ANALISIS PERKEMBANGAN PERIKANAN TANGKAP
TAHUN 1987 – TAHUN 2001 AKIBAT PERUBAHAN
LUASAN LAGUNA SEGARA ANAKAN
CILACAP (JAWA TENGAH)

TESIS
Untuk Memenuhi Salah Satu Persyaratan
Guna Mencapai Deraajat Magister Sains

Program Pascasarjana Universitas Diponegoro
Program Studi Magister Manajemen Sumberdaya Pantai

Diajukan Oleh:
Herry Boesono S
K4A099010

PROGRAM PASCASARJANA
UNIVERSITAS DIPONEGORO
SEMARANG
2003
LEMBAR PENGESAHAN

ANALISIS PERKEMBANGAN PERIKANAN TANGKAP
TAHUN 1987 – TAHUN 2001 AKIBAT PERUBAHAN
LUASAN LAGUNA SEGARA ANAKAN
CILACAP (JAWA TENGAH)

Dipersiapkan dan disusun oleh
HERRY BOESONO S
K4A099010

Telah dipertahankan di depan Tim Penguji
pada tanggal : 25 April 2003

Pembimbing I

3
(Dr. Boedi Hendarto, Msc)

Pembimbing II

(Dr. Ir. Abdul Ghofar, Msc)

Penguji I

(Prof. Dr. Lachmuddin Syarani)

Penguji II

(ir. Asriyanto, MS., DFG)

Program Pascasarjana
Pembimbing: Dr. Manajemen Sumberdaya Pantai
Ketua,

Ketua,

Prof. Dr. Lachmuddin Syarani)
KATA PENGANTAR

Kegiatan perikanan tangkap merupakan salah satu kegiatan di bidang perikanan yang secara khusus berupa kegiatan menangkap atau mengumpulkan binatang atau tanaman air yang hidup dilaut atau di perairan umum secara bebas. Akibat adanya penurunan lingkungan di perairan Segara Anakan, terutama sejak banyaknya tanah timbul yang merubah perairan Segara Anakan menjadi daratan, maka terjadi pula kecenderungan pergersen mata pencaharian utama penduduk dari nelayan ke petani atau ke mata pencaharian alternatif lainnya. Pada tesis ini di angkat hal-hal yang berhubungan dengan kondisi perikanan tangkap Segara Anakan sebagaimana disebutkan diawal dari paragrap ini.

Pada kesempatan ini penulis menghaturkan terima kasih kepada Bapak Dr. Boedi Hendrarto,MSc dan Dr. Ir. Abdul Ghofar,MSc sebagai pembimbing yang telah memberikan arahan dan saran-saran kepada penulis dari awal penelitian hingga penulisan tesis ini, ucap penulis terima kasih juga disampaikan kepada Prof.Dr. Lachmudin Syar’ani dan Ir. Asriyanto, MS., DFG selaku penguji tesis yang telah memberikan banyak saran dan masukan yang berarti untuk perbaikan tesis ini.

Penghargaan juga penulis sampaikan kepada Staf PMO SACDP Cilacap, juga kepada saudara Agus Suherman, MSi dan Edi Kuncoro atas segala bantuan mereka dalam pengerjaan tesis ini, serta kepada seluruh keluarga terutama Istri dan ketiga putranda atas doa dan kasih sayangnya.

Penulis menyadari sepenuhnya bahwa tesis ini masih jauh dari kesempurnaan, oleh karena itu segala saran dan kritikan yang sifatnya membangun dengan senang hati penulis terima.

Akhirnya semoga tulisan ini bermanfaat

Semarang, Mei 2003

Penulis
RINGKASAN

Segara Anakan merupakan suatu perairan yang mempunyai fungsi strategis baik lingkungan maupun secara sosial-ekonomis, karena mempunyai karakteristik dan spesifikasi kekayaan berbagai sumberdaya perairan serta keanekaragaman flora dan fauna. Hutan mangrove di Segara Anakan mempunyai fungsi yang sangat penting, termasuk untuk perikanan tangkap karena merupakan tempat kelangsungan hidup berbagai jenis hewan-hewan tertentu seperti ikan dan udang. Disamping itu, Segara Anakan juga mempunyai fungsi sebagai tempat berkembang biaknya aneka jenis biota laut yang mendukung perekonomian masyarakat, dan daerah.

Hasil penelitian adalah sebagai berikut: Kondisi perikanan tangkap di Segara Anakan mengalami penurunan, hal ini ditandai dengan penurunan produksi perikanan dan jumlah alat tangkap yang beroperasi selama 15 tahun terakhir. Luasan laguna selama 15 tahun terakhir mengalami penyempitan, sehingga secara langsung berpengaruh terhadap perkembangan perikanan tangkap di Segara Anakan, peningkatan jumlah nelayan di Segara Anakan banyak dipengaruhi oleh keberadaan jenis alat tangkap yang beroperasi, khususnya alat tangkap Apong yang membutuhkan jumlah nelayan yang terlibat lebih banyak dalam operasi penangkapannya.

Kata Kunci: Perikanan Tangkap, Luas Laguna, Segara Anakan

ABSTRACT

Segara Anakan is waters which is had good strategic function is well as its environment and social-economic condition because of its characteristic and specification of rich of many water sources and also varies of flora and fauna. Mangrove forest functions in Segara Anakan is very important including the fishing activity because is many species like fish and prawn are live in this area. Besides, Segara Anakan as a reproduction place of varies marine organism has supporting the economic of people and government.

This research is aimed to find the illustration of fishing operation in Segara Anakan, Cilacap District, Central Java, and to analyze the development of fishing in Segara Anakan during the period of the year 1987-2001 caused by changes of Lagoon Area of Segara Anakan, Cilacap Recency, Central Java.

The study was based on the descriptive correlation development. In order to observe the development of fishing research, correlation of fishing activities with the change of the lagoon water area was evaluated and the variable used are: production of fish, amount of fishing gear, varies of species, and boats. The replications of research are location of marine villages in Segara Anakan such as: Penikel, Ujung Gagak and Ujung Alang. These places were chosen based on the main existence of fisherman who utilizes Segara Anakan as their fishing ground. In order to observe the domination of kind of fishing gears, descriptive statistical analysis of content analysis was used, the effect of lagoon area changes to other research variable was also evaluated by statistical analysis. The hypothesis that has been calculated shows the correlation of changes in lagoon area to production of fish; the correlation of changes on lagoon area to the varies of kind of fishing gear, the correlation of changes in lagoon area to the amount of fishing gear.

The research results can be describes as follow: the condition of fishing activities in Segara Anakan is decreasing, this is indicated by the decreasing of production and the amount of fishing gear that have been operated during the last 15 year. Reduction of area of lagoon was directly affected to the development of fishing activity in Segara Anakan. Increasing of the number of fishermen in Segara Anakan are mostly influenced by the existence of fishing gear being operated, especially “Apong” which is need more labour during its operation.

Key Words : Fishing Activity, Wide of Lagoon Area, Segara Anakan
DAFTAR ISI

HALAMAN JUDUL .. i
LEMBAR PENGESAHAN ... ii
KATA PENGANTAR ... iii
RINGKASAN .. iv
ABSTRACT .. v
DAFTAR ISI .. vi
DAFTAR TABEL ... vii
DAFTAR GAMBAR .. viii
DAFTAR LAMPIRAN .. x

BAB I. PENDAHULUAN ... 1
 1.1. Latar Belakang ... 1
 1.2. Pendekatan Masalah .. 3
 1.3. Tujuan Penelitian ... 4

BAB II. TINJAUAN PUSTAKA .. 6
 2.1. Perikanan Tangkap ... 6
 2.2. Kondisi Segara Anakan 9
 2.3. Kondisi Perikanan Segara Anakan 11

BAB III. METODE PENELITIAN ... 13
 3.1. Desain Penelitian ... 13
 3.2. Pelaksanaan Penelitian 13
 3.3. Pengolahan Data .. 15

BAB IV. HASIL DAN PEMBAHASAN .. 18
 4.1. Gambaran Umum Daerah Penelitian 18
 4.2. Deskripsi Perikanan Tangkap Segara Anakan 22
 4.3. Dinamika Perikanan Tangkap Segara Anakan 34
 4.4. Pembahasan Analisis Perkembangan Perikanan Tangkap di Segara Anakan 42

BAB V. KESIMPULAN DAN SARAN 55
 5.1 Kesimpulan ... 55
 5.2. Saran ... 55

DAFTAR PUSTAKA ... 56
LAMPIRAN .. 59
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pengurangan Luas Perairan Segara Anakan</td>
<td>10</td>
</tr>
<tr>
<td>2. Kriteria Penduduk Dilihat dari Asal-usul</td>
<td>21</td>
</tr>
<tr>
<td>3. Jenis-jenis Alat Tangkap yang Beroperasi di Segara Anakan</td>
<td>22</td>
</tr>
<tr>
<td>5. Jenis / Komposisi Hasil Tangkapan dengan Alat Tangkap Apong</td>
<td>46</td>
</tr>
<tr>
<td>Gambar</td>
<td>halaman</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1. Skema Pendekatan Masalah</td>
<td>5</td>
</tr>
<tr>
<td>2. Alat Tangkap Apong</td>
<td>23</td>
</tr>
<tr>
<td>3. Alat Tangkap Wadong</td>
<td>24</td>
</tr>
<tr>
<td>4. Alat Tangkap Jaring Gejarah</td>
<td>25</td>
</tr>
<tr>
<td>5. Alat Tangkap Pintur</td>
<td>26</td>
</tr>
<tr>
<td>6. Alat Tangkap Pancing Ulur</td>
<td>27</td>
</tr>
<tr>
<td>7. Alat Tangkap Arad</td>
<td>28</td>
</tr>
<tr>
<td>8. Alat Tangkap Jaring Tadah</td>
<td>29</td>
</tr>
<tr>
<td>9. Alat Tangkap Sero</td>
<td>30</td>
</tr>
<tr>
<td>10. Alat Tangkap Waring Surung</td>
<td>31</td>
</tr>
<tr>
<td>11. Alat Tangkap Jaring Kepiting</td>
<td>32</td>
</tr>
<tr>
<td>12. Alat Tangkap Jaring Ciker</td>
<td>33</td>
</tr>
<tr>
<td>13. Komposisi hasil tangkapan Wadong di Segara Anakan tahun 1999</td>
<td>34</td>
</tr>
<tr>
<td>14a. Histogram Perkembangan alat Tangkap di Segara Anakan yang</td>
<td></td>
</tr>
<tr>
<td>Bersifat Statis Tahun 1987 – 2001</td>
<td>35</td>
</tr>
<tr>
<td>14b. Histogram Perkembangan alat Tangkap di Segara Anakan yang</td>
<td></td>
</tr>
<tr>
<td>Bersifat Dinamis Tahun 1987 – 2001</td>
<td>36</td>
</tr>
<tr>
<td>15. Komposisi Hasil Tangkapan Jaring Kepiting di Segara Anakan Tahun</td>
<td></td>
</tr>
<tr>
<td>1999 (Dudley, 2000)</td>
<td>37</td>
</tr>
<tr>
<td>(Dudley, 2000)</td>
<td>38</td>
</tr>
<tr>
<td>17. Peta Penyebaran Alat Tangkap di Segara Anakan Tahun 1987</td>
<td>39</td>
</tr>
<tr>
<td>18. Peta Penyebaran Alat Tangkap di Segara Anakan Tahun 1994</td>
<td>40</td>
</tr>
<tr>
<td>19. Peta Penyebaran Alat Tangkap di Segara Anakan Tahun 2001</td>
<td>41</td>
</tr>
<tr>
<td>21. Hubungan Luas Laguna dengan Produksi Ikan</td>
<td>43</td>
</tr>
</tbody>
</table>
22. Hubungan Luas Laguna dengan Alat Tangkap .. 47
23. Hubungan Luas Laguna dengan Jumlah Nelayan 48
24. Hubungan Luas Laguna dengan Jumlah Perahu 49
25. Korelasi sederhana dari factor-faktor yang berpengaruh terhadap perkembangan perikanan tangkap ... 50
1. PENDAHULUAN

1.1. Latar Belakang

Sampai saat ini produksi perikanan di Indonesia masih didominasi oleh hasil tangkapan nelayan berskala kecil (Artisanal Fisheries), yang mempunyai ciri-ciri: (1) Alat tangkap sederhana, (2) Ukuran perahu dan mesin tidak terlalu besar, (3) Jarak jangkauan operasi disekitar pantai.

Di daerah pantai yang menjadi daerah penangkapan nelayan kecil tersebut terdapat berbagai keunikan komunitas hayati tropik yang khas misalnya:

- Terumbu karang (coral reefs), baik terumbu karang pinggiran (fringing reefs, terumbu karang penghalang (barrier reefs), maupun atoll
- Hutan Bakau (Mangrove).
- Padang Lamun (Sea grass).

Komunitas tersebut sangat penting bagi perikanan, terutama untuk tempat berpulih, tumbuh, mencari makan dan perlindungan bagi berbagai jenis ikan yang bernilai ekonomis tinggi. Dewasa ini secara umum wilayah pantai secara terus menerus mendapat tekanan akibat berbagai aktifitas manusia. Tekanan-tekanan tersebut dapat berupa pencemaran, baik dari industri, rumah tangga ataupun dari sektor pertanian, penebangan hutan bakau secara besar-besaran (penyebab sedimentasi), pengambilan karang, dan penggunaan alat tangkap yang merusak sumberdaya atau habitat.

Segara Anakan merupakan daerah estuaria yang luas dan memiliki

1.2. Pendekatan Masalah

Segara Anakan yang merupakan kawasan potensial bagi pertumbuhan tanaman mangrove, adalah laguna tempat bermuaraanya beberapa sungai seperti sungai Citanduy, Cikonde, Cibereum dan sungai Ujung Alang. Kondisi perairan ini yang terhalang oleh pulau Nusa Kambangan terhadap Samudera Indonesia, menyebabkan Segara Anakan merupakan habitat yang baik bagi berkembang biaknya ikan dan udang. Akan tetapi Daerah Aliran Sungai (DAS) dari sungai yang bermuara
di Segara Anakan, pada umumnya dalam kondisi yang kurang baik, terutama sungai Citanduy.

Besarnya angkutan sedimen dari sungai Citanduy mencapai 5 juta m³/ tahun, serta sungai Cikonde dan lainnya sebesar 770.000 m³/ tahun. Tingginya angkutan sedimen dari sungai-sungai tersebut menyebabkan tingkat pengendapan di Segara Anakan diperkirakan mencapai 1 juta m³/ tahun. Kondisi ini selanjutnya menimbulkan pendangkalan diperairan dan menyebabkan terjadinya daratan baru (tanah timbul) yang dapat mengurangi areal perairan. Salah satu akibat keadaan ini adalah berkurnaginya area untuk berkembang biaknya ikan dan udang dan fishing ground bagi nelayan di Segara Anakan, sehingga dengan demikian akan berakibat pada dinamika perikanan tangkap yang ada di daerah ini.

1.3. Tujuan Penelitian

Penelitian ini bertujuan untuk :

II. TINJAUAN PUSTAKA

2.1. Perikanan Tangkap

Perikanan tangkap merupakan salah satu sektor perikanan yang bersifat dinamis dengan tujuan tertentu. Menurut Monintja (2002), Kegiatan Perikanan tangkap merupakan salah satu kegiatan di dalam perikanan yang secara khusus berupa kegiatan menangkap atau mengumpulkan binatang atau tanaman air yang hidup dilaut atau di perairan umum secara bebas.

Kegiatan penangkapan ikan yang dimaksud bertujuan untuk mendapatkan keuntungan baik secara finansial, maupun memperoleh nilai tambah lainnya seperti pemenuhan kebutuhan terhadap protein hewan, penyerapan tenaga kerja, devisa serta pendapatan negara lainnya.

Di Indonesia usaha perikanan tangkap telah diatur menurut ketentuan hukum. Dirjen perikanan tangkap (2000) menjelaskan bahwa usaha perikanan tangkap menurut UU Republik Indonesia No. 22 Tahun 1999 pasal 3 menyebutkan bahwa wilayah Daerah Propinsi, sebagaimana yang dimaksud pasal 2 ayat 1 terdiri atas wilayah darat dan wilayah laut sejauh 12 mil laut yang diukur dari garis pantai ke arah laut lepas dan atau ke arah perairan kepulauan. Selanjutnya pasal 10 ayat 2 menyebutkan bahwa kewenangan daerah di wilayah laut sebagaimana dimaksud pasal 3, meliputi:

a. Eksplorasi, eksploitasi, konservasi, dan pengolahan kekayaan laut sebatas pengelolaan laut tersebut.
b. Pengaturan kepentingan administrasi

c. Pengaturan tata ruang

d. Penegakan hukum terhadap peraturan yang dikeluarkan oleh daerah atau yang dilimpahkan kewenangannya oleh Pemerintah.

e. Bantuan penegakan keamanan dan kedaulatan negara.

Kemudian pada pasal 10 ayat 3 dijelaskan bahwa kewenangan daerah kabupaten dan daerah kota di wilayah laut, sebagaimana yang dimaksud dengan ayat 2 adalah sejauh sepertiga dari batas laut daerah propinsi.

Syafri (1993) mengemukakan bahwa pembangunan perikanan yang tangguh berkaitan erat proses pemanfaatan sumberdaya alam, sumberdaya manusia dan sumberdaya dana yang tersedia.

Berdasarkan sifat sumber alamnya, pengembangan usaha perikanan tangkap sangat tergantung pada ketersediaan sumberdaya perikanan di suatu perairan. Fluktuasi kegiatan perikanan pada akhirnya mempengaruhi nelayan yang beroperasi di sekitar daerah tersebut. Selanjutnya menurut Direktorat Jenderal Perikanan 1993, usaha perikanan adalah semua usaha perorangan atau badan hukum untuk menangkap atau memberdayakan ikan termasuk kegiatan menyimpan, mendinginkan, atau mengawetkan ikan untuk tujuan komersil atau mendapatkan laba dari kegiatan yang dilakukan. Sedangkan perikanan laut sebagai sub-sektor usaha tersebut dibagi menjadi 2 aspek yaitu:

(1) penangkapan di laut, adalah semua kegiatan penangkapan dilaut dan muara-

muara sungai lagunan dan sebagainya yang dipengaruhi oleh pasang surut.
Pada umumnya desa perikanan terletak disekitar muara sungai, laguna dan lain-lain. Dalam hal demikian semua kegiatan penangkapan yang dilakukan oleh nelayan dari perikanan laut dinyatakan sebagai penangkapan dilaut;

(2) Budidaya dilaut adalah semua kegiatan memelihara yang dilakukan dilaut atau diperairan lain yang terletak di muara sungai dan laguna.

Pembangunan perikanan tangkap merupakan proses atau kegiatan manusia untuk meningkatkan produksi sekaligus meningkatkan pendapatan nelayan melalui penyerapan teknologi yang lebih baik (Bahari, 1989). Menurut UU no 9 tahun 1985 penangkapan ikan adalah kegiatan yang bertujuan untuk memperoleh ikan diperairan yang dalam keadaan tidak dibudidayakan dengan alat ataupun cara apapun termasuk kegiatan yang menggunakan kapal untuk menampung, mengangkut, menyimpan, mendinginkan, mengolah dan mengawetkan.

Teknologi penangkapan ikan yang akan dikembangkan setidaknya harus memenuhi empat aspek pengkajian “bio-techniko-socio-economic-approach” yaitu:

a. Bila ditinjau dari segi biologi tidak merusak atau mengganggu kelestarian sumberdaya.

b. Secara teknis efektif digunakan

c. Dari segi sosial dapat diterima oleh masyarakat nelayan

d. Secara ekonomi, teknologi tersebut bersifat menguntungkan.

Satu aspek tambahan yang perlu diperhatikan adalah adanya ijin pemerintah yang berupa kebijakan dan peraturan pemerintah (Haluan dan Nurani, 1988).

Menurut Monintja (1987) jika pengembangan perikanan di suatu wilayah
perairan ditekankan pada perluasan kesempatan kerja maka teknologi yang perlu
dikembangkan adalah teknologi penangkapan ikan yang relatif mampu menyerap
banyak tenaga kerja dengan pendapatan para nelayan yang memadai. Dalam
kaitannya dengan penyediaan protein hewani untuk masyarakat luas harus dipilih unit
penangkapan ikan yang memiliki produktifitas unit dan produktifitas nelayan yang
tinggi namun masih dapat dipertanggungjawabkan secara biologis dan ekonomis.

Penerapan teknologi baru tidak begitu mudah karena dipengaruhi oleh banyak
faktor. Nelayan kecil kadang-kadang lambat dalam mengadopsi teknologi baru
karena beberapa alasan, yaitu mereka enggan untuk mengambil resiko dengan modal
merekanya yang terbatas.

Mubiarto, 1996 mengemukakan alasan utama mengapa nelayan berlaku tetap
pada cara-cara yang lama dalam lingkungan ekonomi tertentu adalah mereka sangat
mempertimbangkan adanya resiko dan ketidakpastian (risk and uncertainty) terutama
pada faktor ketidak pastian, selanjutnya dikatakan bahwa mereka beranggapan bahwa
keuntungan yang mereka peroleh dari penggunaan teknologi baru kenyataannya akan
lebih rendah hasilnya.

2.2. Kondisi Segara Anakan

Dewasa ini kondisi kawasan Segara Anakan mengalami penurunan
lingkungan yang memprihatinkan akibat tingginya tingkat sedimentasi yang
mengakibatkan timbunnya daratan baru (tanah timbul) dan menyebabkan
berkurangnya luas perairan kawasan tersebut.
Penelitian tentang luas sudah dilakukan oleh banyak pihak mulai dari tahun 1903 sampai sekarang.

Tabel 1, Pengurangan Luas Perairan Segara Anakan

<table>
<thead>
<tr>
<th>No</th>
<th>Tahun</th>
<th>Luas Perairan (Ha)</th>
<th>Keterangan (sumber)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1978</td>
<td>4290</td>
<td>UGM, 1999</td>
</tr>
<tr>
<td>2.</td>
<td>1987</td>
<td>2701</td>
<td>UGM, 1998</td>
</tr>
<tr>
<td>5.</td>
<td>2000</td>
<td>500</td>
<td>Prediksi (Eci, 1994)</td>
</tr>
</tbody>
</table>

Sumber: ECI (1994)
Penyusutan luas perairan tersebut sangat dipengaruhi oleh proses pengendapan sedimen yang dibawa oleh aliran sungai-sungai besar yang bermuara di Segara Anakan seperti Sungai Citanduy, Sungai Cikonde dan Sungai Cibereum, Disisi lain, sedimentasi tersebut juga berpengaruh terhadap kedalaman perairan yang pada tahun 1900 rata-rata masih sekitar 2.70 meter menjadi lebih kurang 1,03 meter pada tahun 1980 (ECI, 1994), Ini berarti bahwa dalam kurun waktu 80 tahun telah terjadi pendangkalan lebih dari 1,67 meter atau rata-rata 2 cm / tahun.

Penurunan lingkungan yang mengakibatkan timbulnya berbagai permasalahan antara lain berkurangnya habitat fauna benthic dan berkurangnya tingkat perkembang biakan ikan dan udang (Toro, V and Sukardjo, 1988)

2.3. Kondisi Perikanan di Segara Anakan

Akibat adanya penurunan lingkungan di perairan Segara Anakan, terutama sejak banyaknya tanah timbul yang merubah perairan Segara Anakan menjadi daratan, maka terjadi pula kecenderungan pergeseran mata pencaharian utama penduduk dari nelayan ke petani atau ke arah mata pencaharian alternatif lainnya yang masih harus dicari-cari atau dicoba-coba (PMO SACDP, 1999).

Perubahan mata pencaharian tersebut disebabkan perolehan ikan yang semakin hari semakin berkurang.
III. METODE PENELITIAN

3.1. Desain Penelitian

Untuk mengetahui perkembangan perikanan tangkap dalam korelasinya dengan perubahan luasan Laguna Segara Anakan, maka variabel yang disertakan untuk diselidiki dalam setiap replikasi adalah:

- Produksi perikanan
- Jenis alat tangkap dan jumlah alat tangkap
- Keanekaragaman jenis ikan
- Sarana apung (perahu)

Stratifikasi dan lokasi sampling adalah di desa-desa kampung laut Segara Anakan, yaitu Desa Penikel, Desa Ujung Gagak dan Desa Ujung Alang. Pemilihan desa ini adalah berdasarkan keberadaan dari nelayan yang menggantungkan Segara Anakan sebagai fishing ground mereka.

3.2. Pelaksanaan Penelitian

Dalam melaksanakan penelitian dilakukan pengumpulan data yang berkaitan dengan masing-masing variabel penelitian yang dapat dijelaskan sebagai berikut:
3.2.1. Luas Laguna

Data perkembangan luas laguna diperoleh dari data sekunder yang diperoleh dari Proyek Manajemen Office SACDP Cilacap, Pelaksana Proyek Induk Pengembangan Sungai Citandui, Cibulan Dirjen Pengairan Departemen Pekerjaan Umum serta instansi lainnya.

3.2.2. Produksi Perikanan

Data produksi perikanan dikoleksi dengan bantuan kuesioner. Untuk menghimpun dan mencari informasi data sekunder dilakukan melalui Laporan Perikanan Kabupaten Cilacap, Data Perikanan dalam Angka Kabupaten Cilacap, Statistik Perikanan dalam BPS, Monografi Desa Ujung Gagak, Desa Ujung Alang, Desa Penikel, TPI Begawan Donan, TPI Tritih Kulon dan TPI Kawung Nganten.

3.2.3. Jenis dan Jumlah Alat Tangkap

Data jenis alat tangkap pada saat penelitian berupa data primer dan data sekunder. Data primer adalah data jenis alat tangkap yang terdapat pada lokasi penelitian yang diperoleh dengan menggunakan metode observasi dengan menggunakan sample yang ditentukan dengan metode sampling acak. Dalam hal ini dilakukan pengukuran secara langsung dimensi dari masing-masing alat tersebut. Data sekunder diperoleh dengan melakukan pencatatan data alat tangkap yang terdapat di masing-masing desa selama 15 tahun terakhir (tahun 1987- tahun 2001).
3.2.4. Keanekaragaman jenis ikan

Data keanekaragaman jenis ikan pada saat penelitian berupa data primer dan data sekunder. Data primer adalah data ikan yang tertangkap di laguna, dikoleksi menggunakan metode observasi, dengan sample yang ditentukan secara sampling acak. Dalam hal ini dilakukan pengecekan langsung jenis ikan di beberapa lokasi pendaratan ikan berdasarkan hasil tangkapan nelayan. Nelayan yang dimaksud adalah mereka yang melakukan kegiatan penangkapan ikan di perairan Segara Anakan yang menggunakan alat tangkap yang umum digunakan di daerah tersebut. Ikan yang tidak dapat teridentifikasi di lapangan difoto dan diawetkan dalam larutan formalin 6% kemudian diidentifikasi di laboratorium Jurusan Perikanan Undip dengan bantuan pustaka.

3.2.5. Sarana Apung (Perahu)

Data primer mengenai Perahu meliputi ukuran utama (principle dimension) dan jenis serta kekuatan mesin yang digunakan. Data sekunder berupa jumlah perahu yang terdapat di tiga desa penelitian selama 15 tahun terakhir.

3.3. Pengolahan data.

Data dari masing-masing variabel dikelola untuk dimasukkan dalam tabel induk untuk kemudian di analisis. Untuk menentukan dominansi jenis alat tangkap digunakan analisis statistik deskriptif berupa analisis isi (content analysis), sedangkan
untuk melihat pengaruh luas laguna terhadap variabel-variabel penelitian lainnya.

Untuk ini hipotesis yang diujikan adalah:

a. Adanya korelasi perubahan luas laguna dengan produksi perikanan.
b. Adanya korelasi perubahan luas laguna dengan jumlah /jenis alat tangkap.
c. Adanya korelasi perubahan luas laguna dengan jumlah nelayan
d. Adanya korelasi antara perubahan luas laguna dengan sarana tangkap.

Untuk membuktikan hipotesis ini dilakukan uji statistik korelasi, sedangkan bentuk hubungan antar variabel dalam hipotesis tersebut dinyatakan dengan regresi linier.

Model hubungan linier yang terjadi dapat dilihat dalam bentuk persamaan \(Y = a + bx \)

Dimana:

a : konstanta yang menerangkan keadaan pada saat \(x = 0 \)
b : koefisien yang menyatakan perubahan untuk setiap pertambahan \(x \), dimana nilai b dalam penelitian ini menerangkan kecenderungan jumlah produksi, jumlah dan jenis alat tangkap, jumlah nelayan dan jumlah sarana apung akan meningkat atau menurun. Bila nilai b Positif maka cenderung naik dan b negative cenderung menurun (Sudjana, 1993).

Nilai b dapat dihitung dengan rumus:

\[
b = \frac{n \sum XY - (\sum X)(\sum Y)}{n(\sum Y^2) - (\sum Y)^2}
\]

Untuk mengetahui keceretaan hubungan antara luas laguna dengan jumlah produksi/ jumlah dan jenis alat tangkap/ jumlah nelayan dan jumlah sarana apung maka
dilakukan dengan menghitung nilai koefisien Pearson sebagai penduga keeratan hubungan. Nilai r dapat dihitung sebagai berikut:

\[
r = \frac{n \sum X_i Y_i - n \left(\frac{\sum X_i \sum Y_i}{n} \right)}{\sqrt{\left(\sum X_i^2 - \left(\frac{\sum X_i^2}{n} \right) \right) n \left(\sum Y_i^2 - \left(\frac{\sum Y_i^2}{n} \right) \right)}}
\]

Sebelum digunakan untuk meramal parameter korelasi populasi terlebih dahulu dicari apakah korelasi yang didapat ada artinya atau tidak. Karena itu dilakukan pengujian hipotesis bahwa Ho = 0 (atau tidak berarti) melawan H₁ ≠ 0 (atau mempunyai arti).

Untuk pengujian ini digunakan statistik t dengan rumus:

\[t = \frac{(r \times (n-2)^{1/2})}{(1-r^2)^{1/2}}\] dengan dk = n-2

Kriteria pengujian adalah tolak Ho jika harga mutlak t dari rumus di atas lebih besar dari pada harga t yang didapat dari tabel distribusi t dengan α yang dipilih.
IV. HASIL DAN PEMBAHASAN

4.1. Gambaran Umum Daerah Penelitian

4.1.1. Letak Geografis dan Administratif

4.1.1.1. Keadaan Desa Ujung Alang

Desa Ujung Alang terletak di bagian tenggara dari pemukiman kawasan Segara Anakan (Kampung Laut), dengan batas desa:

- Sebelah Utara : berbatasan dengan Desa Penikel
- Sebelah Selatan : berbatasan dengan Pulau Nusa Kambangan
- Sebelah Barat : berbatasan dengan Desa Ujung Gagak
- Sebelah Timur : berbatasan dengan Desa Tambak Rejo

4.1.1.2. Keadaan Desa Ujung Gagak

Desa Ujung Gagak terletak di bagian Barat kawasan Segara Anakan dengan batas desa:

- Sebelah Utara : berbatasan dengan Desa Ginting Rejo
- Sebelah Selatan : berbatasan dengan Pulau Nusa Kambangan
- Sebelah Barat : berbatasan dengan Desa Rawa Apu
- Sebelah Timur : berbatasan dengan Desa Penikel.

Desa Ujung Gagak terdiri dari 3 kelompok pemukiman yaitu pemukiman Karanganyar, Cibereum dan Ujung Barung. Antar kelompok pemukiman dapat dijangkau dengan menggunakan transportasi air yaitu perahu motor yang memakan waktu ± 30 menit setiap kelompok pemukiman mempunyai kantor desa dengan satu orang kepala dusun (Kadus) yang merupakan kepanjangan tangan Kepala Desa.
Kantor desa utama terdapat di Dusun Karanganyar dipimpin oleh seorang Kepala Desa (Kades). Lokasi ini merupakan kelompok pemukiman berpenduduk paling besar yang terdiri dari 4 RW dari 6 RW di desa Ujung Gagak.

4.1.1.3. Keadaan Desa Penikel

Desa Penikel terletak di bagian utara dari pemukiman kawasan Segara Anakan (kampung laut), merupakan lokasi desa yang terdekat dengan Pulau Jawa, dengan batas desa:

- Sebelah Utara : berbatasan dengan Desa Bantar Sari
- Sebelah Selatan : berbatasan dengan Desa Ujung Alang
- Sebelah Barat : berbatasan dengan Desa Ujung Gagak
- Sebelah Timur : berbatasan dengan Dusun Binangun

Desa Penikel terdiri dari 10 RW yang tersebar di tiga lokasi pemukiman yaitu kelompok pemukiman Muara Dua berada di bagian selatan dan merupakan pemukiman yang paling padat, meliputi 6 wilayah RW, kelompok pemukiman Bugel berada di bagian Barat dan kelompok pemukiman Penikel yang merupakan kelompok pemukiman paling utara. Transportasi untuk menuju desa ini dapat ditempuh dengan jalur darat yang melewati Desa Grugu dan Bojong serta jalur transportasi air dengan menggunakan perahu atau sampan.

4.1.2. Penduduk

Penduduk ketiga desa tersebut sebagian besar telah turun temurun mendiami daerah tersebut kecuali di Desa Penikel yang telah banyak mengalami perubahan
dikarenakan banyaknya pendatang yang datang. Hal itu disebabkan adanya program pemerintah dalam pembangunan sarana dan prasarana di kawasan Segara Anakan ini. Para pendatang ini umumnya berasal dari daerah Ciamis, Cirebon ataupun kota-kota lain yang berbatasan dengan Cilacap. Kriteria penduduk asli dan pendatang dapat dijelaskan seperti pada Tabel 2

<table>
<thead>
<tr>
<th>No</th>
<th>Kriteria</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Penduduk Asli</td>
<td>Penduduk asli adalah penduduk yang sejak lahir telah tinggal di desa tersebut sejak daerah tersebut mengalami pertumbuhan daratan atau tanah timbul yang diakibatkan oleh sedimentasi dan secara turun temurun mendiami petak-petak yang ada, mereka adalah nelayan. Alasan mereka tinggal dikarenakan mereka merasa telah tinggal selama ini sejak daerah ini mulai mengalami pertumbuhan, rumah warisan, ikatan kekeluargaan, letaknya yang strategis dan sebagai tempat mencari nafkah.</td>
</tr>
</tbody>
</table>

Sumber: Vidyabrata, 2002

Berdasarkan kriteria dalam Tabel 2, hasil penelitian di lapangan menunjukkan bahwa penduduk di ketiga desa "Kampung Laut", yaitu Desa Ujung Alang, Desa Ujung
Gagak dan Desa Penikel ini sebagian besar termasuk kriteria penduduk asli yang telah turun-temurun berdiam dan berada di ketiga desa ini menganggap dirinya asli dari daerah ataupun kawasan Segara Anakan.

4.2. Deskripsi Perikanan Tangkap di Segara Anakan

Tabel 3. Jenis-jenis alat tangkap yang beroperasi di Segara Anakan

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Lokal</th>
<th>Nama Indonesia</th>
<th>Nama Inggris</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apong</td>
<td>Perangkap Jaring</td>
<td>Fyke Net</td>
</tr>
<tr>
<td>2</td>
<td>Wadong</td>
<td>Bubu</td>
<td>Crab Trap</td>
</tr>
<tr>
<td>3</td>
<td>Jaring Gejrah</td>
<td>Jaring Insang Lingkar</td>
<td>Encircle Gillnet</td>
</tr>
<tr>
<td>4</td>
<td>Pintur</td>
<td>Perangkap</td>
<td>Trap</td>
</tr>
<tr>
<td>5</td>
<td>Pancing ulur</td>
<td>Pancing</td>
<td>Handline</td>
</tr>
<tr>
<td>6</td>
<td>Arad</td>
<td>Pukat Pantai</td>
<td>Beach Seine</td>
</tr>
<tr>
<td>7</td>
<td>Jaring Tadah</td>
<td>Jala</td>
<td>Cast Net</td>
</tr>
<tr>
<td>8</td>
<td>Sero</td>
<td>Sero</td>
<td>Guiding Barier</td>
</tr>
<tr>
<td>9</td>
<td>Waring Surung</td>
<td>Perangkap</td>
<td>Push Net</td>
</tr>
<tr>
<td>10</td>
<td>Jating ciker</td>
<td>Trammel Net</td>
<td>Trammel Net</td>
</tr>
<tr>
<td>11</td>
<td>Jaring Kepiting</td>
<td>Jaring</td>
<td>Crab Gillnet</td>
</tr>
</tbody>
</table>

Hasil pengamatan lapangan terhadap masing-masing alat tangkap tersebut pada tabel 3 di jelaskan berikut ini:
a. Alat Tangkap Apong (*Fyke net*)

Apong adalah sejenis alat tangkap yang mempunyai karakteristik pasif/statis (*stationary*), biasanya dipasang pada kedalaman laut 3-5 m. Alat ini terdiri dari sepasang sayap (*wings*) dan sebuah kantong (*bunt/pocket*). Ujung sayap dan ujung net biasanya dipancangkan pada tongkat yang diikat dengan seutas tali didaerah hamparan padang lamun (*seabed*), secara umum gambaran tentang alat tangkap Apong yang dioperasikan di Segara Anakan tampak pada Gambar 2. Pengoperasian alat ini menggunakan perahu jukung berukuran panjang 8,5 m; lebar 0,7 m dan dalam 0,35 m dengan penggerak dayung atau motor tempel.

Hasil tangkapan yang sebagian besar adalah udang (*Penaeus sp*) dan ikan demersal.

![Gambar 2. Alat tangkap Apong (*Fyke net*)](image-url)
b. Alat Tangkap Wadong (*Crab trap*)

Wadong termasuk jenis alat tangkap trap. Terbuat dari bambu berbentuk silinder dan mempunyai mulut dikedua ujungnya sebagai tempat masuknya kepiting. Panjang dari mulut yang satu ke mulut lainnya adalah sekitar 55 cm, sedangkan diameternya berkisar 80 cm. Gambaran tentang alat tangkap wadong ditunjukkan pada Gambar 3.

![Gambar 3. Alat tangkap Wadong (*Crab trap*)](image)

Wadong dioperasikan dengan cara meletakkannya diatas hamparan sea bed, kedua sisi (kiri dan kanan) diberi tongkat penahan arus. Jarak setting setiap wadong kira-kira 10 m. Alat ini biasanya dioperasikan diperairan yang banyak ditumbuhki mangrove dimana pada saat surut terendah dilakukan pemasangan/peletakan Wadong, sedangkan pada saat air pasang tertinggi Wadong diangkat untuk mengambil hasil tangkapan.
Penggunaan umpan dilakukan untuk menarik mangsa yang bersifat carnivora sebagai tujuan utama penangkapan. Hasil tangkapan alat tangkap wadong adalah kepiting (*Scylla* sp).

Perahu yang digunakan dalam pengangkutan alat tangkap wadong menuju fishing ground terbuat dari kayu dengan panjang 7,5 m; lebar 0,6 m dan dalam 0,3 m. Perahu jenis ini diklasifikasikan sebagai jukung (perahu tradisional), sebagai penggerak perahu menggunakan dayung dan layar.

c. Alat Tangkap Jaring Gejrah (*Encircle Gillnet*)

Alat tangkap ini terbuat dari *nylon monofilament* berbentuk persegi dengan mesh size 2,5 cm (Gambar 4). Satu net mempunyai ukuran panjang sekitar 18 m dengan lebar 25 mesh; dimana dalam satu unit operasi memerlukan 4 (empat) net.

Gambar 4. Alat Tangkap Jaring Gejrah (*Encircle Gillnet*)

Jaring Gejrah dioperasikan pada permukaan laut dengan melingkarkan net. Kemudian pada saat yang sama beberapa orang nelayan berada ditengah-tengah lingkaran sambil memukul air dengan dayung sehingga menimbulkan suara yang
menyebabkan ikan takut, membentur dinding net dan terperangkap didalamnya. Perahu yang digunakan adalah Jukung yang mempunyai ukuran panjang 7,5 m; lebar 0,6 m dan dalam 0,3 m. Tenaga penggerak perahu menggunakan dayung.

Hasil tangkapan utama adalah Belanak (*Mugil* sp), Gulamah atau tigawaja (*Sciaenidae*) dan Gerot-gerot (*Scatophagidae*).

d. Alat Tangkap Pintur (*Trap*)

Pintur yaitu sejenis alat tangkap yang terbuat dari net dan termasuk dalam golongan trap. Trap berbentuk lingkaran terbuat dari bambu dengan ketebalan 0,5 cm dan diameter 50 cm yang berfungsi untuk melingkarkan net. Sedangkan netnya terbuat dari nylon monofilament dengan diameter 0,5 mm dan mesh size 10,5 cm (Gambar 5). Alat tangkap ini bersifat stationary (diam), beroperasi pada kedalaman 3-4 m dan dilakukan malam hari sampai sebelum matahari terbit. Hasil tangkapannya adalah kepiting/crab (*Scylla* sp).

![Gambar 5. Alat tangkap Pintur (*Trap*)](image)
Perahu yang digunakan dalam pengoperasian Pintur yaitu Jukung dengan ukuran panjang 7m, lebar 0,5 m dan dalam 0,25 m; dilengkapi dengan dayung sebagai penggeraknya.

e. Alat Tangkap Pancing Ulur (*Hand line*)

Pancing ulur adalah sejenis alat tangkap yang terdiri dari pancing, tali pancing dan penggulung tali pancing (*line roller*). Pancing yang digunakan adalah no. 20, tali berupa nylon monofilament no.4 dan roller terbuat dari kayu. (Gambar 6).

![Gambar 6. Alat tangkap Pancing Ulur (*Hand line*)](image)

Pancing (*hand line*) ini dioperasikan dengan melemparkan tali kedalam air; mulai dari permukaan sampai batas tengah kedalaman, biasanya berlangsung pada siang hari. Hasil tangkapan: berupa ikan kakap merah (*Lutjanus* sp), kuro, senangin (*Eutheronema* sp), kurisi (*Nemiptherus* sp), kuwe (*Caranx* sp), ikan biji nangka, dan kuniran (*Upeneus* sp).
Perahu yang digunakan adalah Jukung dengan ukuran panjang 7m, lebar 0,5 m dan dalam 0,25 m dengan tenaga penggerak dayung.

f. Alat Tangkap Arad (Beach seine)

Alat ini terdiri dari net yang berbentuk kantong dimana kedua sisinya dilengkapi oleh sayap. Panjang jaring dari bagian sayap sampai bagian kantong yaitu 35 m. Alat ini terdiri dari 5 (lima) bagian dimana setiap bagian mempunyai ukuran mesh size yang berbeda. Bagian sayap (wings) mempunyai ukuran mesh size terbesar yaitu 5 cm, dan bagian yang disebut “keleh” mempunyai mesh size 4,25 cm; sedangkan bagian branch; benget dan bunt mempunyai ukuran mesh size masing-masing 3,75cm, 2,5 cm dan 1,25 cm. (Gambar 7).

Gambar 7. Alat tangkap Arad (Beach seine)

Operasi penangkapan dilakukan sepanjang pagi sampai sore menjelang matahari terbenam difishing ground disekitar pantai (seashore). Pengoperasian alat ini yaitu dengan membentuk setengah lingkaran dari bagian kantong, kemudian
beroperasi di perairan pantai dan sungai-sungai yang mempunyai kedalaman rendah. Hasil tangkapan berupa udang (*Penaeus* sp), belanak (*Mugil* sp), tembang (*Dussumiera*, sp), selar (*Caranx* sp), pirik dan bilis.

h. Alat Tangkap Sero (Guiliding Barrier)

Sero adalah sejenis trap net yang mempunyai konstruksi seperti pagar terbuat dari kayu dengan tinggi berkisar antara 1,5-2,0 m (Gambar 9)

![Gambar 9. Alat tangkap Sero (Guiliding Barrier)](image)

i. Alat Tangkap Waring Surung *(Push net)*

Waring surung yaitu alat tangkap yang berbentuk segitiga. Terdiri dari frame, net dan kantong *(bunt/pocked)* (Gambar 10). Frame terbuat dari bambu dengan panjang kedua sisi masing-masing 5 m, sedangkan diameter bambu adalah 5,9 cm. Bahan net terbuat dari plastik lembaran dengan ukuran panjang 8 m dan 35 cm.

Waring surung dioperasikan dengan mendorongnya ke permukaan laut dengan bantuan perahu kecil. Penangkapan dilakukan disekitar pantai, arah warung berlawanan arah arus. Hasil tangkapan utamanya adalah udang putih *(Metapenaeus spp)*:

![Diagram Waring Surung](image)

Gambar 10. Alat Tangkap Waring Surung *(Push net)*

Perahu yang dipergunakan untuk membantu operasi penangkapan ikan yaitu Jukung dengan ukuran panjang 7m, lebar 0,5 m dan dalam 0,25 m, sedangkan tenaga penggerak adalah dayung.
j. Alat Tangkap Jaring Kepiting (*Crab gillnet*)

Jaring keping terbuat dari nylon monofilament No. 80 dan diameter 0,5 mm. Alat ini berbentuk segiempat, lebar 1,5 m, panjang setiap bagian jaring adalah 25 m (biasanya satu unit terdiri dari empat bagian net) (Gambar 11)

![Diagram Alat Tangkap Jaring Kepiting](image)

Gambar 11. Alat Tangkap Jaring Kepiting

Operasi penangkapan dengan cara setting alat di dasar perairan pantai yang dangkal dengan menghadang keping yang sedang berenang, dan dilakukan pada siang hari. Hasil tangkapan utama adalah keping (*Scylla*, sp).

Perahu yang digunakan yaitu Jukung dengan ukuran panjang 8 m, lebar 0,6 m dan dalam 0,25 m, menggunakan tenaga penggerak dayung.

k. Alat Tangkap Jaring Ciker (*Trammel Nets*)

Trammel net adalah alat penangkap ikan yang terdiri dari tiga -dinding net dengan bentuk segi empat. Dua bagian outer net terletak disisi kiri dan kanan terbuat
dari nylon mono filament No. 70 dengan mesh size 14,3 cm dan inner net (middle net) terbuat dari nylon monofilament no 25 dengan mesh size 4,0 cm (Gambar 12).

Panjang net pada masing-masing bagian adalah 18 m dan lebar 1,5 m. Pada alat ini biasanya menggunakan empat bagian net. Trammel net dioperasikan dengan membentangkannya diatas hamparan perairan secara vertikal, kemudian ditarik ke arah perahu. Perahu bergerak kearah pelampung tanda yang diturunkan pertama kali, selanjutnya berputar dua kali dan kemudian melakukan hauling. Hasil tangkapan alat ini adalah udang (Penaeus, sp), manyung (Arius spp), tigawaja (Johnius sp), kuro, senangin (Eleutherona sp) dan kepiting (Scylla sp).

Type perahu yang digunakan adalah Jukung dengan ukuran panjang 8 m, lebar 7,5 m dan dalam 0,4 m.. Tenaga penggerak perahu menggunakan outboard motor 5 hp.
4.3. Dinamika Perikanan Tangkap di Segara Anakan

Komposisi dari kepiting yang tertangkap dengan alat Wadong menurut Dudley 2000 ditunjukkan pada Gambar 13

Dominasi kedua jenis alat tangkap tersebut dikarenakan kedua alat ini cukup efektif untuk menangkap kepiting, dimana segara anakan adalah kawasan mangrove yang merupakan habitat penting bagi kepiting.

Penurunan luasan kawasan mangrove mengakibatkan penurunan jumlah populasi kepiting sehingga berdampak pada kedua jenis alat tangkap ini. Sebaliknya alat tangkap Apong yang awalnya kurang begitu populer digunakan terus mengalami peningkatan jumlahnya, pada tahun 1987 Apong di segara Anakan hanya 478 unit, terus naik pada tahun 2001 mencapai 1067 unit, hal ini dikarenakan alat tangkap Apong ini merupakan alat tangkap bagi ikan-ikan demersal, yang juga cukup melimpah di daerah Segara Anakan.

Komposisi alat tangkap di tiga desa yaitu Desa Penikel, Desa Ujung Gagak dan Desa Ujung Alang pada tahun 1987, 1994 dan tahun 2001 di tunjukan pada tematik yang tampak pada Gambar 17, 18, 19

Peta Penyebaran Alat Tangkap Tahun 1987
Daerah Segara Anakan
Peta Penyebaran Alat Tangkap Tahun 1994 Daerah Segara Anakan
Peta Penyebaran Alat Tangkap Tahun 2001 Daerah Segara Anakan
4.4. Analisa Perkembangan Perikanan Tangkap Akibat Perubahan Luasan Segara Anakan

Terdapat 4 aspek yang akan dibahas dalam analisa perkembangan perikanan tangkap ini yaitu: aspek produksi, aspek alat tangkap, aspek keberadaan nelayan serta aspek perkembangan sarana apung.

Pada Gambar 20, terlihat bahwa produksi ikan mengalami penurunan terus menerus. Penurunan total produksi ini kemungkinan disebabkan oleh sedimentasi di

Hubungan kawasan laguna dan produksi ikan ditunjukkan pada Gambar 21 adapun persamaan hubungan antara luas kawasan laguna dan produksi ikan adalah:

\[Y = 0,0003 x^3 + 1,8052x^2 - 2879,3x \text{ dengan } R^2 = 0,9749 \]

Berdasarkan uji statistik (uji F) didapatkan bahwa persamaan regresi ini sangat nyata (F = 142,2 , P < 0,01)

Gambar 21. Hubungan antara Kawasan Laguna dan Produksi Ikan

Berkurangnya total produksi ikan di kawasan Laguna Segara Anakan ini mempunyai kecenderungan bersamaan dengan berkurangnya jenis-jenis ikan yang ada di daerah tersebut. Hal ini terlihat pada Tabel.4.
<table>
<thead>
<tr>
<th>No</th>
<th>Famili</th>
<th>Jenis</th>
<th>Tahun jenis</th>
<th>Nama lokal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1985**</td>
<td>1999**</td>
</tr>
<tr>
<td>1</td>
<td>Anguillidae</td>
<td>Anguilla sp</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Aporogonidae</td>
<td>Aporon aureus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Ariidae</td>
<td>Arius maculatus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Belonidae</td>
<td>Tylosor</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Bothidae</td>
<td>Crossorombus azereus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Carangidae</td>
<td>Alecius indicus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Alepis sp-1</td>
<td>V</td>
<td>0</td>
<td>Latugi</td>
</tr>
<tr>
<td>8</td>
<td>Alepis sp-2</td>
<td>V</td>
<td>0</td>
<td>Selar</td>
</tr>
<tr>
<td>9</td>
<td>Chaetodontidae</td>
<td>Cheilodén areolaecrians</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Clupeidae</td>
<td>Anchovella aflowera</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Cynoglossidae</td>
<td>Cynoglossus lingua</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Deltidae</td>
<td>Deltaphis longimanus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Engraulidae</td>
<td>Setuna tait</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Stolephous indicus</td>
<td>V</td>
<td>0</td>
<td>Teri gilif</td>
</tr>
<tr>
<td>15</td>
<td>Thysso melanarica</td>
<td>V</td>
<td>0</td>
<td>Mur</td>
</tr>
<tr>
<td>16</td>
<td>Thysso myaxaz</td>
<td>V</td>
<td>0</td>
<td>Biliban</td>
</tr>
<tr>
<td>17</td>
<td>Gerreidae</td>
<td>Gerres filamentoassus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Gobiidae</td>
<td>Acentropogobius sp</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Hemirhamphidae</td>
<td>Hemirhamphus gergi</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Lagocephalidae</td>
<td>Sphaerocephalides lunaris</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Leioogonohidae</td>
<td>Leiogonahus westermiegi</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Lutjanidae</td>
<td>Lutjanus fulviflamma</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>L. argentus</td>
<td>V</td>
<td>0</td>
<td>Bombangan</td>
</tr>
<tr>
<td>24</td>
<td>Mugilidae</td>
<td>Mugil buchonani</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>M. dussieri</td>
<td>V</td>
<td>V**</td>
<td>Blanak</td>
</tr>
<tr>
<td>26</td>
<td>Mugilidae</td>
<td>Upeneus tragula</td>
<td>V</td>
<td>V**</td>
</tr>
<tr>
<td>27</td>
<td>Muridae</td>
<td>Myronocephalus cunkeus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>Polynoididae</td>
<td>Polynemus indicus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>Pomadaceida</td>
<td>Pomadasys hoata</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>Pethesidae</td>
<td>Petophis bicolor</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>Scombridae</td>
<td>Scomberomorus guttatus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>Scombridae</td>
<td>Scomberomorus guttatus</td>
<td>V</td>
<td>V**</td>
</tr>
<tr>
<td>33</td>
<td>Sciaenidae</td>
<td>Sciaenops ceratopseudes</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>Siluridae</td>
<td>Silurella siluru</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>Sparidae</td>
<td>Acentropogobius berda</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>Symphidae</td>
<td>Symphurus argenteus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>Symphidae</td>
<td>Symphurus argenteus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>Tetradontidae</td>
<td>Tetrodon reticulatus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>Theraponidae</td>
<td>Therapon theraps</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>Trachloridae</td>
<td>Trachurus lepturus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>Trachloridae</td>
<td>Trachurus lepturus</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>Trygonidae</td>
<td>Himanturus uarnak</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>Trypauchtheridae</td>
<td>Trypauchtheridae</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>Scophidae</td>
<td>Johnius trichellus</td>
<td>V</td>
<td>V**</td>
</tr>
<tr>
<td>45</td>
<td>Lutjanidae</td>
<td>Lutjanus johni</td>
<td>V</td>
<td>V**</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>48</td>
<td>Lutjanidae</td>
<td>Lutjanus weberi</td>
<td>0</td>
<td>V**</td>
</tr>
<tr>
<td>49</td>
<td>Serranidae</td>
<td>Ephinephelus taurcha</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>50</td>
<td>Chaetodontidae</td>
<td>Chaetodon auriga</td>
<td>0</td>
<td>V*</td>
</tr>
<tr>
<td>51</td>
<td>Apogonidae</td>
<td>Otiridodon macrops</td>
<td>0</td>
<td>V*</td>
</tr>
<tr>
<td>52</td>
<td>Polynomiidae</td>
<td>E. tridactylus</td>
<td>0</td>
<td>V*</td>
</tr>
<tr>
<td>53</td>
<td>Clupeidae</td>
<td>E. mistax</td>
<td>0</td>
<td>V**</td>
</tr>
<tr>
<td>54</td>
<td>Gobiidae</td>
<td>P. Argentineus</td>
<td>0</td>
<td>V**</td>
</tr>
<tr>
<td>55</td>
<td>Balistidae</td>
<td>B. rectangulus</td>
<td>0</td>
<td>V*</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>B. fuscus</td>
<td>0</td>
<td>V*</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>B. verrocorus</td>
<td>0</td>
<td>V*</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>B. undulatus</td>
<td>0</td>
<td>V*</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>B. encharpe</td>
<td>0</td>
<td>V*</td>
</tr>
<tr>
<td>60</td>
<td>Synagomathidae</td>
<td>hypogampus kuda</td>
<td>0</td>
<td>V*</td>
</tr>
</tbody>
</table>

Sumber: *Djuwito tahun 1985 dan **Murni tahun 1999

Keterangan: V** ditemukan lebih dari 10 ekor
V* ditemukan kurang dari 10 ekor
0 tidak diketemukan.

Tabel 5. Jenis/Komposisi Hasil Tangkapan dengan Alat Tangkap Apong

<table>
<thead>
<tr>
<th>Jenis</th>
<th><10 ekor</th>
<th>> 10 ekor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layur (Trichiurus savala)</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Belanak (Mugil sp)</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Bawal (Pampus argentus)</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td>Balong (Epinephelus bleekeri)</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td>Kiper (Gonochaetodon triangulum)</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td>Keting (Osteogeneiosus sp)</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Sirinding (Apagon aureus)</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Gerot-gerot (Pomadasys hasta)</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Lidah (Cynoglossus lingua)</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Remang (Muraenesox talabon)</td>
<td>√</td>
<td>-</td>
</tr>
<tr>
<td>Sebelah (Crossohambus azureus)</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Udang Tepus (Panaeus manodon)</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Udang Putih (Panaeus merguiensis)</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Udang Krosok (Metapereus sp)</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Kepiting (Scylla serrata)</td>
<td>√</td>
<td>-</td>
</tr>
</tbody>
</table>

Sumber : Data Penelitian tahun 2001

Penurunan jumlah alat tangkap di Segara Anakan sangat dipengaruhi oleh luas kawasan laguna, hal tersebut bisa terlihat pada Gambar 22.
Gambar 22. Hubungan Luas Laguna dengan Alat Tangkap

Pada Gambar 22 tampak bahwa hubungan antara luas laguna dan jumlah alat tangkap merupakan hubungan linier $y = 1,3749x + 6153,2$ dengan $R^2 = 0,9341$

Berdasarkan uji statistik (uji F) didapatkan bahwa persamaan regresi ini sangat nyata ($F = 184,3$, $P < 0,01$), artinya setiap peningkatan satu-satuan luas laguna akan meningkatkan jumlah alat tangkap sebesar 1,3749 unit.

Penelitian ini mengindikasikan jumlah nelayan di Segara Anakan terus mengalami peningkatan, hal ini dipengaruhi kehadiran para nelayan pendatang. Kehadiran nelayan pendatang terus meningkat karena hubungan kekerabatan dan adanya informasi mengenai kesejahteraan nelayan Segara Anakan cukup baik (PMO Cilacap Tahun 2000), disamping lengkapnya fasilitas yang ada di Segara Anakan. Sekalipun kawasan daerah penangkapan terus mengalami penyusutan hal tersebut mungkin tidak membuat nelayan jadi enggan datang ke Segara Anakan, karena nelayan di Segara Anakan telah melakukan upaya-upaya sendiri dalam melakukan
aktifitas penangkapan. Hubungan jumlah nelayan dengan luagna ditunjukkan pada Gambar 23.

![Diagram](image)

Gambar 23. Hubungan Jumlah Nelayan dengan Luas Laguna

Pada Gambar 23 tampak bahwa jumlah nelayan terus mengalami peningkatan, sedangkan luas kawasan laguna terus mengalami penurunan, tampak bahwa hubungan antara luas laguna dan jumlah nelayan merupakan hubungan kuadratik dengan persamaan $y = 0,004x^2 - 2,3501x + 4622,6$ dengan $R^2 = 0,9551$

Berdasarkan uji statistik (uji F) didapatkan bahwa persamaan regresi ini sangat nyata ($F = 127,6, P < 0,01$).

Penurunan luasan Segara Anakan menyebabkan berkurangnya areal penagkapan bagi nelayan yang jumlahnya terus bertambah, untuk itu perlu dilakukan suatu upaya untuk mengatasinya.

Upaya-upaya yang ditempuh oleh nelayan Segara Anakan adalah dengan menggunakan alat tangkap yang lebih banyak menggunakan tenaga, sebagai contoh

Gambar 24. Hubungan jumlah perahu dengan luas laguna
Pada gambar 24 terlihat bahwa hubungan antara luas laguna dengan jumlah perahu merupakan hubungan linier kuadratik dengan persamaan

\[Y = 0,0004x^2 - 1,9367x + 2874,3 \] dengan \(R^2 = 0,9724 \)

Berdasarkan uji statistik (uji F) didapatkan bahwa persamaan regresi ini sangat nyata (\(F = 211,7, P < 0,01 \))

Gambar 25. Korelasi sederhana dari faktor-faktor yang berpengaruh terhadap perkembangan perikanan tangkap

Aspek manajemen perikanan tangkap yang berwawasan lingkungan di Segara Anakan dapat dikembangkan dengan mempertimbangkan hal-hal antara lain: (1) tenaga kerja, (2) kegiatan usaha, (3) pengembangan secara profesional. Akan tetapi hal-hal tersebut hendaknya dikaitkan pula dengan perkembangan secara biofisik yang mempengaruhi luasan daerah penangkapan di Segara Anakan.

Pembangunan usaha perikanan tangkap yang tangguh akan memberikan berbagai manfaat ekonomi yakni, meningkatkan kesempatan dan penyerapan tenaga kerja, meningkatkan pendapatan nelayan, serta meningkatkan mutu hasil perikanan.

Penciptaan usaha perikanan tangkap skala pedesaan diharapkan mampu menyerap bagian tenaga kerja yang mengganggu dan nelayan yang berpenghasilan rendah, pada gilirannya dapat meningkatkan penghasilan nelayan secara keseluruhan. Dengan meningkatnya penghasilan nelayan, diharapkan nelayan dapat mengumpulkan modal usaha perikanan tangkap yang digerakkan oleh rakyat untuk meningkatkan pendapatan di pedesaan.

Kemajuan yang dicapai dalam kegiatan usaha penangkapan dipengaruhi beberapa aspek yaitu: (1) aspek biologi yang berhubungan dengan ketersediaan sumberdaya ikan, komposisi hasil tangkapan, penyebaran; (2) aspek teknis berhubungan dengan unit penangkapan, alat tangkap, jumlah kapal, fasilitas penanganan di kapal, fasilitas pendaratan, fasilitas penanganan ikan di darat; (3) aspek sosial, yang berkaitan dengan kelembagaan, tenaga kerja, kesejahteraan dan aspek ekonomi, yang menyangkut hasil produksi dan pemasaran serta efisiensi biaya operasional yang berdampak pada pendapatan usaha masing-masing nelayan.
Usaha perikanan tangkap di Segara Anakan di kelola dengan berbagai bentuk usaha. Pada umumnya usaha perikanan tangkap ini dimiliki dan diusahakan oleh rakyat, dengan skala kecil dan merupakan usaha keluarga. Usaha seperti itu perlu dikembangkan secara profesional yang sampai saat ini masih memerlukan pembenahan yang serius dalam arti dengan memperhatikan ciri-ciri tradisionalnya. Usaha rakyat seperti ini harus disiapkan dan diarahkan ke usaha profesional agar dapat memberikan nilai tambah yang secara ekonomis menguntungkan.

Penusutan luasan perairan tersebut sangat dipengaruhi oleh proses pengendapan sedimen yang dibawa oleh aliran sungai-sungai besar yang bermuara di Segara Anakan seperti Sungai Citanduy, Sungai Cikonde dan Sungai Cibereum, Disisi lain, sedimentasi tersebut juga berpengaruh terhadap kedalaman perairan yang pada tahun 1900 rata-rata masih sekitar 2.70 meter menjadi lebih kurang 1,03 meter
pada tahun 1980 (ECI, 1994), Ini berarti bahwa dalam kurun waktu 80 tahun telah terjadi pendangkalan lebih dari 1,67 meter atau rata-rata 2 cm/tahun.

Seperti telah dikemukakan di atas Segara Anakan memiliki banyak jenis alat tangkap baik untuk ikan, udang maupun biota laut lainnya. Kehadiran alat penangkap tersebut tidak terjadi secara bersamaan, tetapi memakan waktu puluhan tahun dan secara bertahap sesuai kebutuhan, perkembangan usaha perikanan dan menurut komoditi yang diperlukan.

Dalam perkembangannya, penambahan jumlah alat penangkap di Segara Anakan juga tidak terlepas adanya pengaruh beberapa faktor, seperti: keadaan sediaan (potensi) yang menjadi sasaran penangkapan, tenaga kerja (nelayan) yang terampil dan faktor pengusaha yang akan melakukan usaha penangkapan yang umumnya berkaitan dengan pemodal, di samping itu faktor kebiasaan (adat) kebudayaan masyarakat nelayan Segara Anakan yang juga sangat berperan penting.
Pengembangan perikanan tangkap di Segara Anakan sebaiknya di tekankan pada pertuasan kesempatan kerja dengan sendirinya maka teknologi yang perlu dikembangkan adalah teknologi penangkapan ikan yang relatif mampu menyerap banyak tenaga kerja dengan pendapatan para nelayan yang memadai.
V. KESIMPULAN DAN SARAN

5.1. Kesimpulan

Dari hasil penelitian dapat ditarik kesimpulan sebagai berikut:

1. Kondisi perikanan tangkap di Segara Anakan mengalami penurunan, hal ini ditandai dengan penurunan produksi perikanan dan jumlah alat tangkap yang beroperasi selama 15 tahun terakhir.

2. Luas laguna yang selama 15 tahun terakhir mengalami penyempitan, secara langsung berpengaruh terhadap perkembangan perikanan tangkap di Segara Anakan.

3. Peningkatan jumlah nelayan di Segara Anakan banyak dipengaruhi oleh keberadaan jenis alat tangkap yang beroperasi, khususnya alat tangkap Apong yang membutuhkan jumlah nelayan yang terlibat lebih banyak dalam operasi penangkapannya.

5.2. Saran

1. Perlu dilakukan kajian tentang selektifitas alat tangkap yang ada di Segara Anakan untuk menjamin keberlangsungan perikanan tangkap di Segara Anakan.

DAFTAR PUSTAKA

