EFEK ANTI INFLAMASI-ANTI FIBROTISASI
EPICALLOTECTIN-GALLATE (EGCG) TOPIKAL TERHADAP
GAMBARAN HISTOPATOLOGIS SUBSTANSIA PROPIA
KONJUNGTIVA KELINCI PASCA OPERASI FILTRASI

LAPORAN PENELITIAN
Diajukan guna melengkapi persyaratan dalam mengikuti
Program Pendidikan Dokter Spesialis I
Ilmu Kesehatan Mata

oleh:

Afirsal Hari Kurniawan

BAGIAN ILMU KESEHATAN MATA
FAKULTAS KEDOKTERAN UNIVERSITAS DIPONEGORO/
RS Dr. KARIADI SEMARANG
2008
LEMBAR PENGESAHAN
LAPORAN PENELITIAN

EFEK ANTI INFLAMASI-ANTI FIBROTISASI EPICALLOCTATECHIN-GALLATE (EGCG) TOPIKAL TERHADAP GAMBARAN HISTOPATOLOGIS SUBSTANSIA PROPIA KONJUNGTIVA KELINCI PASCA OPERASI FILTRASI

Oleh:
Dr. Afrisal Hari Kurniawan

Telah disetujui oleh:

Pembimbing Utama,
Dr. Fifi L. Rahmi, MS, SpM
NIP. 131.844.804

Pembimbing Kedua,
Dr. Sri Inakawati SpM
NIP. 140.159.495

Mengetahui,
Ketua Program Studi
Program Pendidikan Dokter Spesialis I
Ilmu Kesehatan Mata
Fakultas Kedokteran Universitas Diponegoro

Ketua Bagian / SMF Ilmu Kesehatan Mata
Fakultas Kedokteran Universitas Diponegoro/
RSUD Dr. Kariadi

Dr. Pramanawati, SpM
NIP. 130.675.420

Dr. Suwido Magnadi SpM
NIP. 140.105.992
KATA PENGANTAR

Dalam pelaksanaan penelitian ini, penulis merasa banyak pihak telah membantu baik secara langsung maupun tidak langsung, sehingga dalam kesempatan ini penulis menghaturkan rasa hormat, penghargaan dan terima kasih sebesar-besarnya kepada:

1. Para Guru dan senior penulis, staf pengajar PPDS I Ilmu Kesehatan Mat FK UNDIP / RSUP Dr. Kariadi Semarang, Prof. Dr. Wilardjo, SpM(K), Dr. Norma Djoko Handojo, SpM (K); Dr. Pramanawati, SpM; Dr. Siti Sundari Sutedja SpM; Dr. P.A. Dewi Sarjadi, SpM; Dr. Sukri Kardani, SpM; DR. Dr. Winarto, SpMK, SpM(K); Dr Suwido Magnadi SpM, Dr Sri Inakawati SpM, Dr Fifin Luthfia Rahmi SpM, Dr. Arief Wildan, SpM; Dr. A. Kentar Arimadyo, SpM; Dr. Maharani, SpM; Dr. Paramastri Arintawati, SpM; Dr. Fatimah Dyah, SpM; Dr. Tri laksana, SpM; Dr. Liana Ekowati, SpM

iii
3. Para pembimbing penelitian Dr. Fiffin Luthfia Rahmi, MS, SpM selaku pembimbing I dan Dr. Sri Inakawati, SpM selaku pembimbing II yang dengan tulus dan sabar telah banyak memberikan bimbingan, inspirasi; dan arahan selama penulis menyelesaikan penelitian.

4. Dr. Hardian, staf pengajar bagian Faal FK UNDIP yang telah banyak memberikan arahan dan bimbingan statistik;

5. Pimpinan PT. Cendo beserta staf dan jajarannya, terima kasih atas segala bantuannya;

6. Pimpinan Lembaga Pengembangan Penelitian Terpadu Universitas Gadjah Mada (LPPT UGM) beserta seluruh stafnya; Bpk. Wasino selaku staf bagian pemeliharaan hewan coba di LPPT UGM;

7. Dr. Hariadi, SpPA(K) dan Ibu Agustin yang telah membantu pelaksanaan penelitian di Bagian Patologi Anatomi RS Dr. Sardjito Yogyakarta / Universitas Gajah Mada.

8. Kedua orang tua saya, Bapak Winarso Ssos dan ibu Sri Kusumaningsyas, mertua saya Bapak Nursyahman (Alm) dan ibu Rohanah; atas segala dukungan, perhatian, pengertian dan doa restunya;

9. Istriku tercinta Dina Adriana S.ked, yang dengan penuh pengertian dan kasih sayang selalu mendoakan, memberikan motivasi dan dukungan, menjaga dan menerimaaku dengan segala keterbatasanku selama menempuh pendidikan.

10. Sahabat-sahabatku Dr. Heru Wibowo Pruto; Dr. Desti Hendrastuti; Dr. Trilaksana Nugroho SpM; Dr. M. Rifqy Setyanto, SpM; Dr. Liana Ekoewati SpM; Dr. Cosmas Hascaryanto SpM; Dr. Cut Zaman, SpM yang selalu menginspirasi,
menyemangati, dan membantuku selama melaksanakan penelitian dan menempuh pendidikan.

11. Seluruh residen Ilmu Kesehatan Mata FK UNDIP yang tidak dapat saya sebutkan satu persatu, yang telah banyak membantu tugas dan memberikan kesempatan penulis untuk melaksanakan penelitian.

12. Segenap pihak yang telah berjasa dan berperan serta hingga terselesaiakannya penelitian ini.

Penulis menyadari bahwa sebagai manusia biasa, penulis tidak lepas dari segala kekurangan dan keterbatasan yang mungkin menjadikan penelitian ini masih jauh dari sempurna. Saran dan kritik yang bersifat membangun sangat diharapkan, dan besar harapan penulis penelitian ini dapat dikembangkan ke tingkat yang lebih lanjut sehingga hasilnya dapat memberikan manfaat bagi kemaslahatan umat manusia. Penulis menyampaikan permohonan maaf yang sebesar-besarnya kepada semua pihak apabila selama proses penelitian, penulis bersikap atau bertutur kata yang kurang berkenan di hati. Semoga kita semua senantiasa dilimpahi rahmat dan ampunan dari Allah SWT. Amin.

Semarang, Desember 2008
Penulis
<table>
<thead>
<tr>
<th>BAB 1. Pendahuluan</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Latar belakang masalah</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Rumusan masalah</td>
<td>4</td>
</tr>
<tr>
<td>1.3. Tujuan penelitian</td>
<td>4</td>
</tr>
<tr>
<td>1.4. Manfaat penelitian</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAB 2. Tinjauan kepustakaan</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Anatomi dan histologi</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1. Anatomi Konjungtiva</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2. Anatomi Daerah Bedah Glaukoma</td>
<td>10</td>
</tr>
<tr>
<td>2.2. Tehnik Operasi Filtrasi</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Keberhasilan Operasi Filtrasi</td>
<td>13</td>
</tr>
<tr>
<td>2.3.1 Mekanisme Normal Wound Healing</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2 Proses penyembuhan pasca operasi Filtrasi</td>
<td>17</td>
</tr>
<tr>
<td>2.4. Bahan Anti Fibrotik</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1 Steroid</td>
<td>20</td>
</tr>
</tbody>
</table>
BAB 3 Hipotesis .. 32

BAB 4. Metode penelitian ... 33
 4.1. Ruang lingkup penelitian 33
 4.2. Tempat dan waktu penelitian 33
 4.3. Jenis dan rancangan penelitian 33
 4.4. Sampel penelitian ... 34
 4.4.1. Kriteria sampel .. 34
 4.4.2. Besar sampel ... 34
 4.4.3. Metode alokasi kelompok 35
 4.5. Variabel penelitian ... 35
 4.5.1. Variabel bebas ... 35
 4.5.2. Variabel terikat 36
 4.6. Definisi operasional 36
 4.7. Alat, bahan dan cara kerja 37
 4.7.1. Alat dan bahan penelitian 37
 4.7.2. Cara kerja ... 38
 4.8. Alur penelitian ... 40
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.9. Analisis statistik</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>4.10. Etika penelitian</td>
<td>41</td>
</tr>
<tr>
<td>BAB 5</td>
<td>Hasil Penelitian</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>5.1. Karakteristik Sampel</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>5.2. Derajat Sebukan Sel Radang</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>5.3. Derajat Fibrosisasi</td>
<td>46</td>
</tr>
<tr>
<td>BAB 6</td>
<td>Pembahasan dan diskusi</td>
<td>48</td>
</tr>
<tr>
<td>BAB 7</td>
<td>Kesimpulan dan saran</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Daftar pustaka</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Lampiran</td>
<td>57</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

Gambar 1. Aliran Humor aquoeus setelah trabekulektomi ... 7
Gambar 2. Skema anatomi mata Manusia ... 8
Gambar 3. Skema anatomi mata Kelinci ... 8
Gambar 4. Lapisan Konjungtiva Manusia ... 9
Gambar 5. Anatomi daerah operasi glaukoma ... 10
Gambar 6. Potongan melintang daerah limbus mata kelinci 12
Gambar 7. Sudut filtrasi mata kelinci .. 12
Gambar 8. Skema proses penyembuhan luka (wound healing) normal 16
Gambar 9. Diagram kronologis proses seluler penyembuhan luka 17
Gambar 10. Cara kerja obat anti inflamasi steroid dan non steroid 22
Gambar 11. Struktur kimia EGCG ... 26
Gambar 12. Skema Pelaksanaan Penelitian ... 43
Gambar 13. Timbunan Sél Radang Pada Substansiä Propria Konjungtiva 46
Gambar 14. Densitas kolagen (fibrotisasi) pada Substansiä Propria Konjungtiva ... 47
DAFTAR TABEL

Tabel 1. Perbandingan potensi anti inflamasi dan risiko peningkatan TIO
steroid topikal pada mata ... 21

Tabel 2. Hasil Pemeriksaan Patologi Anatomi 44

Tabel 3. Analisa Statistik Derajat Sebukan sel Radang 45

Tabel 4. Analisa Statistik Derajat Fibrosisasi 46
EFEK ANTI INFLAMASI-ANTI FIBROTISASI \textit{EPIGALLOCATECHIN-GALLATE} (EGCG) TOPIKAL TERHADAP GAMBARAN HISTOPATOLOGIS SUBSTANSIA PROPIA KONJUNGTIVA KELINCIN PASCA OPERASI FILTRASI

Afrisal H K	extsuperscript{1}, Fiffin L R	extsuperscript{2}, Sri Inakawati	extsuperscript{3}

ABSTRAK

\textbf{Latar Belakang :} Fibrotisasi konjungtiva merupakan penyebab terbesar dari kegagalan trabekulektomi. Steroid digunakan sebagai baku emas pasca trabekulektomi untuk mencegah timbulnya fibrotisasi konjungtiva, tetapi obat ini memiliki risiko untuk meningkatkan tekanan intra okular. \textit{Epigallocatechin-Gallate} (EGCG) terbukti memiliki efek anti inflamasi dan antifibrotisasi, namun sejauh ini belum pernah diteliti efeknya pada jaringan konjungtiva pasca operasi filtrasi.

\textbf{Tujuan :} Mengetahui efek anti inflamasi dan anti fibrotisasi pemberian \textit{Epigallocatechin-Gallate} (EGCG) topikal dibanding pemberian deksametason topikal terhadap gambaran histopatologis substansia propria konjungtiva, pasca operasi filtrasi.

\textbf{Metode Penelitian :} Penelitian ini merupakan penelitian eksperimental laboratorik dengan rancangan \textit{parallel group post test only 2 groups design}. 28 ekor kelinci putih \textit{New Zealand} jantan dibagi menjadi 2 kelompok, kelompok kontrol mendapat terapi Deksametason + antibiotik topikal (Polymixin, Neomycin) pasca operasi filtrasi, kelompok perlakuan mendapat EGCG 0,05 mg/mL topikal + antibiotik topikal (Polymixin, Neomycin) pasca operasi filtrasi. Setelah 3 minggu dilakukan pengangkatan bola mata dan jaringan konjungtiva untuk diperiksa derajat sebukan sel radang dan derajat fibrotisasi pada substansia propria konjungtiva.

\textbf{Hasil Penelitian :} Tidak terdapat perbedaan yang bermakna pada derajat sebukan sel radang dan derajat fibrotisasi substansia propria konjungtiva pada kelompok yang mendapat deksametason topikal dibanding kelompok yang mendapat EGCG 0,05 mg/mL topikal.

\textbf{Kesimpulan :} Pemberian EGCG 0,05 mg/mL topikal mampu memberikan efek anti inflamasi dan anti fibrotisasi yang setara dengan deksametason topikal, pada substansia propria konjungtiva pasca operasi filtrasi.

1Residen PPDS I Ilmu Kesehatan Mata FK UNDIP/RSUP Dr. Kariadi Semarang
2Staf Pengajar pada Bagian/SMF Ilmu Kesehatan Mata FK UNDIP/RSUP Dr. Kariadi Semarang
3Staf Pengajar pada Bagian/SMF Ilmu Kesehatan Mata FK UNDIP/RSUP Dr. Kariadi Semarang
ANTI-INFLAMMATORY AND ANTI-FIBROTIC EFFECT OF TOPICAL
EPIGALLOCATECHIN-GALLATE (EGCG) AFTER FILTERING SURGERY ON
RABBIT’S CONJUNCTIVAL SUBSTANIA PROPRIA HISTOPATOLOGY
Afrisal H K1, Fifiin L R2, Sri Inakawati3

ABSTRACT

Background: Conjunctival scarring is the most common cause of glaucoma filtering surgery failure. Steroid was the golden standard to prevent scar formation after filtering surgery, but it has effect on increasing intra ocular pressure. Epigallocatechin-Gallate (EGCG) was proved to have anti inflammatory and anti fibrotic effect, but it’s effect on conjunctival tissue after filtering surgery has not been studied.

Objectives: To investigate the anti inflammatory and anti fibrotic effect of EGCG on conjunctival substantia propria, after filtering surgery.

Methods: This study was a laboratory experimental with parallel group post test only 2 groups design. 28 male New Zealand White rabbits divided into two groups. The control group received topically applied steroid (dexamethason) and anti biotic, the treatment group received topically applied of 0,05 mg/mL of EGCG after filtering surgery. After 3 weeks of treatment, the eye was enucleated and the conjunctival was examined for inflammatory and fibrotic grading on conjunctival substantia propria.

Results: There were no statistically different of inflammatory and fibrotic grading on conjunctival substantia propria between EGCG and control groups.

Conclusion: Application of topical EGCG gave an equal effect as topical dexametasopn on conjunctival substantia propria inflammatory and fibrotic grading.

1Residen PPDS I Ilmu Kesehatan Mata FK UNDIP/RSUP Dr. Kariadi Semarang
2 Staf Pengajar pada Bagian/SMF Ilmu Kesehatan Mata FK UNDIP/RSUP Dr. Kariadi Semarang
3 Staf Pengajar pada Bagian/SMF Ilmu Kesehatan Mata FK UNDIP/RSUP Dr. Kariadi Semarang
BAB 1
PENDAHULUAN

1. Latar Belakang Masalah

Glaukoma merupakan salah satu penyakit yang mengancam penglihatan dan bersifat irreversible. Penyakit ini ditemukan hampir diseluruh bagian dunia, dengan bagian terbesar merupakan penderita glaukoma sudut terbuka (POAG / Primary Open Angle Glaucoma). Di Indonesia glaukoma menempati posisi kedua setelah katarak sebagai penyebab kebutaan, dengan jumlah penderita sekitar 0,20 % dari jumlah penduduk.\(^1\) Penyakit ini memiliki berbagai faktor risiko, dimana tekanan intra okular merupakan satu-satunya faktor risiko yang dapat dikendalikan. Usaha untuk mengendalikan tekanan intra okular pada batas yang aman (target pressure) untuk setiap penderita merupakan kunci utama untuk mencegah timbulnya kerusakan permanen nervus optikus.\(^2\,3\,4\)

Tindakan operasi filtrasi umumnya dilakukan setelah usaha dengan medikamentosa gagal mengendalikan target pressure. Trabekulektomi merupakan salah satu tindakan operasi filtrasi yang sering dilakukan. Angka keberhasilan trabekulektomi sekitar 65-70%. Kegagalan mencapai target pressure yang disebabkan oleh pembentukan jaringan sikatrik yang berlebihan pada konjungtiva terjadi pada sekitar 10-15% kasus, dan merupakan penyebab terbesar kegagalan trabekulektomi. Kegagalan oleh perdarahan dan infeksi ditemukan pada 1% kasus trabekulektomi.\(^2\,5\,6\,7\,8\)

Terdapat beberapa hal yang mempengaruhi keberhasilan tindakan operasi trabekulektomi, salah satunya adalah sedikitnya jaringan sikatrik yang terbentuk pada
proses penyembuhan.2,4,6 Respon penyembuhan akibat trauma pada jaringan melibatkan serangkaian proses kompleks yang antara lain melalui sekresi mediator-mediator inflamasi, migrasi seluler (metrofil, limfosit, monosit, dan makrofag), pelepasan beberapa \textit{growth factor} dan molekul lainnya, serta diakhiri dengan proses remodeling.9,10,11

Berbagai bahan telah diteliti untuk mencegah timbulnya sikatrisasi yang berlebihan, antara lain dengan menggunakan (1) bahan antimetabolit seperti 5-Fluorourasil dan Mytomycin-C, (2) kortikosteroid. Bahan antimetabolit memiliki risiko untuk menimbulkan komplikasi yang dapat menyebabkan kebutaan seperti kebocoran bleb, blebitis, hipotoni-makulopati dan endoftalmitis sehingga penggunaannya hanya terbatas pada kasus-kasus dengan risiko tinggi terjadinya sikatrisasi.2-4, 10-13 Pada penelitian klinis lanjutan, ditemukan bahwa penggunaan kortikosteroid tidak selalu dapat mengendalikan inflamasi dan menekan pembentukan jaringan fibrosis secara adekuat, juga didapatkan resiko peningkatan tekanan intraokular yang lebih nyata pada penderita yang peka terhadap kortikosteroid, sehingga juga didapatkan kegagalan trabekulektomi.2,3,14 Kenyataan tersebut melatar belakangi terus dilakukannya penelitian dan pengembangan teknik untuk mencari bahan yang dapat mencegah pembentukan jaringan fibrotik yang berlebihan.

\textit{Epigallocatechin-3-Gallate} (EGCG) merupakan suatu \textit{compound polyphenol} yang banyak terkandung dalam teh hijau (\textit{Green tea}), bahan ini dilaporkan memiliki aktifitas anti inflamasi, anti oksidan, pengikat (\textit{scavenger}) radikal bebas dan anti fibrotik.15-20 Mohit \textit{et al} membuktikan bahwa aplikasi Epicathechin-gallate dengan model incisi kulit \textit{full thickness} pada tikus secara signifikan terbukti dapat
memperbaiki kualitas penyembuhan luka dan pembentukan jaringan fibrotik yang tidak berlebihan.¹⁵

Adanya angka kegagalan trabekulektomi sebesar 10-15% yang disebabkan oleh pembentukan jaringan fibrotik yang berlebihan pada konjungtiva menimbulkan pertanyaan apakah pemberian *Epigallocatechin-3-Gallate* (EGCG) dapat memberikan efek anti inflamasi dan menekan pembentukan jaringan fibrotik yang berlebihan pasca operasi filtrasi pada pasien glaukoma?

Penelitian yang akan dilakukan untuk meneliti efek anti inflamasi dan anti fibrotisasi *Epigallocatechin-3-Gallate* (EGCG) secara histopatologis pada substansia propria konjungtiva kelinci yang diberikan secara topikal pasca operasi filtrasi dibandingkan terapi standar dengan menggunakan kortikosteroid (deksametason) guna membuktikan potensi bahan tersebut dalam memperbaiki kualitas penyembuhan jaringan pasca operasi filtrasi. Penelitian dilakukan pada mata kelinci normal tanpa dilakukan pengukuran tekanan intra okular, karena walaupun dapat dibuat model mata glaukoma dengan memberikan steroid jangka waktu lama namun terdapat kesulitan dalam melakukan pengukuran tekanan intra okular.
2. Rumusan masalah

Masalah utama dalam penelitian ini adalah apakah *Epigallocatechin-3-Gallate* (EGCG) memiliki efek anti inflamasi dan anti fibrotisasi pada substansia propria konjungtiva mata kelinci yang setara dengan deksametason, pasca operasi filtrasi?

Rumusan masalah tersebut dijabarkan menjadi:

- Apakah terdapat derajat radang substansia propria konjungtiva kelinci yang setara pada pemberian *Epigallocatechin-Gallate* (EGCG) topikal dibanding kelompok yang diberi deksametason topikal, pasca operasi filtrasi?
- Apakah terdapat derajat fibrosis substansia propria konjungtiva kelinci yang setara pada pemberian *Epigallocatechin-Gallate* (EGCG) topikal dibanding kelompok yang diberi deksametason topikal, pasca operasi filtrasi?

3. Tujuan Penelitian

Umum : Mengetahui efek anti inflamasi dan anti fibrotisasi pemberian *Epigallocatechin-Gallate* (EGCG) topikal dibanding pemberian deksametason topikal terhadap gambaran histopatologis substansia propria konjungtiva, pasca operasi filtrasi

Khusus : Mengetahui manfaat pemberian *Epigallocatechin-Gallate* (EGCG) topikal dibanding pemberian deksametason topikal dalam:

1. Memurunkan derajat peradangan substansia propria konjungtiva pasca operasi filtrasi
2. Memurunkan derajat fibrosis substansia propria konjungtiva pasca operasi filtrasi.
4. Manfaat

a. Hasil penelitian ini diharapkan dapat menjadi masukan bagi para klinisi dalam pengelolaan glaukoma khususnya dalam menurunkan risiko kegagalan operasi filtrasi akibat fibrotisasi substansia propria konjungtiva yang dicetuskan oleh trauma operasi.

b. Hasil penelitian ini diharapkan dapat menjadi masukan dalam pemberian terapi alternatif pasca operasi filtrasi.

c. Hasil penelitian ini diharapkan dapat memberikan tambahan informasi mengenai manfaat pemberian EGCG di bidang kesehatan mata.

d. Hasil penelitian ini diharapkan dapat dijadikan landasan bagi penelitian selanjutnya dalam mencari bahan-bahan aktif yang dapat mempengaruhi proses penyembuhan luka dan pembentukan jaringan fibrotik.
BAB 2
TINJAUAN KEPUSTAKAAN

Glaukoma merupakan salah satu penyakit yang mengancam penglihatan dan bersifat irreversibel. Penyakit ini didefinisikan sebagai suatu sindroma yang ditandai adanya kerusakan papil nervus II dan gangguan lapangan pandang yang khas, dimana peningkatan tekan intra okular (TIO) merupakan faktor risiko utama.²,³

Berdasarkan bentuk sudutnya, glaukoma dibagi menjadi glaukoma sudut terbuka dan sudut tertutup. Kerusakan papil nervus II pada glaukoma sudut terbuka primer disebabkan oleh adanya hambatan outflow humor aqueous pada trabeculum meshwork yang menyebabkan peningkatan TIO.²,³ Glaukoma sudut terbuka primer (POAG / Primary Open Angle Glaucoma): memiliki angka insidensi tertinggi dibandingkan jenis glaukoma yang lain, yaitu 3-5% pada populasi berusia lebih dari 30 tahun.¹,²,³

Di Indonesia glaukoma merupakan penyebab kebutaan terbanyak kedua setelah katarak, dengan jumlah penderita sekitar 0,20% dari jumlah penduduk.¹ Penyakit ini memiliki berbagai faktor risiko, dimana tekanan intra okular merupakan satu-satunya faktor risiko yang dapat dikendalikan. Usaha untuk mengendalikan tekanan intra okular pada batas yang aman (target pressure) untuk setiap penderita merupakan kunci utama untuk menyelamatkan fungsi visual penderita dengan menghentikan kerusakan papil N. II.²,³,⁴

Baku emas penatalaksanaan glaukoma sudut terbuka primer di negara berkembang termasuk Indonesia adalah terapi medikamentosa dengan menggunakan beta bloker topikal.² Terapi operatif pada pasien glaukoma sudut terbuka dilakukan apabila tekanan
intra okular tidak dapat dipertahankan dengan menggunakan terapi medikamentosa pada batas yang aman terhadap terjadinya kerusakan pada nervus optikus (optic nerve) dan lapangan pandang (visual field) penderita.2,3,4

Tujuan operasi filtrasi ini adalah untuk menurunkan tekanan intra okular dengan menciptakan jalur baru (fistula) bagi aliran humor aqueous dari bilik mata depan melalui lubang sklera yang dibuat, menuju ke daerah sub konjungtiva maupun sub-Tenon.2,3,4

![Diagram of trabekulektomy](image)

Gambar 1. Aliran \textit{humor aqueous} setelah trabekulektomi4

Setelah operasi filtrasi, \textit{outflow humor aqueous} akan terfasilitasi melalui jalur yang baru yaitu dari kamera okuli posterior menuju kamera okuli anterior melalui lubang iridektomi perifer, kemudian akan mengalir menuju ruangan di bawah flap sklera hingga sampai di daerah subkonjungtiva dan sub-Tenon yang kemudian \textit{humor aqueous} akan diserap oleh vena-vena episklera disekitarnya.2,3,4

2.1. Anatomi dan histologi

Pengetahuan mengenai struktur antomi bola mata sangat penting dalam menentukan keberhasilan tindakan bedah incisi filtrasi ini. Mata kelinci memiliki struktur dan fungsi
yang hampir serupa dengan mata manusia. Berikut ini gambar anatomi mata manusia dan mata kelinci.

Gambar 2. Skema anatomi mata manusia.

Secara dimensi mata kelinci berbeda dengan mata manusia, dimana mata kelinci memiliki proporsi diameter antero-posterior yang lebih pendek terhadap diameter horizontalnya dibandingkan pada mata manusia. Menurut Krause, mata kelinci memiliki aksis visual sepanjang 16 mm, diameter vertikal 18 mm, dan diameter horizontal sebesar 17 mm. Kornea kelinci memiliki bentuk elips dengan diameter horizontal 15.6 mm dan diameter vertikal 13.8 mm.
2.1.1 Konjungtiva

Konjungtiva merupakan lapisan mukosa tipis yang melapisi tarsus palpebra, forniks dan bulbus okuli. Secara garis besar konjungtiva dibagi menjadi tiga lapisan yaitu epitel, membrana basalis dan substansia propria. Epitel konjungtiva berupa epitel kolumner bertingkat non keratinisasi pada konjungtiva tarsus dan epitel kuboid bertingkat non keratinisasi pada konjungtiva forniks dan bulbi. Pada epitel konjungtiva terdapat sel-sel goblet yang tersusun soliter dan berfungsi sebagai penghasil musin. Jumlah sel goblet terbanyak terletak di konjungtiva tarsal dan konjungtiva bulbi daerah inferonasal. Pada permukaan epitel konjungtiva terdapat pula membran mukosa yang mengalami invaginasi sehingga membentuk kantung intersetuler yang disebut kripte Henle dimana sel-sel inflamasi dan antibodi dapat terkumpul pada kripte tersebut.\(^2\)

Gambar 4. Lapisan konjungtiva manusia\(^2\)

Membrana basalis terletak di bawah lapisan epitel konjungtiva yang tersusun dari jaringan kolagen tipe IV. Di bawah membrana basalis terdapat substantia propria berupa suatu jaringan ikat fibrovaskuler yang mengandung sel-sel inflamasi pada bagian
superfisial, pembuluh darah dan jaringan saraf pada bagian profunda. Dengan demikian, konjungtiva dapat melindungi permukaan bola mata baik sebagai physical barrier, penghasil musin, dan sel-sel inflamasi.23

Secara anatomi konjungtiva kelinci serupa dengan manusia. Secara mikroskopis, konjungtiva kelinci dilapisi oleh sel epitel skuamus bertingkat pada permukannya yang disertai dengan sel-sel goblet yang berkelompok.21

2.1.2 Anatomi Daerah Bedah Glaukoma

Operasi filtrasi dilakukan pada daerah limbus yang merupakan pertemuan antara kornea dan sklera. Perbatasan antara kornea dan sklera ini membentuk garis oblik antara batas anterior dan batas posteriorinya. Lapisan dalam limbus tidak berbatas tegas dan memiliki lebar sekitar 1 mm, daerah ini berwarna putih-kebiruan (blue zone) dan merupakan penanda daerah operasi pada limbus kornea. Derah berwarna putih-kebiruan pada limbus ini disebabkan oleh perluasan lamela kornea bagian dalam (deeper corneal layer) yang melebihi batas eksternal kornea perifer.4

Gambar 5. Anatomi daerah operasi filtrasi 4
Pada gambar 3 tampak potongan flap sklera setebal 1/3 ketebalan sklera manusia, tampak letak lapisan dalam dari *skleral bed* pada daerah limbus. Pada bagian atas dari *skleral bed* terdapat lamela kornea yang berwarna transparan sehingga warna dari iris akan membayang. Lebih posterior terhadap kornea pada *skleral bed* ini tampak garis berwarna abu-abu (*grey line*) yang merupakan *trabekular meshwork*, dan pada batas posterior garis ini tampak jaringan sklera yang tebal. Apabila dilihat dari luar, pertemuan antara batas posterior *grey line* dan sklera merupakan penanda daerah *skleral spur* dan *canalis schelm*. *Skleral spur* meluas sedikit lebih ke posterior terhadap daerah pertemuan tersebut. *Corpus siliaris* melekat pada *skleral spur* yang merupakan perbatasan antara *trabekulum meshwork* dan sklera. Irisan sklera yang lebih posterior dari daerah perbatasan ini akan mengenai *corpus siliaris* dan *pars plicata* yang dapat menyebabkan perdarahan hebat.\(^2\;^4\)

2.2. Tehnik Operasi Filtrasi

Terdapat beberapa jenis operasi filtrasi, dan secara garis bersar dibagi menjadi : 2,4

1. Full-Thickness Filtering Surgery

Pada tindakan operasi filtrasi full thickness ini dilakukan pembuangan jaringan limbal dengan menggunakan trephine, laser, maupun cauter. Beberapa jenis tindakan ini antara lain : Scheie Procedure, Subscleral Trephine, Sclerotomy. Tindakan operasi filtrasi full thickness ini sudah mulai ditinggalkan oleh para ahli oleh karena tingginya kejadian komplikasi pasca operasi, terutama setelah mulai diperkenalkannya bahan-bahan anti fibrosis.2

2. Partial-Thickness Filtering surgery

Jenis operasi filtrasi yang paling sering digunakan saat ini dan telah digunakan sebagai baku emas untuk tindakan pada glaukoma sudut terbuka adalah tindakan guarded sclerostomy atau sering dikenal dengan trabekulektomi. Trabekulektomi merupakan suatu tindakan operasi filtrasi partial thickness, dimana dilakukan pengangkatan/pembuangan sebagian jaringan limbus yang berada dibawah flap sklera. 2,4

2.3. Keberhasilan Tindakan Operasi Filtrasi

Pasca trabekulektomi didapatkan keberhasilan sekitar 65-75 %, dimana target tekanan intra okular yang aman tercapai. Sekitar 20 % kasus termasuk qualified success, dimana target tekanan intra okular tercapai dengan tambahan obat anti glaukoma pasca operasi. Kegagalan trabekulektomi dalam mengendalikan mencapai tekanan intra okular dalam beberapa bulan pasca operasi yang disebabkan oleh pembentukan jaringan sikatrik.
di konjungtiva yang berlebihan didapatkan pada 10-15 % kasus. Komplikasi lain yang lebih serius seperti perdarahan ditemukan pada sekitar 1% kasus pasca trabekulektomi. 2-5,6,8

Faktor utama yang menentukan tekanan intra okular terkendali dalam jangka waktu yang lama pasca tindakan filtrasi adalah respon penyembuhan jaringan. Secara teoritis dengan mengendalikan pembentukan jaringan sikatrik (scarring process), maka tekanan intra okular juga akan terkendali dalam jangka waktu yang lama. 2,4,6

Tina et al dengan menggunakan model operasi filtrasi pada kelinci menemukan bahwa dengan penghambatan Matrix Metalloproteinase, maka pembentukan jaringan siktrrik di subkonjungtiva dapat ditekan. 22
2.3.1. Mekanisme Normal Wound Healing

Respon penyembuhan akibat trauma pada jaringan termasuk luka operasi, melibatkan serangkaian proses yang kompleks, namun secara sederhana dapat dirangkum menjadi tiga fase sesuai proses yang terjadi, yaitu fase inflamator, fase proliferatif, dan fase remodeling. Fase inflamatori ditandai dengan terjadinya migrasi neutrofil dan monosit menuju daerah yang mengalami trauma, diikuti oleh migrasi makrofag dan limfosit serta pelepasan beberapa growth factor seperti transforming growth factor (TGF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF) dan molekul-molekul lainnya.10,11

Pada fase proliferative terjadi reepitelisasi, peningkatan jumlah dan aktifitas fibroblast, serta proses angiogenesis dan pembentukan jaringan granulasi. Fase remodeling terdiri dari kontraksi jaringan yang dimediasi oleh fibrobalst, penimbunan matriks ekstra seluler, degradasi dan modifikasi (proses ini dapat bertahan selama beberapa bulan), serta produksi growth factor regulator.10,11 Secara skematis proses penyembuhan luka (wound healing) dapat dilihat pada gambar 8 dan proses selular yang terjadi berdasarkan waktunya dapat dilihat pada gambar 9.
Gambar 8. Skema proses penyembuhan luka (wound healing)
Gambar 9. Diagram kronologis proses seluler yang terlibat dalam penyembuhan luka

2.3.2. Beberapa hal yang mempengaruhi proses penyembuhan pasca Operasi Filtrasi 4,7

- "Tissue Priming" (Keadaan Jaringan Sebelum Tindakan)

Pemberian terapi topikal dalam jangka waktu lama dapat mengkondisikan jaringan konjungtiva untuk segera bereaksi secara berlebihan setelah tindakan pembedahan. Timbulnya respon sub-seluler terhadap pemberian terapi topikal jangka panjang juga dapat menyebabkan tekanan intra okular yang lebih tinggi pasca operasi. Beberapa mekanisme yang muncul dapat merubah fenotipe dari fibroblast dan menyebabkan aktivasi respon pembentukan jaringan fibrotik. Beberapa penelitian membuktikan bahwa dengan pemberian bahan anti metabolit seperti 5-Fluorourasil
(5FU) dan Mitomycin-C (MMC) dapat menekan aktivasi respon selular yang terjadi. Walaupun bahan anti metabolit dapat menekan pertumbuhan seluler, sel-sel tersebut masih dapat memicu merangsang pembentukan jaringan parut/fibrotik pada sel-sel disekitarnya melalui pelepasan faktor pertumbuhan (Growth Factors). Temuan tersebut membantu menjelaskan sebagian proses pembentukan jaringan fibrotik pada kasus operasi filtrasi yang diberi bahan anti metabolit, terutama pada bleb fokal yang avaskuler. Pada bleb tersebut daerah sentral yang aselular dapat dikelilingi oleh cincin sel-sel yang terhambat pertumbuhannya (ring of steel) namun masih dapat memicu timbulnya fibrosis.\(^4\,^7\)

- Beratnya Kerusakan Jaringan

Hingga saat ini belum ada satupun tindakan pembedahan yang dapat terbebas dari pembentukan jaringan fibrotik. Menekan jumlah kerusakan jaringan yang terjadi merupakan suatu hal yang sangat penting, karena pada kerusakan jaringan akan terjadi pelepasan berbagai macam cytokine. Menekan jumlah perdarahan yang terjadi juga akan mempengaruhi proses pemulihan jaringan yang terjadi. Komponen lain yang juga sangat penting pada kerusakan jaringan mata adalah terganggunya sawar darah-humour aqueous (blood-aqueous barrier), hal ini mungkin sulit diamati namun sangat berperan dalam pembentukan jaringan fibrotik yang akan menyebabkan kegagalan tindakan pembedahan. \(^4\,^7\)

- Respon Inflamasi Jaringan

Inflamasi pada konjungtiva yang terjadi terus menerus akan menyebabkan pembentukan jaringan fibrotik. Epitel konjungtiva akan terus mengekspresikan antigen permukaan (surface antigen) sampai beberapa bulan setelah tindakan operasi,
keadaan ini meningkatkan potensi sel-sel tersebut untuk menginduksi inflamasi imunologis dan membentuk jaringan fibrotik. Inflamasi sub klinis pada bilik mata depan seperti yang muncul pada kombinasi antara tindakan operasi katarak dan operasi glaukoma, memberikan prognosis yang lebih buruk dibandingkan apabila hanya dilakukan operasi glaukoma saja. Pasca operasi katarak ditemukan flare yang lebih nyata dibandingkan pasca operasi glaukoma, bahkan pada mata yang secara klinis tampak tenang. Keadaan-keadaan tersebut menjelaskan pengaruh operasi katarak terhadap proses penyembuhan jaringan, sehingga pada operasi katarak dapat menyebabkan kenaikan tekanan intra okular. Fenomena ini menjelaskan manfaat pemberian anti inflamasi (kortikosteroid) topikal terhadap penurunan tekanan intra okular pasca operasi filtrasi.

• Jendalan Darah (Blood Clotting)

Perdarahan yang terjadi akibat tindakan operasi akan diikuti dengan pembentukan jendalan darah dan pembentukan fibrin, kedua hal tersebut dapat menyebabkan kegagalan tindakan operasi filtrasi karena terjadi sumbatan terhadap aliran humor aqueous, pelepasan growth factors, dan pembentukan jaringan fibrotik. Untuk mengatasi pembentukan jendalan darah ini telah digunakan bahan-bahan seperti tissue plasminogen activator dan urokinase. Lebih jauh lagi, produk-produk degradasi akibat lisinya jendalan darah juga dapat memberikan efek stimulasi penyembuhan jaringan dalam jangka panjang yang dapat menyebabkan kegagalan operasi.

19
• Faktor-faktor Stimulator

Pada bleb dapat ditemukan berbagai macam molekul protein yang menyebabkan stimulasi terhadap sel-sel radang yang mengalir dalam humor aqueous. Molekul-molekul ini dikenal dengan faktor pertumbuhan (growth factors) atau cytokine. TGF-beta (Transforming Growth Factor-beta) merupakan salah satu cytokine di dalam humor aqueous yang paling berperan dan dapat menyebabkan aktifitas stimulasi yang lebih kuat dibanding growth factor lainnya. Cytokine ini juga dapat menstimulasi pembentukannya sendiri melalui aktifitas auto-induksi, dan pada penelitian secara in vivo cytokine ini dapat menetralkan efek dari Mitomycin C.4,7

• Migrasi seluler, Kontraksi Jaringan, dan Sintesis Matriks Ekstra Seluler

Migrasi sel-sel fibroblast merupakan komponen penting yang mendasari terjadinya kontraksi jaringan yang nantinya dapat menyebabkan kegagalan tindakan operasi filtrasi. Matrix metalloproteinases (MMPs) merupakan suatu enzim yang menyebabkan degradasi matrik-matriks ekstra seluler. MMPs yang beredar akan menghambat cell-mediated collagen contraction seperti yang disebabkan oleh fibroblast pada lapisan Tenon dan turut berperan dalam pembentukan jaringan fibrotik.4,7

2.4. Beberapa Bahan Untuk Mencegah Fibrotisasi

2.4.1. Steroid

Obat anti inflamasi steroid atau lebih dikenal dengan glukokortikoid diberi sebagai 3 macam golongan menurut potensi dan durasi kerjanya. Golongan pertama adalah glukokortikoid potensi ringan dengan durasi kerja jangka pendek berkisar antara
8-12 jam yaitu *hydrocortisone* dan *cortisone*. Golongan kedua adalah glukokortikoid potensi sedang dengan durasi kerja jangka menengah berkisar antara 18-36 jam yaitu *prednisone, prednisolone, metilprednisolone, triamcinolone* dan *fluorometholone*. Golongan ketiga merupakan glukokortikoid potensi kuat dengan durasi kerja jangka panjang berkisar antara 1-3 hari yaitu *dexamethasone, betamethasone* dan *paramethasone*. Jenis glukokortikoid yang digunakan secara topikal pada mata adalah *dexamethasone, fluorometholone, prednisolone, medrysone, tetrahydrotriamcinolone* dan *hydrocortisone*. Berikut adalah tabel perbandingan potensi anti inflamasi dan risiko peningkatan TIO antar steroid tersebut:

Tabel 1. Perbandingan potensi anti inflamasi dan risiko peningkatan TIO steroid topikal pada mata

<table>
<thead>
<tr>
<th>Golongan Steroid</th>
<th>Potensi obat</th>
<th>Potensi kenaikan TIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexamethasone 0,1%</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Fluorometholone 0,1%</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>Prednisolone 1%</td>
<td>2,3</td>
<td>10</td>
</tr>
<tr>
<td>Medrysone 1%</td>
<td>1,7</td>
<td>1</td>
</tr>
<tr>
<td>Tetrahydrotriamcinolone 0,25%</td>
<td>1,4</td>
<td>2</td>
</tr>
<tr>
<td>Hydrocortisone 0,5%</td>
<td>1,0</td>
<td>3</td>
</tr>
</tbody>
</table>

Steroid memiliki banyak efek pada berbagai jenis inflamasi baik akut maupun kronis. Secara garis besar efek steroid tersebut dapat dibagi menjadi 2 yaitu molekuler dan seluler. Pada inflamasi akut, setelah steroid menembus membran sel akan berikatan dengan *specific steroid-binding protein receptor* di sitoplasma dan akan membentuk
steroid-receptor complex. Steroid-receptor complex yang terbentuk akan mengkode messenger ribo nucleic acid (mRNA) yang akan menentukan respon anti inflamasi pada sel tersebut berupa penghambatan produksi enzim phospholipase A₂ sehingga menyebabkan penurunan kemotaksis leukosit, produksi mediator-mediator inflamasi (prostaglandin dan leukotriene) serta fungsi dari sel-sel imunologik. Sedangkan pada inflamasi kronik, steroid dapat mengurangi proliferasi fibroblas dan densitas kolagen yang terdeposisi sehingga mencegah terjadinya fibrosisasi lebih lanjut.¹¹,¹²

Berikut bagan mengenai titik tangkap dan cara kerja penghambatan inflamasi oleh steroid:

![Diagram Steroid Inhibition of Inflammation](image)

Gambar 10. Cara kerja obat anti inflamasi steroid dan non steroid²
Berikut adalah uraian efek anti inflamasi steroid secara detail.23

1. Menyebabkan terjadinya vasokonstriksi sehingga mengakibatkan penurunan permeabilitas pembuluh darah tersebut.

2. Menstabilkan membran \textit{lysosom} intraseluler sehingga menyebabkan hambatan dalam degranulasi sel-sel polimorfonuklear.

4. Menghambat kerja enzim \textit{phospholipase A\textsubscript{2}} sehingga mengakibatkan penurunan produksi \textit{arachidonic acid} serta penghambatan produksi prostaglandin dan leukotriene.

5. Mencegah terjadinya agregasi leukosit pada endotel pembuluh darah sehingga leukosit menjadi lebih \textit{mobile} di dalam pembuluh darah dan mengurangi kemungkinan terjadinya pergerakan leukosit menuju \textit{site of injury}.

7. Mengurangi jumlah fibroblas sehingga terjadi penurunan densitas kolagen yang terakumulasi dan pencegahan terjadinya fibrosisasi lebih lanjut dalam proses pemulihan inflamasi.

Pada penelitian klinis lanjutan, ditemukan bahwa penggunaan kortikosteroid tidak selalu dapat mengendalikan inflamasi dan menekan pembentukan jaringan fibrosis secara adekuat. Hal ini lebih nyata pada penderita yang peka terhadap steroid (\textit{steroid responder}), sehingga juga didapatkan kegagalan trabekulektomi oleh karena pembentukan jaringan fibrotik yang berlebihan.23,14
2.4.2. Anti Metabolik

Aplikasi bahan anti fibrosis seperti 5-Fluorourasil dan Mitomycin C telah meningkatkan angka keberhasilan trabekulektomi dalam mengendalikan tekanan intra okular.\(^2,4,7\)

5-Fluorourasil merupakan suatu analog pyrimidine, bahan ini mampu menghambat proliferasi fibroblast dan telah terbukti bermanfaat dalam menekan pembentukan jaringan fibrotik setelah operasi filtrasi. Bahan ini mengalami perubahan intra-seluler menjadi bentuk aktif deoxynucleotide 5-fluoro-2-deoxyuridine 5-monophosphate (FdUMP) yang akan mempengaruhi proses sintesa DNA melalui aksinya pada sintesa thymidylate. 5-Fluorourasil dapat diberikan durante operatif dengan cara yang sama dengan pemberian Mitomycin C, bahan ini dapat pula diberikan sebagai injeksi pasca operatif. Pada penggunaan bahan ini harus diamati tanda-tanda timbulnya toksisitas terhadap kornea.\(^2,3,4,7\)

Mitomycin C merupakan suatu campuran antibiotic-antineoplastik alami yang diperoleh dari *Streptomyces caespitosus*. Bahan ini bekerja sebagai anti oksidan dan ankylating agent yang menyebabkan cross-linking DNA. Mitomycin C adalah bahan anti fibrotik yang sangat kuat, umumnya diberikan dengan meletakkan spon yang telah dituang ke dalam Mytomycin C pada daerah subkonjungtiva yang akan dilakukan tindakan. Mytomycin C adalah bahan yang bersifat toksik, sehingga kontaminasi ke dalam bilik mata harus dihindari.\(^2,4,6,7\)

Bahan anti metabolik ini memiliki risiko untuk menimbulkan komplikasi yang dapat menyebabkan kebutaan seperti kebocoran bleb, blebitis, hipotoni-makulopati dan
endoftalmitis sehingga penggunaannya hanya terbatas pada kasus-kasus dengan risiko tinggi terjadinya sikatrisasi2,4,5

2.5. Epigallocatechin-3 Gallate (EGCG) Teh Hijau

Teh (\textit{Camellia sinensis}) telah dipakai sebagai minuman sehari-hari sejak ribuan tahun yang lalu di China, dan sekarang teh merupakan minuman kedua yang paling banyak dikonsumsi manusia setelah air. Secara tradisional teh diketahui memiliki banyak efek yang menguntungkan bagi kesehatan, meskipun efek tersebut belum banyak dibuktikan di laboratorium sebelum tahun 1970-an. Efek yang menguntungkan tersebut antara lain: antioksidan kuat, anti kanker, antimikroba, anti alergi, anti inflamasi, pengikat (scavenger) radikal bebas, dan anti fibrotik. Beberapa manfaat teh yang lain antar lain membantu mempertahankan kolesterol plasma pada level yang menyehatkan sehingga dapat menurunkan resiko terjadinya penyakit kardiovaskuler dan menurunkan resiko hipertensi, kombinasi EGCG dengan vitamin C dapat menurunkan kadar kolesterol darah.16,20,24,25

Komponen aktif teh yang bertanggung jawab terhadap efek biologi teh dikenal sebagai \textit{catechin} (juga dikenal sebagai polifenol). Senyawa polifenol tersebut merupakan kandungan aktif teh hijau yang memiliki efek terhadap sistem imun. Daun teh hijau kering memiliki kandungan 15–30\% senyawa polifenol yang terdiri dari \textit{Epigallocatechin gallate} (EGCG) (59,04\%), \textit{Epigallocatechin} (EGC) (19,28\%), \textit{Epicatechingallate} (ECG) (13,69\%), \textit{Epicatechin} (EC) (6,39\%) dan \textit{Gallocatechin} (GC) (1,60\%).16,24,25,26

EGCG merupakan \textit{catechin} utama yang terdapat di ekstrak teh dan merupakan bentuk yang paling aktif diantara semua jenis \textit{catechin} serta memiliki efek biologi yang
paling besar dibanding catechin yang lain. EGCG memiliki efek antikanker, antimikroba, antioksidan, anti inflamasi, pengikat (scavenger) radikal bebas dan anti fibrotik. EGCG juga sering disebut sebagai tea catechin; (2R,3R)-2-(3,4,5-Trihydroxyphenyl) -3,4- dihydro-1(2H) – benzopyran - 3,5,7-triol 3-(3,4,5-trihydroxy benzoate); atau 3,4-Dihydro –5,7- dihydroxy -2R- (3,4,5-trihydroxyphenyl) -2H-1-benzopyran-3R-yl-3,4,5-trihydroxy-benzoate. Secara fisik, EGCG merupakan suatu ekstrak yang berbentuk serbuk berwarna putih sampai merah muda dengan titik lulus 218°C yang larut dalam air dan pelarut organik seperti ethanol dan dimethyl formamide. EGCG stabil di dalam suhu kamar biasa namun bersifat higroskopik dan sensitif terhadap cahaya.

Gambar 11. Struktur kimia EGCG

2.6 Efek EGCG terhadap Pembentukan Jaringan Fibrotik

Beberapa laporan menyebutkan bahwa potensi penghambatan proses inflamasi EGCG bersifat dose-dependent secara in vitro, namun secara in vivo belum pernah dilaporkan. Kisaran dosis in vitro yang pernah dilaporkan dapat menimbulkan
penghambatan proses inflamasi adalah 10^{-3} mg/ml sampai dengan 10^{-1} mg/ml atau 10^{-1} μM sampai dengan 2×10^{2} μM.16-20

EGCG terbukti mampu menekan pembentukan fibrosis pada parenkim paru pada penelitian yang dilakukan oleh Dona et al. Pada penelitian ini dilakukan pemberian 0,5 mg/ml EGCG pada tikus. Pembentukan fibrosis dapat ditekan dengan menekan proses inflamasi yang diperantara oleh netrofil.16

Mohit et al membuktikan bahwa aplikasi 50 μL Epicatechin-gallate 0.8 mg/ml dengan model incisi kulit full thickness pada tikus secara signifikan terbukti dapat memperbaiki kualitas penyembuhan luka dan pembentukan jaringan fibrotik yang tidak berlebihan.15

Pada penelitian yang dilakukan oleh Sartippour et al, didapatkan bahwa pemberian 50 μg/ml EGCG mampu menekan ekspresi fibroblast growth factor (FGF) yang merupakan suatu faktor angiogenik dan menekan kadar vascular endotelial growth factor (VEGF). Kedua growth factor ini juga merupakan faktor yang berperan dalam pembentukan jaringan fibrotik.20

2.7. Farmakokinetik Obat Tetes Mata

Sebagian besar bentuk sediaan obat mata adalah tetes mata. Kelebihan bentuk sediaan dengan rute topikal ini adalah tercapainya konsentrasi obat yang adekuat di segmen depan mata tanpa terjadi efek yang tidak diinginkan di bagian/sistem tubuh lainnya. Namun sifat bentuk sediaan tetes mata ini mempunyai keterbatasan yang mempengaruhi efektifitasnya yaitu dalam hal waktu dan volume kontak obat dengan permukaan bola mata. Hanya sekitar 20% obat saja dari sejumlah obat yang ditetaskan dapat tertahan oleh kelopak mata dan *cul-de-sac* setelah mata berkedip. Jadi bila sejumlah 50 μl (volume 1 tetes obat tetes mata pada umumnya) diteteskan, hanya sekitar 50 x 20% = 10 μl saja yang tertahan di permukaan bola mata. Selanjutnya terjadi penurunan volume obat di dalam air mata secara cepat kurang lebih 16% per menit pada permukaan mata yang sehat. Penurunan volume obat lebih banyak terjadi pada obat tetes yang merangsang refleks air mata. Pada jenis obat yang absorbsinya lambat, 50% obat dapat tertahan di air mata setelah 4 menit penetesan, namun hanya 17% saja yang tertahan setelah 10 menit penetesan. Obat-obat yang mempunyai sifat isotonis, bebas iritan, dan mempunyai pH fisiologis (± 7,4) tidak mengiritasi permukaan bola mata.
Sebaliknya obat-obat yang hiper/hipotonis, mengandung iritan (seperti bahan pengawet), mempunyai pH yang sangat tidak fisiologis, dapat mengiritasi dan merangsang refleks air mata.
2.8. Kerangka Teori

- Kimia
 - Toksik Obat
- Biologik:
 - Infeksi
 - Auto Imun
- Fisik
 - Trauma

Operasi Filtrasi

KONJUNGTTIVA

- Kerusakan jaringan
- Kerusakan Blood–a[queous barrier
- Pembentukan jendalan darah

Respon Vaskular:
1. Peningkatan permeabilitas
2. Pelepasan mediator
 - Amin Vasoaktif
 a. Histamin
 b. Serotonin
 - Plasma Protein
 a. Kinin
 b. Komplemen
 - Asam Arakidonat
 a. Prostaglandin
 b. Leukotrien

Migrasi Seluler
1. Sel epitel
2. Neutrofil
3. Monosit & Makrofag
4. Fibroblast

Pelepasan:
- Growth Factors
- Mediator Inflamasi
 (Cytokin, Interleukin)

Epigallocatechin-gallate
(EGCG)

Matriks Metaloproteinase
(MMPs)

Proliferasi Fibroblast,
Sel endotel,
sel Fibrogenik

Sintesa Kolagen

Jaringan Fibrotik

Degradasi Kolagen
2.9. Kerangka Konsep

Trauma jaringan (Operasi Filtrasi)

Deksametason

Epigallocatechin-gallate (EGCG)

Respon penyembuhan

Derajat Inflamasi

Derajat Fibrosis
BAR 3

HIPOTESIS

1. Efek anti inflamasi epigallocatechin-gallate (EGCG) topikal pada substantia propria konjungtiva kelinci pasca operasi filtrasi tidak berbeda dibanding dengan deksametason topikal.

2. Efek anti fibrosisasi Epigallocatechin-gallate (EGCG) topikal pada substantia propria konjungtiva kelinci pasca operasi filtrasi tidak berbeda dibanding dengan deksametason topikal.
BAB 4
METODE PENELITIAN

4.1. Ruang lingkup penelitian

Ruang lingkup penelitian adalah Ilmu Kesihatan Mata khususnya mengenai glaukoma.

4.2. Tempat dan waktu penelitian

4.3. Jenis dan rancangan penelitian

Penelitian ini merupakan penelitian eksperimental dengan rancangan *parallel group post test only 2 groups* design.

Hewan coba akan dibagi secara acak menjadi 2 kelompok yaitu:

Kelompok 1(kontrol) : Operasi Filtrasi dan topikal antibiotik (Polymixin, Neomycin) + topikal Deksametason selama 3 minggu

Kelompok 2 (Perlakuan) : Operasi Filtrasi dan topikal antibiotik (Polymixin, Neomycin) + topikal EGCG 0,05 mg/mL selama 3 minggu
4.4. Sampel penelitian

4.4.1. Sampel

Sampel penelitian adalah kelinci putih New Zealand

4.4.1.1. Kriteria sampel

a. Kelinci jantan
b. Umur 3–4 bulan
c. Berat badan 2–4 kg
d. Kelinci tampak aktif
e. Pada pemeriksaan luar tidak tampak adanya kelainan anatomic khususnya kelainan bola mata
f. Pada pemeriksaan luar tidak tampak adanya proses infeksi aktif pada segmen anterior bola mata

4.1.2. Besar sampel

Besar sampel ditentukan berdasarkan kriteria WHO yaitu minimal adalah 5 kelinci perkelompok.

Bila diperhitungkan kemungkinan drop out akibat kematian kelinci selama penelitian adalah 10% maka besar sampel untuk setiap kelompok adalah:

\[n_{do} = \frac{n}{(1 - do)^2} = \frac{5}{(1 - 0.1)^2} = 6.2 \approx 7 \]
Namun berdasar masukan dari pihak LPPT UGM bahwa pada penelitian yang pernah dilakukan dengan lama penelitian lebih dari 1 bulan didapatkan angka kematian kelinci percobaan sekitar 50%, maka peneliti memutuskan menggunakan 28 ekor kelinci sebagai sampel penelitian untuk kedua kelompok.

4.1.3. Metoda alokasi kelompok

Metode alokasi kelompok dilakukan secara acak dengan metode acak sederhana berdasarkan tabel angka random

4.1.4. Kriteria Ekslusi

1. Terdapat komplikasi durante operasi atau terjadi perdarahan yang berlangsung lebih dari 30 detik
2. Terdapat tanda-tanda infeksi aktif pada mata pasca operasi
3. Kelinci mati selama percobaan

4.5. Variabel Penelitian

4.5.1. Variabel bebas

Variabel bebas adalah jenis perlakuan yang diberikan.

2. Kelompok Perlakuan : Operasi filtrasi dan antibiotik topikal (Polymixin, Neomycin) + EGCG 0,05 mg/mL topikal selama 3 minggu
4.5.2. Variabel terikat

Variabel terikat adalah:

1. Derajat sebukan sel radang. Skala ordinal
 a. Tidak ada
 b. Ringan
 c. Sedang
 d. Berat

 a. Tidak ada
 b. Ringan
 c. Sedang
 d. Berat

4.6 Definisi Operasional

<table>
<thead>
<tr>
<th>No</th>
<th>Variabel</th>
<th>Skala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Jenis Perlakuan</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Perlakuan 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operasi filtrasi dan pemberian topikal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deksametason + topikal AB (Polymixin, Neomycin) 6x tets/hari selama 3 minggu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Perlakuan 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operasi filtrasi dan pemberian topikal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGCG 0,05 mg/mL + topikal anti biotik (Polymixin, Neomycin) 6x1 tets/hari selama 3 minggu</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Derajat sebukan sel radang pada substansia propria konjugtiva</td>
<td>Ordinal</td>
</tr>
<tr>
<td></td>
<td>Derajat sebukan sel radang adalah sebaran sel radang polimorfonuklear dan atau mononukelar di substansia propria konjugtiva kelinci yang diperiksa secara histopatologis dengan pengecatan Hematoksilin Eosin, diperiksa dibawah mikroskop dengan pembesaran 400 X dan disimpulkan oleh seorang spesialis patologi</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Variabel</td>
<td>Skala</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>anatomii.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tidak ada: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ringan (sampai dengan 25% dalam 10 lapangan pandang): 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sedang (25-75% dalam 10 lapangan pandang): 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Berat (lebih dari 75% dalam 10 lapangan pandang): .3</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Derajat fibrosisasi</td>
<td>Ordinal</td>
</tr>
<tr>
<td></td>
<td>Derajat fibrosisasi ditentukan berdasarkan densitas kolagen pada substansia propria konjungtiva. Dikatakan fibrosisasi apabila densitas kolagen > 1,5 X jaringan sehat sekitarnya. Diperiksa secara histopatologis dan disimpulkan oleh seorang spesialis patologi anatomii dengan pengecapan Trichrome, dibawah mikroskop dengan pembesaran 400 X.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tidak ada: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ringan (sampai dengan 25% dalam 10 lapangan pandang): 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sedang (25-75% dalam 10 lapangan pandang): 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Berat (lebih dari 75% dalam 10 lapangan pandang): .3</td>
<td></td>
</tr>
</tbody>
</table>

4.7. Alat, Bahan dan Cara Kerja

4.7.1. Alat dan Bahan penelitian

a. Kelinci putih *New Zealand* jantan umur 3-4 bulan berat badan 2-4 kg yang diperoleh dari LPPT UGM.

b. Tetes mata antibiotik (polymixin, neomycin), tetes mata Deksametason 0,1%, tetes EGCG 0,05 mg/mL

c. Pinset
d. Gunting
e. Buffer Formalin 10%
f. Mikroskop dengan kamera digital
g. Pengecapan Hematoksilin Eosin dan Trichrome
h. Kandang hewan
i. Kaca benda
4.7.2. Cara kerja

a. 28 ekor kelinci putih New Zealand umur 3-4 bulan diaklimatisasi selama 1 minggu di LPPT UGM.

b. 28 ekor kelinci tersebut kemudian dibagi menjadi 2 kelompok masing-masing terdiri dari 14 ekor kelinci:
 1) Kelompok Kontrol
 2) Kelompok Perlakuan.

c. Prosedur operasi filtrasi

 Prosedur operasi filtrasi yang dilakukan berdasarkan standar ARVO Statement for the Use of Animal in Ophthalmic an Vision Research
 1. Dilakukan anestesi pada kelinci dengan pemberian injeksi ketamine 50 mg/kgBB intra muskular.
 2. Diberikan tetes mata proparacaine 0,1% (Pactocaine).
 3. Dilakukan jahitan kandali kornea bagian superior (partial thickness) dengan menggunakan dexon 8.0
 4. Dibuat flap konjungtiva (limbal-based) pada kuadran supero temporal, dan dilakukan pemisahan jaringan sub konjungtiva secara tumpul sampai mencapai daerah limbus.
 5. Dibuat incisi daerah limbus selebar 3 mm sampai humor aquous keluar
 6. Dilakukan sklerostomy dengan menggunakan Kelly’s puncher 1,5 mm.
 7. Konjungtiva dan kapsula Tenon dijahit dengan menggunakan benang dexon 8.0 secara kontinyu.
 8. Diberikan salep mata antibiotik setelah seluruh prosedur selesai

d. Prosedur pengambilan jaringan konjungtiva adalah sebagai berikut:
 1) Kelinci dibunuh dengan embolisasi udara melalui vena telinga setelah dinarkose dengan kloroform
 2) Dilakukan pengangkatan mata kelinci beserta jaringan konjungtiva bulbi
 3) Bola mata yang sudah terlepas dimasukkan kedalam cairan fiksasi yaitu bufer formalin 10%
e. Kualitas data penelitian juga dikontrol perawatan hewan coba sebagai berikut:
1) Kelinci ditempatkan pada kandang khusus, dimana setiap kandang berisi 4 ekor kelinci
2) Kandang hewan coba dibersihkan secara teratur dengan frekuensi serta kebersihan yang sama
3) Kandang hewan coba mendapat ventilasi dan pencahayaan yang memadai dan kualitasnya sama untuk setiap kandang
4) Pakan dan air minum diberikan secara ad libitum. Jenis pakan adalah pakan standar kelinci berupa pelet.
f. Apabila dijumpai kelinci mengalami peradangan pada bola mata ataupun mati maka kelinci dikeluarkan dari penelitian dan akan diganti dengan kelinci baru. Perlakuan untuk kelinci pengganti akan dilakukan sama seperti kelompok yang sesuai.
g. Pembacaan sedian jaringan akan dilakukan oleh satu orang ahli Patologi Anatomi
4.8. Alur Penelitian

Aklimatisasi

Randomisasi

Kelompok Kontrol
Operasi Filtrasi
Topikal AB (Polymixin, Neomycin)
Topikal Deksametason

Kelompok Perlakuan
Operasi Filtrasi
Topikal AB (Polymixin, Neomycin)
Topikal EGCG 0,05 mg/ml

Pengangkatan bola mata dan konjungtiva bulbi pada hari ke-21

Pemeriksaan Histopatologi

Derajat Inflamasi

Derajat Fibrotisasi
4.9. Analisis Statistik

Data yang terkumpul diperiksa kelengkapanya sebelum dianalisis. Selanjutnya data diberi kode, ditablelasi dan dimasukkan kedalam komputer. Data derajat sebukan sel radang dan densitas kolagen pada masing-masing kelompok dinyatakan sebagai distribusi frekuensi dan persentase.

Uji hipotesis untuk perbedaan derajat sebukan sel radang dan densitas kolagen pada minggu ke-14 antar kelompok diuji dengan uji \(\chi^2 \) atau uji Fisher Exact apabila dijumpai ada sel pada tabel yang memiliki expected frequency < 5 berjumlah lebih dari 20%. Perbedaan dianggap bermakna apabila nilai \(p \leq 0,05 \). Uji statistik akan menggunakan program SPSS for Windows ver 15 (SPSS Inc, USA).

4.10. Etika Penelitian

BAB 5
HASIL PENELITIAN

5.1. Karakteristik Sample

Kelinci secara random dialokasikan menjadi 2 kelompok, yaitu kelompok kontrol yang mendapat terapi kombinasi antara dexamethasone dan antibiotik topikal (Polymixyn, Neomycin) selama 3 minggu pasca operasi filtrasi (n=14) dan kelompok perlakuan yang mendapat EGCG topikal 0,05 mg/mL dan antibiotik topikal (Polymixyn, Neomycin) pasca operasi filtrasi selama 3 minggu (n=14).

Selama periode penelitian baik pada kelompok kontrol maupun perlakuan, masing-masing dijumpai 7 kelinci yang mati dengan penyebab yang tidak diketahui sehingga tidak dapat dipergunakan sebagai sampel. Pada akhir perlakuan (minggu ke-3) masih tersisa 7 ekor kelinci pada masing-masing kelompok, sehingga masih memenuhi jumlah sample minimal yang dibutuhkan. Bagan jumlah kelinci yang digunakan dalam penelitian ditampilkan pada gambar 12.
Gambar 12. Skema jumlah hewan coba pada kelompok penelitian dari saat awal sampai dengan akhir penelitian

<table>
<thead>
<tr>
<th>Nomor Sampel</th>
<th>Jenis Perlakuan</th>
<th>Derajat Sebukan Sel Radang</th>
<th>Derajat Fibrotilasi (densitas kolagen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kontrol</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>2</td>
<td>Kontrol</td>
<td>Sedang</td>
<td>Sedang</td>
</tr>
<tr>
<td>3</td>
<td>Kontrol</td>
<td>Ringan</td>
<td>Sedang</td>
</tr>
<tr>
<td>4</td>
<td>Kontrol</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>5</td>
<td>Kontrol</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>6</td>
<td>Kontrol</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>7</td>
<td>Kontrol</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>8</td>
<td>Perlakuan</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>9</td>
<td>Perlakuan</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>10</td>
<td>Perlakuan</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>11</td>
<td>Perlakuan</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>12</td>
<td>Perlakuan</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>13</td>
<td>Perlakuan</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
<tr>
<td>14</td>
<td>Perlakuan</td>
<td>Ringan</td>
<td>Ringan</td>
</tr>
</tbody>
</table>
5.2. Derajat sebukan sel radang pada substransia propria konjungtiva

Derajat sebukan sel radang pada substransia propria konjungtiva kelinci pada kelompok kontrol dan perlakuan ditampilkan pada tabel 3.

Tabel 3. Derajat sebukan sel radang pada substransia propria konjungtiva kelinci pada kelompok kontrol (n=7) dan perlakuan (n=7). Persentase dihitung berdasarkan jumlah dalam kelompok

<table>
<thead>
<tr>
<th>Derajat sebukan sel radang</th>
<th>Kelompok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrol</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Tidak ada</td>
<td>0</td>
</tr>
<tr>
<td>Ringan</td>
<td>6</td>
</tr>
<tr>
<td>Sedang</td>
<td>1</td>
</tr>
<tr>
<td>Berat</td>
<td>0</td>
</tr>
</tbody>
</table>
χ²=1,077 | | | p=0,3 |

Tabel 3 menunjukkan bahwa pada kelompok kontrol, 6 kelinci (85,7%) memberikan gambaran sebukan sel radang derajat ringan dan 1 kelinci (14,3%) dengan sebukan derajat sedang. Pada kelompok perlakuan seluruh kelinci (100%) memberikan gambaran sebukan sel radang derajat ringan. Hasil uji statistik menunjukkan perbedaan yang tidak bermakna pada distribusi derajat sebukan sel radang substransia propria konjungtiva antara kelinci pada kelompok kontrol dengan kelompok perlakuan (p=0,3). Hasil analisis tersebut telah membuktikan hipotesis ke-1. Gambar 13 menyajikan gambaran histopatologis sel radang derajat ringan dan sedang pada subtansia propria konjungtiva.
Gambar 13. Timbunan sel radang pada substansia propria konjungtiva dengan pengecatan Hematoxylin Eosin pada pembesaran 400X. A. Sebukan sel radang derajat ringan. B. Sebukan sel radang derajat sedang

5.3. Derajat fibrotisasi substasia propria konjungtiva

Derajat fibrotisasi pada substansia propria konjungtiva kelinci pada kelompok kontrol dan perlakuan ditampilkan pada tabel 4.

Tabel 4. Derajat fibrotisasi pada substansia propria konjungtiva kelinci pada kelompok kontrol (n=7) dan perlakuan (n=7). Persentase dihitung berdasarkan jumlah dalam kelompok

<table>
<thead>
<tr>
<th>Derajat fibrotisasi</th>
<th>Kontrol</th>
<th>Perlakuan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>(%)</td>
</tr>
<tr>
<td>Tidak ada</td>
<td>0</td>
<td>(0,0%)</td>
</tr>
<tr>
<td>Ringan</td>
<td>5</td>
<td>(71,4%)</td>
</tr>
<tr>
<td>Sedang</td>
<td>2</td>
<td>(28,6%)</td>
</tr>
<tr>
<td>Berat</td>
<td>0</td>
<td>(0,0%)</td>
</tr>
</tbody>
</table>

$\chi^2=2,333$

p=0,1

Tabel 4 menunjukkan bahwa pada kelompok kontrol 5 kelinci (71,4%) memberikan gambaran fibrotisasi substansia propria konjungtiva derajat ringan dan 2 kelinci (28,6%) dengan fibrotisasi derajat sedang. Pada kelompok perlakuan seluruh kelinci (100%) memberikan gambaran fibrotisasi substansia propria konjungtiva derajat ringan. Hasil uji statistik menunjukkan perbedaan yang tidak bermakna (p=0,1), pada
distribusi derajat sebukan sel radang substransia propria konjungtiva antara kelinci pada kelompok kontrol dengan kelompok perlakuan, sehingga hal ini membuktikan hipotesis ke-2. Gambar 14 menunjukkan timbunan sel kolagen yang merupakan penanda fibrosisasi pada substransia propria konjungtiva.

Gambar 14. Timbunan sel kolagen substransia propria konjungtiva dengan pengecatan Trichrome, dilihat pada pembesaran 400x. A. Derajat Ringan. B. Derajat Sedang
BAB 6
PEMBAHASAN DAN DISKUSI

Trabekulektomi merupakan suatu tindakan operatif yang bertujuan untuk meurunkan tekanan intra okular, tindakan ini pada umumnya dilakukan apabila terapi dengan medikamentosa gagal dalam mencapai terget pressure. Angka keberhasilan tindakan trabekulektomi dalam mengendalikan terget pressure sekitar 65-70%.2,5-8

Salah satu hal yang menyebabkan kegagalan tindakan rabekulektomi adalah pembentukan jaringan sikatrik yang berlebihan pada jaringan konjungtiva sebagai akibat respon penyembuhan pada konjungtiva. Respon penyembuhan akibat trauma pada jaringan termasuk luka operasi, melibatkan serangkaian proses kompleks yang antara lain melalui sekresi mediator-mediator inflamasi, migrasi seluler (netrofil, limfosit, monosit, makrofag, dan fibroblas), pelepasan beberapa growth factor seperti transforming growth factor (TGF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF) dan molekul lainnya, serta diakhiri dengan proses remodeling.9,10,11 Secara sederhana proses ini dapat dirangkum menjadi tiga fase yaitu fase inflamatori, fase proliferatif, dan fase remodeling.10,11

Upaya untuk meningkatkan keberhasilan trabekulektomi dapat dilakukan dengan menekan proses pembentukan jaringan sikatrik pada konjungtiva. Kortikosteroid telah digunakan sebagai baku emas dan digunakan dan secara rutin pasca operasi filtrasi. Kortikosteroid secara luas diketahui sangat berperan dalam menekan proses inflamasi yang terjadi baik pada fase akut maupun kronis. Secara garis besar efek kortikosteroid tersebut dapat dibagi menjadi 2 yaitu molekuler dan seluler. Pada inflamasi akut, setelah

48
steroid menembus membran sel akan berikatan dengan specific steroid-binding protein receptor di sitoplasma dan akan membentuk steroid-receptor complex. Steroid-receptor complex yang terbentuk akan mengkode messenger ribo nucleic acid (mRNA) yang akan menentukan respon anti inflamasi pada sel tersebut berupa penghambatan produksi enzim phospholipase A2 sehingga menyebabkan penurunan kemotaksis leukosit, produksi mediator-mediator inflamasi (prostaglandin dan leukotriene) serta fungsi dari sel-sel imunologik. Sedangkan pada inflamasi kronik, steroid dapat mengurangi proliferasi fibroblas dan densitas kolagen yang terdeposisi sehingga mencegah terjadinya fibrosis lebih lanjut.11,12

Pada penelitian ini penggunaan kortikosteroid (deksametason) topikal pasca operasi filtrasi terbukti mampu menekan proses inflamasi dan pembentukan jaringan fibrotik, dimana pada hari ke-21 pasca operasi filtrasi, secara histopatologis pada kelompok kontrol didapatkan sebagian besar kelinci (85,7%) memberikan gambaran sebukan sel radang derajat ringan dan sisanya (14,3%) dengan sebukan sel radang derajat sedang. Fibrosis substansia propria konjungtiva derajat ringan ditemukan pada sebagian besar kelinci (71,4%) dan sisanya (28,6%) dengan fibrosis derajat sedang.

Salah satu efek samping penggunaan steroid adalah kemampuannya menginduksi peningkatan tekanan intra okular, terutama pada steroid responder. Pada beberapa penelitian klinis lanjutan juga ditemukan bahwa penggunaan kortikosteroid tidak selalu dapat mengendalikan inflamasi dan menekan pembentukan jaringan fibrosis secara adekuat, sehingga juga didapatkan kegagalan trabekulektomi oleh karena pembentukan jaringan fibrotik yang berlebihan.23,14
Untuk mengatasi efek samping dari pemberian steroid tersebut, saat ini terus dicari bahan-bahan yang mampu memberikan efek terapi yang cukup adekuat namun dengan efek samping yang minimal. EGCG merupakan catechin utama yang terdapat di ekstrak teh dan merupakan bentuk yang paling aktif diantara semua jenis catechin, serta memiliki efek biologi yang paling besar dibanding catechin yang lain. EGCG memiliki efek antikanker, antimikroba, antioksidan, anti inflamasi, pengikat (scavenger) radikal bebas dan anti fibrotik. 24,25,26

Penelitian ini menunjukan bahwa seluruh kelinci (n=7 / 100% sampel) pada kelompok perlakuan yang mendapat tetes mata EGCG dan antibiotik topikal, memberikan gambaran sebukan sel radang derajat ringan pada substansia propria konjungtiva. Hasil uji statistik menunjukkan perbedaan yang tidak bermakna (p=0,3) pada distribusi derajat sebukan sel radang substansia propria konjungtiva antara kelinci pada kelompok kontrol yang mendapat terapi steroid topikal dengan kelompok perlakuan yang mendapat tetes mata EGCG.

Tabel 4 menunjukkan bahwa pada kelompok kontrol sebagian besar kelinci (71,4%) mengalami fibrotisasi substansia propria konjungtiva derajat ringan dan sisanya (28,6%) mengalami fibrotisasi derajat sedang. Pada kelompok perlakuan seluruh kelinci (100%) memberikan gambaran fibrotisasi substansia propria konjungtiva derajat ringan. Hasil uji statistik menunjukkan perbedaan yang tidak bermakna (p=0,1) pada distribusi derajat sebukan sel radang substansia propria konjungtiva antara kelinci pada kelompok kontrol dengan kelompok perlakuan.

Hasil penelitian ini sejalan dengan beberapa penelitian pada hewan coba yang telah dilakukan sebelumnya. Pada penelitian yang dilakukan oleh Dona et all, EGCG
terbukti mampu menekan pembentukan fibrosis pada parenkim paru dengan menekan proses inflamasi yang diperantai oleh netrofil.16 Mohit et al membuktikan bahwa aplikasi 50 \(\mu \)L Epicatechin-gallate 0.8 mg/ml dengan model incisi kulit \textit{full thickness} pada tikus secara signifikan terbukti dapat memperbaiki kualitas penyembuhan luka dan pembentukan jaringan fibrotik yang tidak berlebihan.15 Sartippour et all, menunjukkan bahwa pemberian 50 \(\mu \)g/ml EGCG mampu menekan ekspresi \textit{fibroblast growth factor} (FGF) yang merupakan suatu faktor angiogenik dan menekan kadar \textit{vascular endotelial growth factor} (VEGF). Kedua \textit{growth factor} ini juga merupakan faktor yang berperan dalam pembentukan jaringan fibrotik.20

Walaupun secara statistik tidak didapatkan perbedaan yang bermakna antara kelompok kontrol dan kelompok perlakuan, namun didapatkan kecenderungan pada kelompok perlakuan yang mendapat tetes mata EGCG memberikan gambaran densitas kolagen dan derajat fibrotisasi yang lebih baik. Kecenderungan ini dapat dijelaskan karena EGCG memiliki efek yang lebih luas dibanding steroid. Selain berperan pada respon vaskular dan menekan migrasi seluler, EGCG juga mampu menekan pelepasan \textit{growth factors}, menekan pelepasan mediator inflamasi, mempengaruhi pembentukan matriks metalloproteinase, dan memiliki efek antioksidan.15,20,25,26

Berdasarkan inflamasi yang terjadi juga akan mempengaruhi banyaknya jaringan sikatrick yang terbentuk. Sebagaimana tampak pada gambar 16, pada proses inflamasi akan terjadi proses kebocoran vaskular, migrasi seluler (sel epitelial, neutofil, makrofag, fibroblas) serta pelepasan mediator-mediator inflamasi (histamin, vserotonin, prostaglandin, leukotrien, dan \textit{growth factors}). Semakin besar rangsangan dan inflamasi yang terjadi maka akan semakin banyak pula fibroblas yang berproliferasi, fibroblasts ini
akan menentukan banyaknya kolagen, elastin, dan mukopolisakarida yang merupakan komponen utama pembentukan jaringan sikatrik.

Penelitian ini memiliki keterbatasan dalam melakukan pengamatan yang lebih komprehensif karena hanya menyajikan pemeriksaan secara histopatologis tanpa disertai pengamatan terhadap perkembangan gambaran klinis dari respon radang dan pembentukan bleb sebagai salah satu indikator keberhasilan tindakan operasi filtrasi. Hal ini dikarenakan adanya kendala geografis antara lokasi peneliti dan tempat pelaksanaan penelitian yang terletak pada kota yang berbeda, sehingga tidak memungkinkan peneliti melakukan pengamatan harian terhadap perkembangan gambaran klinis.
BAB 7

KESIMPULAN DAN SARAN

7.1. KESIMPULAN

1. Efek anti inflamasi epigallocatechin-gallate (EGCG) topikal pada substansia propria konjungtiva kelinci putih *New Zealand* pasca operasi filtrasi tidak berbeda secara bermakna dibanding dengan deksametason topikal.

2. Efek anti fibrosisasi Epigallocatechin-gallate (EGCG) topikal pada substansia propria konjungtiva kelinci putih *New Zealand* pasca operasi filtrasi tidak berbeda secara bermakna dibanding dengan deksametason topikal.

7.2. SARAN

1. Dilakukan penelitian yang lebih komprehensif selain untuk menilai perubahan secara histopatologis namun juga penilaian gambaran klinis pada pemberian EGCG.

2. Dilakukan penelitian lebih lanjut mengenai efek pemberian EGCG dengan kisaran dosis yang berbeda untuk menilai dosis optimal dan lama pemberian yang paling efektif dalam menekan proses inflamasi dan menekan pembentukan jaringan fibrotik.

3. Dilakukan uji untuk menilai efek samping dan efek toksik EGCG terhadap bola mata.
DAFTAR PUSTAKA

