapan teknologi tradisional, semi intensif atau intensif karena di sumber air bonorowo faktor tanah juga sangat mendukung untuk usaha budidaya tambak.
IV. 5. Potensi Pengembangan Tambak di Kabupaten Purworejo

IV.5.1. Pengembangan Tambak di Kecamatan Purwodadi

Di Kecamatan Purwodadi wilayah yang dapat untuk dikembangkan budidaya tambak seluas 350,3 Ha dimana sudah ada tambak aktal 18,31 Ha sehingga wilayah yang masih potensial untuk pengembangan budidaya tambak adalah masih seluas 331,98 Ha. Dimana lahan tersebut mempunyai klas kesesuaian lahan N1 (currently not suitable/tidak sesuai saat ini) dengan faktor pembatas salinitas. Berdasarkan perhitungan nilai SAR (Sodium Absorption Ratio), di desa Karanganyar dan Gedangan cocok untuk budidaya ikan yang kurang sensitif, sedangkan desa Jatimalang dapat dibudidayakan biota yang sensitif.
Untuk mengatasi rendahnya salinitas tambak dengan pompansasi yaitu mengambil air laut dimasukkan ke tambak atau menggunakan kincir agar supaya terjadi penguapan air tambak sehingga salinitas air tambak naik sedangkan kualitas tanah masuk kategori S2 (cukup sesuai) hal ini agak diabaikan sehingga apabila membudidayakan biota sensitif perlu perlakuan usaha perbaikan faktor pembatas tanah sehingga terhindar dari kegagalan panen.

IV.5.2. Pengembangan Tambak di Kecamatan Ngombol

Di Kecamatan Ngombol wilayah yang dapat untuk dikembangkan budidaya tambak seluas 218,96 Ha dimana sudah ada tambak aktual 21,5 Ha sehingga wilayah yang masih potensial untuk pengembangan budidaya tambak adalah masih seluas 197,46 Ha. Dimana lahan tersebut mempunyai klas kesesuaian lahan S1.t, N1a, dan S3.t.

Di desa Pagak klas kesesuaian lahan S1.t (Highly suitable/sangat sesuai) tidak ada faktor pembatas. Sedangkan tambak
Indokor/pantai Puncu klas Kesesuaian lahan N1 a (currently not suitable/tidak sesuai saat ini) dengan faktor pembatas salinitas.

Berdasarkan perhitungan nilai SAR (Sodium Absorption Ratio), Indokor cocok untuk budidaya ikan yang tidak sensitif, sedangkan desa Keburuha dan Wero dapat dibudidayakan biota yang kurang sensitif.

Untuk mengatasi rendahnya salinitas tambak dengan pompanisasi yaitu mengambil air laut dimasukkan ke tambak atau menggunakan kincir agar supaya terjadi penguapan air tambak sehingga salinitas air tambak naik sedangkan kualitas tanah masih kategori S1 sehingga tidak ada faktor pembatas untuk tanah.

Untuk wilayah desa Pagak dan Indokor cocok untuk budidaya biota yang tidak sensitif seperti nila, mujair, kerapu. Sedangkan desa Keburuhan dan Wero dapat untuk budidaya biota yang kurang sensitif seperti nila, mujair, dan kerapu. Jika akan budidaya udang windu dapat menggunakan teknologi tradisional plus yaitu teknologi biokrate (lapisan plastik).

IV.5.3. Pengembangan T tambak di Kecamatan Grabag

Di Kecamatan Grabag wilayah yang dapat untuk dikembangkan budidaya tambak seluas 782,76 Ha dimana sudah ada tambak aktual 42 ha sehingga wilayah yang masih potensial untuk pengembangan
budidaya tambak adalah masih seluas 740,76 ha. Dimana lahan tersebut mempunyai klas kesesuaian lahan S3.t dan N1a.

Di desa Kertajayan klas kesesuaian lahan S3. t (Marginally suitable/hampir sesuai) faktor pembatas porositas tanah. Sedangkan Sumber air Bonorowo klas Kesesuaian lahan N1 a (currently not suitable/tidak sesuai saat ini) dengan faktor pembatas salinitas.

Berdasarkan perhitungan nilai SAR (Sodium Absorption Ratio), desa Kertajayan cocok untuk budidaya biota yang tidak sensitif, sedangkan Bonorowo cocok dibudidayakan biota yang sensitif.

Untuk mengatasi rendahnya salinitas tambak seperti halnya yang dilakukan wilayah Kecamatan Purwodadi yaitu dengan pompanisasi yaitu mengambil air laut dimasukkan ke tambak atau menggunakan kincir agar supaya terjadi penguapan air tambak sehingga salinitas air tambak naik sedangkan kualitas tanah masuk kategori S1 sehingga tidak ada faktor pembatas untuk tanah.

Hasil penelitian ini juga menunjukkan bahwa wilayah desa Kertajayan cocok untuk budidaya biota yang tidak sensitif seperti ikan nila, mujair, kakap putih atau ikan kerapu. Sedangkan Bonorowo dapat untuk budidaya biota yang sensitif seperti budidaya udang windu tetapi menggunakan teknologi tradisional plus yaitu dengan biokrate (lapisan plastik) karena faktor pembatas porositas tanah.
IV. 6. Penerapan Teknologi

Berdasarkan hasil evaluasi kesesuaian lahan yang dilakukan pada penelitian ini, teknologi budidaya yang cocok untuk pengembangan lahan potensial untuk pertambakan di Kabupaten Purworejo adalah teknologi sederhana sampai dengan teknologi intensif.

Di Kecamatan Purwodadi, yang cocok untuk penerapan teknologi budidaya adalah teknologi sederhana sampai dengan semi intensif.

Di Kecamatan Ngombol karena faktor tekstur tanah porositas > 60 % maka teknologi budidaya yang cocok semi intensif.

Di Kecamatan Grabag bahwa karena lokasi tersebut merupakan daerah penambangan besi maka jika dilakukan untuk budidaya teknologi yang diterapkan teknologi semi intensif. Kecuali daerah Bonorowo yang dapat diterapkan teknologi sederhana sampai dengan dengan intensif.
BAB V
KESIMPULAN DAN SARAN

A. KESIMPULAN:

Dari hasil penelitian Evaluasi Kesesuaian Lahan Pesisir untuk
Pengembangan Budidaya Tambak di Kabupaten Purworejo maka
dapat disimpulkan sebagai berikut:

1. Klas kesesuaian lahan potensial pesisir di Kabupaten Purworejo
seluas 1.352,02 ha termasuk kategori klas N1 (currently not
suitable/tidak sesuai saat), S3 (Marginally suitable/hampir sesuai)
dan S1 (Highly suitable/sangat sesuai).
 o Klas kesesuaian lahan N1 seluas 1.131,94 Ha, dengan
 karakteristik faktor pembatas salinitas dan kandungan BOD,COD.
 berlokasi Karanganyar, Gedangan, Jatimalang, Indocorn,
 Keburuhan dan Bonorowo.
 o Klas kesesuaian lahan S3 seluas 151,28 Ha, dengan karakteristik
 faktor pembatas porositas tanah, berlokasi di desa Wero dan
 Kertajayan.
 o Klas kesesuaian lahan S1 seluas 68,8 Ha, dengan karakteristik
 faktor pembatas adalah kandungan N,P,K dalam tanah
 berlokasi di desa Pagak, Kecamatan Ngombol.

2. Lahan tambak aktal di Kabupaten Purworejo, seluas 79,07 Ha
termasuk klas kesesuaian lahan N1, sebagai karakteristik faktor
pembatas salinitas dan kadar BOD dan COD.

3. Kesesuaian lahan berdasarkan nilai SAR (Sodium Absorbtion Ratio),
dari lahan seluas 1352,02 Ha maka yang cocok untuk budidaya biota
sensitif seluas 922,16 Ha (68,21 %), unit lahan untuk budidaya biota
kurang sensitif seluas 250,46 Ha (18,52 %) dan untuk biota tidak
sensitif seluas 179,4 Ha (13,27 %).

71
B. SARAN:

1. Untuk mengatasi faktor pembatas pada lahan tambak maka disarankan sebagai berikut:
 - Untuk salinitas rendah dan tingginya kandungan COD dan BOD dalam air maka dapat diatasi dengan membuat saluran irigasi, aerasi, sirkulasi air dan reklamasi lahan, atau kultivan yang akan dipelihara diadaptsi terlebih dahulu.
 - Untuk porositas tanah, dapat diatasi dengan perbaikan tekstur tanah yaitu dengan penambahan tanah liat, betonisasi, atau dengan menggunakan lapisan plastik (teknologi Biokrete).

2. Jenis kultivan/biota yang akan dipilih untuk dibudidayakan sesuai dengan kesesuaian nilai SAR (Sodium Absorbtion Ratio), adalah jika termasuk kategori biota sensitif adalah udang windu sebagai prioritas utama sedangkan yang termasuk biota kurang sensitif sampai dengan tidak sensitif adalah dapat dibudidayakan jenis ikan bandeng, nila, kerapu, kakap putih atau mujair.

3. Penerapan teknologi budidaya tambak yang cocok berdasarkan kesesuaian lahannya adalah penerapan teknologi sederhana sampai dengan teknologi maju.
DAFTAR PUSTAKA

Kepmen Kelautan dan Perikanan Nomor 34 tentang Pedoman Umum Penataan tata Ruang Pesisir dan Pulau-pulau Kecil. DKP. Jakarta.

