HUBUNGAN PERTUMBUHAN FOLIKEL, KADAR ESTRADIOL DAN KETEBALAN ENDOMETRIUM HASIL INDUKSI OVULASI DALAM PROSES FERTILISASI IN VITRO

Tesis

Dr. Erwinanto

PROGRAM PENDIDIKAN DOKTER SPESIALIS I OBSTETRI GINEKOLOGI
FAKULTAS KEDOKTERAN UNIVERSITAS DIPONEGORO
SEMARANG
2004
HALAMAN PESETUJUAN
TESIS

<table>
<thead>
<tr>
<th>Judul penelitian</th>
<th>HUBUNGAN PERTUMBUHAN FOLIKE, KADAR ESTRADIOL, DAN KETEBALAN ENDOMETRIUM HASIL INDUKSI OVULASI DALAM PROSES FERTILISASI IN VITRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruang Lingkup</td>
<td>Obstetri dan Ginekologi</td>
</tr>
<tr>
<td>Pelaksana Penelitian</td>
<td></td>
</tr>
<tr>
<td>Nama</td>
<td>dr. Erwinanto</td>
</tr>
<tr>
<td>NIP</td>
<td>140 353 792</td>
</tr>
<tr>
<td>Pembimbing</td>
<td>Prof. Dr. Untung Pratohardjo, SpOG</td>
</tr>
<tr>
<td></td>
<td>Dr. Fadjar Siswanto, SpOG</td>
</tr>
<tr>
<td>Diajukan pada</td>
<td>Tgl : 11 Juni 2004</td>
</tr>
<tr>
<td>Di</td>
<td>Bagian/SMF Obstetri dan Ginekologi</td>
</tr>
<tr>
<td></td>
<td>Fakultas Kedokteran Universitas Diponegoro</td>
</tr>
<tr>
<td></td>
<td>Rumah Sakit Umum dr. Kariadi</td>
</tr>
</tbody>
</table>

Pembimbing I

[Signature]

Prof. Dr. Untung Pratohardjo, SpOG (K)
NIP 130 219 414

Pembimbing II

[Signature]

Dr. Fadjar Siswanto, SpOG (K)
NIP 140 090 444

Ketua Bagian/SMF
Obstetri dan Ginekologi FK Undip

[Signature]

[Seal]

Prof. Dr. Noor Pramono, MmedSc, SpOG (K)
NIP 130 219 414

Ketua Program Studi PPDS I
Obstetri dan Ginekologi FK Undip

[Signature]

[Seal]

Dr. Supriyono K, SpOG (K)
NIP 140 090 806
HUBUNGAN KADAR ESTRADIOL, PERTUMBUHAN FOLIKEL DAN KETEBALAN ENDOMETRIUM HASIL INDUKSI OVULASI PADA PROSES FERTILISASI IN VITRO (FIV)

Erwinanto, Untung Praptohardjo, Fadjar Siswanto

Bagian Obstetri dan Ginikologi
Fakultas Kedokteran Universitas Diponegoro / RS Dr. Kariadi
Semarang

Abstrak

Latar belakang: Pada dasarnya bayi yang dihasilkan melalui serangkaian upaya kehamilan dengan teknik bayi tabung tidak berbeda dengan bayi yang lahir secara alamiah. Hanya saja pembentukan embrio dilakukan dengan teknik rekayasa yang disebut fertilisasi in vitro / FIV (in vitro fertilization / IVF). Penyebab pasti kegagalan terjadinya kehamilan pada teknik FIV masih banyak diperdebatkan. Meskipun kejadian tersebut bersifat individual, bagaimanakah hubungan kadar estradiol sebagai hasil suatu induksi ovulasi dengan ketebalan endometrium sebagai unsur yang berperan dalam proses nida?

Tujuan: mengetahui hubungan pertumbuhan folikel, kadar estradiol, dan tebal endometrium hasil induksi ovulasi pada teknik FIV.

Hasil: diteliti 30 pasien dengan usia maksimal 40 tahun. Pengamatan dilakukan dengan pemeriksaan kadar estradiol, diameter folikel terbesar, jumlah folikel, dan tebal endometrium pada hari ke-1, 8, 10 dan 12.

Didapatkan pola perbedaan rerata diameter folikel terbesar berdasar waktu pemeriksaan, bermakna secara statistik (p=0,00). Rerata jumlah folikel tidak menunjukkan pola perbedaan berdasar waktu pemeriksaan, baik rerata jumlah folikel ovarium kanan (p=0,45) maupun rerata jumlah folikel ovarium kiri (p=0,68). Rerata kadar estradiol pada masing-masing saat pengukuran menunjukkan pola perbedaan yang bermakna secara statistik (p=0,00). Terdapat pula pola perbedaan rerata tebal endometrium berdasar waktu pemeriksaan, bermakna secara statistik (p=0,00).

Pola perbedaan rerata jumlah folikel, diameter folikel terbesar, tebal endometrium, dan kadar estradiol pada pemisahan 9 pasien yang menggunakan kombinasi Klonifen Sitrat + hMG dan 21 pasien yang menggunakan kombinasi GnRH + FSH adalah sama.

Pembentukan estradiol berkorelasi positif derajat sedang dengan jumlah folikel pada hari ke-10 (r=0,579, p=0,00) dan hari ke-12 (r=0,561, p=0,001). Di samping itu terdapat korelasi positif derajat ringan antara kadar estradiol dan tebal endometrium pada hari ke-12 (r=0,407, p=0,019).

Kesimpulan: semakin banyak jumlah folikel, semakin tinggi kadar estradiol. Semakin tinggi kadar estradiol, endometrium semakin tebal.

Kata kunci: fertilisasi in vitro (FIV), estradiol, endometrium, folikel.
KATA PENGANTAR

Puji syukur kepada Tuhan Yang Maha Esa, yang telah memberikan kesempatan bagi penulis menyelesaikan tesis dengan judul “Hubungan Pertumbuhan Folikel, Kadar Estradiol, dan Ketebalan Endometrium Hasil Induksi Ovulasi dalam Proses Fertilisasi in Vitro”.

Tesis ini merupakan salah satu syarat dalam menyelesaikan program pendidikan Dokter Spesialis I Obstetri dan Ginekologi pada Fakultas Kedokteran Universitas Diponegoro Semarang. Untuk itu atas segala bantuan dan bimbingan selama mengikuti pendidikan ini, dengan segenap kerendahan hati kami mengucapkan terima kasih yang sebesar-besarnya terutama kepada:

1. Prof. Dr. Noor Pramono, MMEdSc, SpOG(K) dan Dr. Suprijono K, SpOO(K) sebagai Ketua Bagian/SMF dan KPS PPDS I Obstetri dan Ginekologi FK Undip.
2. Prof. Dr. Untung Praptohardjo, SpOG(K) dan Dr. Fadjar Siswanto, SpOG(K) atas kesabaran dalam membimbing penyusunan penelitian tesis ini.
4. Dr. Darminto, SKM, yang telah membantu melakukan analisis data.
5. Seluruh keluarga yang telah dengan sabar membantu dan memberi semangat selama pendidikan dan penyelesaian tesis.
6. Seluruh staf pada Klinik Fertilitas, Endokrinologi dan Replroduksi RS Telogorejo
7. Sejauh residen, bidan, paramedis, karyawan dan karyawan RS Dr. Kariadi Semarang atas kerjasama selama ini.
8. Para penguji pada seminar hasil penelitian tesis.

Kami berharap tesis ini dapat bermanfaat untuk pengembangan pelayanan Obstetri dan Ginekologi di masa mendatang.

Semarang, Juni 2004

dr. Erwinanto
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Halaman judul</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>Halaman pengesahan</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Kata pengantar</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Daftar isi</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>Daftar tabel</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>Daftar gambar</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>Bab I Pendahuluan</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Latar belakang penelitian</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Permasalahan penelitian</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Tujuan penelitian</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Manfaat penelitian</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Keastian penelitian</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bab II Tinjauan pustaka</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Definisi operasional</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Angka kejadian</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Endometrium</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>Perkembangan folikel</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Peranan hormon dalam fertilisasi in vitro</td>
<td>13</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Profil hormon seks dalam siklus haid</td>
<td>13</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Keadaan hormon dalam proses induksi ovulasi</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Induksi ovulasi</td>
<td>16</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Induksi ovulasi dengan klomifen sitrat</td>
<td>16</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Induksi ovulasi dengan Human Menopausal Gonadotropin</td>
<td>17</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Induksi ovulasi dengan Gonadotropin Releasing Hormon</td>
<td>21</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Induksi ovulasi dengan bromokripin</td>
<td>21</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Kegagalan ovulasi</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Kadar estrogen</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Lendir serviks</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Sindroma hiperstimulasi ovarium</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>Kerangka teori</td>
<td>29</td>
</tr>
<tr>
<td>2.11</td>
<td>Kerangka konsep</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Bab III Hipotesis</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Bab IV Metode penelitian</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Ruang lingkup penelitian</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Lokasi penelitian</td>
<td>32</td>
</tr>
<tr>
<td>4.3</td>
<td>Waktu penelitian</td>
<td>32</td>
</tr>
<tr>
<td>4.4</td>
<td>Disain penelitian</td>
<td>32</td>
</tr>
</tbody>
</table>
4.5 Populasi dan sampel penelitian .. 32
4.5.1 Populasi target penelitian ... 32
4.5.2 Kerangka sampling ... 33
4.5.3 Kriteria inklusi .. 34
4.5.4 Kriteria eksklusi .. 34
4.6 Variabel penelitian .. 35
4.6.1 Variabel bebas .. 35
4.6.2 Variabel tergantung ... 35
4.6.3 Variabel pengganggu ... 35
4.7 Definisi operasional .. 35
4.8 Etika dan alur penelitian .. 37
Bab V Hasil penelitian dan pembahasan 38
5.1 Hasil penelitian ... 38
5.1.1 Karakteristik pasien ... 38
5.1.2 Hasil pengamatan pada ovarium 40
5.1.3 Kadar estradiol ... 42
5.1.4 Lendir serviks .. 42
5.1.5 Endometrium ... 44
5.2 Induksi ovulasi dengan GnRH dan klomifen sitrat 44
5.3 Korelasi antara pertumbuhan folikel, kadar estradiol, dan tebal endometrium .. 48
5.4 Pembahasan ... 51
Bab VI Simpulan ... 55
6.1 Simpulan ... 55
6.2 Saran ... 56
Daftar pustaka .. 57
DAFTAR TABEL

Tabel 1. Karakteristik pasien ... 39
Tabel 2. Profil usia dan hormon .. 40
Tabel 3. Diameter folikel terbesar (mm) ... 40
Tabel 4. Jumlah folikel ... 41
Tabel 5. Kadar estradiol (pg/mL) .. 42
Tabel 6. Kualitas lendir serviks .. 43
Tabel 7. Ketebalan endometrium (mm) .. 44
Tabel 8. Karakteristik dan hasil induksi ovulasi pada pasien yang menggunakan GnRH+FSH ... 45
Tabel 9. Karakteristik dan hasil induksi ovulasi pada pasien yang menggunakan Klomifen sitrat+hMG .. 46
Tabel 10. Uji perbedaan penggunaan GnRH+FSH dan Klomifen sitrat+hMG ... 47
Tabel 11. Uji korelasi hasil induksi ovulasi .. 48
DAFTAR GAMBAR

Gambar 1. Endometrium pada awal siklus .. 9
Gambar 2. Endometrium saat sebelum ovulasi ... 9
Gambar 3. Folikel matur .. 12
Gambar 4. Siklus menstruasi normal .. 14
Gambar 5. Siklus long protocol ... 20
Gambar 6. Siklus short protocol ... 20
Gambar 7. Folikel pada hiperstimulasi ovarium ... 27
Gambar 8. Grafik pola perubahan skore kualitas lendir serviks 43
Gambar 9. Grafik korelasi jumlah folikel dan kadar estradiol hari ke-10 49
Gambar 10. Grafik korelasi jumlah folikel dan kadar estradiol hari ke-12 50
Gambar 11. Grafik korelasi kadar estradiol dan tebal endometrium hari ke-12 50
Gambar 12. Hasil pengamatan pertumbuhan folikel hari ke-10 pada salah satu pasien ... 52
Gambar 13. Hasil pengukuran tebal endometrium hari ke-12 pada salah satu pasien ... 54
BAB I
PENDAHULUAN

1.1 Latar belakang penelitian

Memiliki anak merupakan hal penting bagi pasangan suami istri. Infertilitas merupakan sumber keluhan, kecemasan pada pasangan. Meskipun ada orang yang berpendapat bahwa definisi keluarga telah mencakup pula pasangan-pasangan tanpa anak, tetapi sebagian besar masyarakat masih belum bisa menerima sepenuhnya konsep tersebut¹.

Penyebab infertilitas dapat berasal dari pihak suami maupun istri, atau kedua-duanya. Karena keberhasilan kehamilan tidak dapat diandalkan hanya pada satu pihak saja, maka penanganan infertilitas harus dalam kesatuan pasangan. Penyebab infertilitas ada yang dengan mudah dijelaskan, yang umumnya dapat dicari cara pengobatan terarah, tetapi ada pula yang belum/tidak dapat dijelaskan, meskipun kini telah tersedia cara diagnostik yang canggih dan teknik pengobatan yang maju.

Pada dasarnya bayi yang dihasilkan melalui serangkaian upaya kehamilan dengan teknik bayi tabung tidak berbeda dengan bayi lainnya yang lahir secara alamiah. Hanya saja pembentukan embrio dilakukan dengan teknik rekayasa yang disebut fertilisasi in vitro / FIV (in vitro fertilization / IVF)². Teknik ini meliputi prosedur pengambilan sel telur dari folikel matang dari dalam indung telur ibu kemudian dilakukan pembuahan dengan sperma suaminya dalam medium kultur di luar tubuh³.
Angka keberhasilan program fertilisasi in vitro rata-rata sekitar 35% pada wanita usia \(\leq 36 \) tahun sedangkan pada usia \(> 39 \) tahun berkisar antara 10\%\(^4\). Selain diakibatkan faktor usia, juga dimungkinkan akibat pengaruh negatif karena penurunan fungsi ovarium. Manifestasinya dapat berupa buruknya respon terhadap stimulasi gonadotropin eksogen dan abnormalitas profil hormonal. Meskipun penjelasan pasti keadaan ini masih belum jelas, namun yang terjadi adalah kurangnya pertumbuhan folikel dan menurunnya kadar estrogen.

1.2 Permasalahan penelitian
Penyebab pasti kegagalan terjadinya kehamilan pada teknik fertilisasi in vitro masih banyak diperdebatkan. Namun diduga ada beberapa faktor yang mempengaruhi. Beberapa teori telah diajukan, pada umumnya dapat digolongkan menjadi\(^2\):

- kegagalan pembentukan folikel
- kadar estradiol yang rendah
- kondisi endometrium yang kurang ideal

Meskipun kejadian tersebut bersifat individual, bagaimanakah hubungan kadar estradiol sebagai hasil suatu induksi ovulasi dengan ketebalan endometrium?
1.3 Tujuan penelitian
Adapun tujuan penelitian ini adalah mengetahui hubungan pertumbuhan folikel terhadap kadar estradiol hasil suatu induksi ovulasi dengan ketebalan endometrium sebagai unsur yang mendukung keberhasilan proses nidasi.

1.4 Manfaat penelitian
Dapat memperkirakan kesiapan endometrium dalam proses nidasi berdasar kadar estradiol dan ketebalan endometrium.

1.5 Keaslian penelitian
BAB II
TINJAUAN PUSTAKA

2.1 Definisi infertilitas

WHO Scientific Group mengemukakan bahwa infertilitas primer berarti suatu pasangan tidak hamil, meskipun hidup bersama sebagai suami istri dan menginginkan kehamilan selama 2 tahun\(^7\). Infertilitas sekunder berarti suatu pasangan pernah hamil sebelumnya, namun setelah itu tidak hamil lagi meskipun hidup bersama sebagai suami istri dan menginginkan kehamilan selama 2 tahun. Bila sang istri menyusui bayi, maka masa tidak hamil tersebut dihitung sejak akhir dari amenorea laktasi. Ini terjadi pada sekitar 10-15% pasangan pada usia reproduksi\(^7\). Pada umumnya infertilitas didefinisikan sebagai sanggama tanpa alat KB selama satu tahun tanpa adanya konsepsi\(^8,9\) karena 90% pasangan normal dapat hamil dalam 1 tahun\(^9\).

Untuk berlangsungnya kehamilan normal ini diperlukan beberapa syarat, yaitu:

1. Fertilisasi normal

a) Spermatozoa harus matang (matur), mempunyai daya penetrasi (terkapasitasi), mengalami reaksi akrosom, dan memiliki kromosom serta materi genetik yang normal

b) Ovum harus matang, memiliki selubung (korona radiata, kumulus ooforus, zona pelusida, membran perivitelin) yang utuh, dapat ditembus spermatozoa, dan kromosomnya normal.
c) Lingkungan tempat fertilisasi harus normal, meliputi zalir biologik dan unsur seluler didalamnya yang normal pula.

2. Nidasi dan implantasi normal

Dalam keadaan normal, endometrium mengalami masa persiapan secara endokrinologis dan imunologis selama fase proliferasi dan sekresi untuk menerima proses nidasi dan implantasi. Fertilisasi normal tidak selalu berlanjut dengan nidasi maupun implantasi bilamana endometrium belum siap.

Beberapa parameter yang dapat digunakan untuk memperkirakan kesiapan endometrium adalah: ketebalan endometrium, persentase jumlah kelenjar dibandingkan luas endometrium, diameter maksimal kelenjar, tinggi epitel sel kelenjar, jumlah vakuole sub inti per 100 sel kelenjar, perkiraan sekresi pada lumen kelenjar, perkiraan stroma yang mengalami edema, dan jumlah vena dalam stroma.6,10

Adapun penyebab infertilitas adalah

1. Faktor suami, meliputi masalah ejakulasi, gangguan pada testis, sumbatan epididimis, dan kualitas sel sperma2.

2. Faktor istri, dapat disebabkan oleh faktor vagina, serviks, uterus, tuba, faktor ovulasi, faktor peritoneum, dan faktor imunologi

Bila melihat dari berbagai faktor yang berperan terhadap fertilitas seorang wanita, maka peran dari endometrium sangatlah penting, dan ini tidak terlepas dari status hormonal seorang wanita dimana endometrium adalah sebagai target organ pada suatu siklus menstruasi7.
2.2 Angka kejadian
Infertilitas dialami oleh sekitar 10 – 15 % pasangan usia subur\(^{(11,12)}\). Di Indonesia terdapat lebih kurang 12% pasangan infertil baik di desa maupun di kota. Ilmu kedokteran masa kini baru berhasil menolong 50% pasangan infertil memperoleh anak yang diinginkannya. Itu berarti separuhnya lagi terpaksa menempuh hidup tanpa anak, mengangkat anak (adopsi), poligami, atau bercerai.

2.3 Endometrium
Fungsi fisiologis endometrium terpenting adalah dalam proses implantasi hasil konsepsi. Dalam siklus menstruasi, endometrium secara berkala mengalami perubahan morfologis. Adapun pengaruh akibat stimulasi gonadotropin pada fertilisasi in vitro misalnya, dapat menunjukkan adanya perubahan kemampuan penerimaan endometrium dalam proses nidasi\(^{13}\). Implantasi embrio ini juga dipengaruhi oleh faktor adhesi intra uterin yang dikenal sebagai sindroma Asherman’s\(^{14}\).

Angka kehamilan dan implantasi embrio dapat diperkirakan dengan ketebalan endometrium dalam milimeter. Bila ketebalan endometrium saat peri-implantasi > 9 mm, kehamilan lebih dapat berlangsung, bermakna secara statistik dibandingkan bila ketebalannya < 9 mm. Hal ini tidak dipengaruhi oleh umur ibu namun secara jelas dipengaruhi oleh konsentrasi estradiol\(^{15}\).

Dalam keadaan normal, endometrium menebal dengan kecepatan 0,5 mm/hari pada hari -3 s/d +2 ovulasi, lalu lajunya melambat menjadi 0,1 mm/hari selama fase luteal sampai hari +11.
Penelitian lain menunjukkan bahwa ketebalan endometrium meningkat secara cepat pada minggu pertama induksi ovulasi, mencapai puncaknya pada saat dilakukan pemberian HCG. Dilaporkan juga bahwa bila ketebalan endometrium < 6 mm, mempunyai negative predictive value yang lebih besar terhadap terjadinya kehamilan.

Perubahan ketebalan endometrium juga terjadi pada beberapa keadaan seperti: menopause, pemakaian obat kontrasepsi, defek fase luteal, keadaan patologis uterus yang mengakibatkan hiperplasia endometrium, dan adanya keganasan endometrium.

Gambaran khas pada fase folikuler adalah peningkatan progresif tebal endometrium. Pertumbuhan endometrium terjadi baik akibat hiperplasia epitel maupun elemen stroma yang dipengaruhi estradiol yang dieksresi ovarium. Stimulasi estrogen meningkatkan ukuran dan jumlah sel miometrium dan endometrium, disertai tahapan pembentukan estrogen-reseptor yang spesifik dan proses sintesa protein.

Saat akan terjadi implantasi, endometrium harus dalam keadaan siap dan matang yang ditandai suatu keadaan proliferatif dan diferensiatif seperti sekresi kelenjar, edema, proliferasi vaskuler dan desidualisasi stroma.

Ketebalan endometrium sama pentingnya dengan ukuran folikel pada induksi ovulasi dibandingkan pengukuran kadar estradiol. Endometrium dapat digunakan sebagai parameter apakah sudah waktunya dilakukan pemberian hCG. Bila tebal endometrium ≤ 7 mm, stimulasi ovarium dilanjutkan sampai ketebalan endometrium mencapai ≥ 8 mm, dengan catatan tidak terjadi lebih dari 3 folikel.
dengan diameter ≥ 16 mm. Bila terdapat lebih dari 3 folikel dengan diameter > 16 mm atau kadar E2 > 150 μ/ml (5500 pmol/L) maka hCG tidak perlu diberikan. Bila tebal endometrium > 13 mm pada fase luteal, sangat mungkin pasien tersebut hamil16.

Ketebalan endometrium harus diukur jaraknya dari hyperechogenic interface endometrium dan miometrium ke sisi yang berlawanan, melalui echo pada garis tengah. Cara yang paling tepat adalah menempatkan transduser pada putongan aksis longitudinal tubuh atau uterus sehingga dapat menggambarkan ketebalan endometrium yang sesungguhnya19.

Gambaran USG saat dilakukan pengukuran tebal endometrium pada fase folikuler ditandai adanya multi layer atau triple line pattern dengan ukuran sekitar 4 – 5 mm pada hari kelima sampai delapan, menebal menjadi 10 – 13 mm saat sebelum ovulasi16,20.

Penelitian menunjukkan bahwa kehamilan akibat induksi ovulasi hanya terjadi bila tebal endometrium paling sedikit 8 mm saat diberikan hCG. Bila tebal < 7 mm tidak pernah didapatkan suatu kehamilan. Hal ini dianggap sebagai fase folikuler yang tidak berkembang yang menunjukkan kurang adekuatnya stimulasi estrogen terhadap endometrium18,21.

Didapatkan pula bahwa meskipun dilakukan stimulasi, selisih tebal endometrium hanya sekitar 1 – 2 mm dibandingkan pada siklus yang spontan. Sedangkan kadar E2 pada siklus spontan antara 200 – 800 pg/mL dibandingkan 3000 – 4000 pg/mL pada stimulasi estrogen.
Gambar 1. Endometrium pada awal siklus (Diambil dari Sonographie-Website der Sektion Innene Medizin der DEGUM, www/sonoweb.de/casereports/2002/Loesung0602.htm)

Gambar 2. Endometrium saat sebelum ovulasi (Diambil dari Sonographie-Website der Sektion Innene Medizin der DEGUM, www/sonoweb.de/casereports/2002/Loesung0602.htm)

2.4 Perkembangan folikel

Pembentukan folikel dimulai pada beberapa hari terakhir fase luteal dan berakhir sampai saat terjadinya ovulasi. Beberapa hari terakhir fase luteal terjadi penurunan kadar progesteron dan estrogen karena kematian korpus luteum dan terjadi
peningkatan kadar Folikel Stimulating Hormon (FSH). Kenaikan FSH ini memulai terjadinya pertumbuhan folikel dan siklus menstruasi berikutnya.

Ada tiga tahap pertumbuhan folikel yang dominan. Tahap pertama adalah rekrutmen (recruitment). Dari pool folikel-folikel primordial sejumlah folikel dipilih sebagai respon terhadap FSH pada hari 1-4 siklus menstruasi. Saat ini dipilih folikel-folikel, baik yang akan mengalami ovulasi maupun yang akan mengalami atresia. Tahap selanjutnya adalah tahap seleksi (selection), dimana hanya satu folikel saja yang akan mengalami ovulasi, tahap ini tejadi hari 5-7 siklus menstruasi. Terakhir tahap dominansi (dominance) dimana folikel yang menekan pematangan folikel-folikel yang lainnya sehingga mengalami atresia. Proses atresia ini terjadi sekunder akibat kegagalan hormon atau faktor-faktor pertumbuhan yang dibentuk oleh folikel yang matang melalui mekanisme intrinsik ovarium. Tahap ini berlangsung antara hari 8-12 siklus dan berakhir saat terjadinya ovulasi.22,23

Sel granulosa pada folikel preantral dapat menyebabkan peningkatan hormon steroid, meskipun kadar estrogen lebih banyak daripada androgen dan progestin. Sistem enzint aromatase berakasi dengan mengkonversi androgen menjadi estrogen dan nampaknya merupakan faktor yang mengatur pembentukan estrogen dari ovarium. Aromatisasi ini terpacu karena pengaruh FSH. Ikatan FSH dengan reseptornya serta aktivasi adenilat siklase diikuti multiplikasi mRNA merupakan proses yang bertanggung jawab terhadap proliferasi, diferensiasi, dan fungsi sel. FSH sendiri memacu produksi estrogen dalam sel granulosa dan menstrimulasi pertumbuhan sel granulosa itu sendiri.
Reseptor FSH spesifik terdapat pada sel granulosa preantral. Dengan adanya FSH, folikel preantral dapat mengaromatisasi androgen dan membentuk estrogen. Jadi pembentukan estrogen tergantung pada kandungan reseptor FSH. Konsentrasi FSH pada reseptor FSH membuat terjadinya up atau down regulation\(^\text{24}\).

Terdapat 2 sistem sel yang terlibat dalam steroidogenesis pada folikel ovarium. Hal-hal penting yang berhubungan dengan reseptor hormon adalah\(^\text{12}\):

- adanya reseptor FSH yang terdapat pada sel granulosa
- reseptor FSH tersebut dipacu pula oleh FSH itu sendiri
- reseptor LH terdapat pada sel theca pada mulanya tetap ada pada sel granulosa, namun sejalan dengan pertumbuhan folikel, FSH memacu timbulnya reseptor LF pada sel granulosa
- FSH memacu aktifitas enzim aromatase pada sel granulosa
- Aktifitas tersebut di atas diimbangi faktor autokin/prakrin yang disekresi oleh sel theca dan sel granulosa.

Kombinasi sel tersebut memperjelas proses pertumbuhan folikel dan steroidogenesis. Pada awalnya perubahan folikel primer tidak tergantung pada hormon. Proses pada tahap awal tersebut belum jelas. Pertumbuhan selanjutnya tergantung pada stimulasi FSH\(^\text{12}\).

Seperti halnya respon granulosa terhadap FSH, pertumbuhan folikel berhubungan dengan peningkatan reseptor FSH. Sel theca mempunyai karakter khusus akibat aktifitas steroidogenik sebagai respon terhadap LH, khususnya dalam menghasilkan androgen. Aromatisasi androgen menjadi estrogen merupakan aktifitas pada lapisan granulosa akibat pengaruh FSH. Pada lapisan tersebut
androgen diubah menjadi estrogen. Peningkatan kadar estradiol dalam sirkulasi perifer menunjukkan pelepasan estrogen dalam selaput theca dan pembuluh darah.

Gambar 3. Folikel matur (Diambil dari Sonographie-Website der Sektion Innene Medizin der DEGUM, www/sonoweb.de/casereports/2002/Loesung0602.htm)

Beberapa saat sebelum terjadi ovulasi sekresi hormon estrogen oleh folikel yang akan ovulasi meningkat secara dramatis. Peningkatan sekresi estrogen ini memulai terjadinya lonjakan hormon Luteinizing (LH surge). Selanjutnya LH akan menginisiasi terjadinya luteinisasi sel-sel granulosa dan akibatnya terjadi peningkatan kadar hormon progesteron, yang merangsang terjadinya peningkatan sekresi FSH pada pertengahan siklus. Onset terjadinya lonjakan LH merupakan saat yang tepat untuk memperkirakan saat terjadinya ovulasi22-24. Hal ini didukung pencelitian multisenter yang dilaporkan pada Agustus 2001 yang menyimpulkan bahwa saat awal terjadinya lonjakan LH merupakan saat yang terbaik untuk memprediksi terjadinya ovulasi24,25.
2.5 Peranan hormon dalam fertilisasi in vitro

2.5.1 Profil hormon seks dalam siklus haid26

Selama haid, yang berawal pada hari pertama haid, terjadi lagi peningkatan dari FSH sampai mencapai kadar 5 ng/ml (setara dengan 10 mIU/ml). Sedikit terlambat dari FSH serta dalam jumlah kecil, terjadi pula peningkatan LH sampai kadar 2-3 ng/ml (setara dengan 7,5 mIU/ml). Di bawah pengaruh sinergis kedua gonadotropin, folikel yang berkembang itu menghasilkan estradiol dalam jumlah yang banyak. Peningkatan estradiol serum yang terus menerus pada akhir fase folikuler akan menekan FSH dari hipofisis. Dua hari sebelum ovulasi, kadar estradiol mencapai 150-400 pg/ml. Kadar tersebut melebihi ambang rangsang untuk pengeluaran gonadotropin praovulasi. Akibatnya FSH dan LH dalam serum akan meningkat, dan mencapai puncaknya satu hari sebelum ovulasi. Pada saat yang sama pula, kadar estradiol kembali menurun. Kadar maksimum LH berkisar antara 8 dan 35 ng/ml (setara 30-40 mIU/ml), dan FSH antara 4 dan 10 ng/ml (setara dengan 15-45 mIU/ml). Dengan terjadinya puncak LH dan FSH pada hari
ke-14, maka folikel mulai pecah, yang satu hari kemudian akan timbul ovulasi.

Gambar 4. Siklus menstruasi normal

Bersamaan dengan ini dimulailah pembentukan dan pematangan korpus luteum yang disertai dengan meningkatnya kadar progesteron, sedangkan kadar gonadotropin mulai turun kembali. Peningkatan progesteron tersebut tidak selalu memberi arti bahwa ovulasi telah terjadi dengan baik, karena pada beberapa wanita yang tidak terjadi ovulasi tetap dijumpai SBB dan endometrium sesuai fase luteal.
Pada fase luteal, seiring dengan pematangan korpus luteum, sekresi progesteron terus meningkat dan mencapai kadar antara 6 dan 20 ng/ml. Estradiol yang dikeluarkan terutama pada folikel besar yang tidak mengalami atresia, juga tampak pada fase luteal dengan konsentrasi yang lebih tinggi daripada permulaan atau pertengahan fase folikuler. Produksi estradiol dan progesteron maksimum dijumpai antara hari ke-20 dan 2312.

2.5.2 Keadaan hormon dalam proses induksi ovulasi

Perkembangan endometrium dan diferensiasinya bergantung pada paparan dan nilai ambang kadar estradiol. Terdapat hubungan erat antara tebal endometrium dan kadar estradiol27.

Pada induksi dengan long protocol stimulasi FSH ditunda sampai tercapai supresi hipofisis oleh GnRH yang ditandai dengan kadar estradiol < 150 pmol/L. Sejalan dengan pemantauan pertumbuhan folikel, bila didapatkan folikel dengan diameter > 14 mm, kadar E2 sebaiknya diperiksa dan diikuti tiap 1 – 2 hari. Pasien dianggap poor response bila tidak ada peningkatan E2 di atas 100 pg/ml setelah 10 hari stimulasi atau tidak mencapai 300-330 pg/mL pada folikel dengan diameter 10 mm saat diberikan hCG.

GnRH agonis yang digunakan dalam teknologi reproduksi bantuan bertujuan mengeliminasi problem yang terjadi akibat luteinisasi dini, yaitu timbulnya peningkatan sekresi progesteron setelah terjadinya LH surge sebelum terbentuk folikel matang. Penyebab terjadinya peningkatan progesteron ini masih belum jelas. Konsekuensi terhadap terjadinya peningkatan progesteron pada fase...
folikuler akhir masih kontroversial. Beberapa peneliti melaporkan terjadinya penurunan angka implantasi dan angka kehamilan28,29.

Penelitian tahun 1998 menunjukkan bahwa saat dilakukan induksi ovulasi dengan hMG dan FSH, stimulasi GnRH hanya memacu peningkatan produksi E2, namun tidak mengakibatkan peningkatan progesteron pada 48 jam sebelum pemberian hCG. Adapun profil kadar FSH dan LH juga tidak berubah secara mencolok sesuai dengan seperti yang terjadi pada siklus menstruasi normal28.

2.6 Induksi ovulasi

Untuk melaksanakan induksi ovulasi ada beberapa obat atau hormon yang dapat digunakan, tergantung kepada jenis gangguan ovulasi, dan ada tidaknya riwayat induksi sebelumnya, serta tujuan pengobatan. Klomifen sitrat, bromokriptin, \textit{Human Menopausal Gonadotropin}, \textit{Gonadotropin Releasing Hormone}, dapat digunakan untuk induksi ovulasi baik secara tunggal maupun kombinasi30,31.

2.6.1 Induksi ovulasi dengan klomifen sitrat

Klomifen sitrat merupakan senyawa anti estrogen nonsteroid yang bekerja secara antagonis kompetitif pada reseptor estrogen atau menghambat sintesis estrogen. Komifen sitrat diberikan pada pasien-dengan gangguan fungsi ovarium yang disebabkan karena gangguan pengaturan hipotalamus-hipofisis, digunakan untuk memicu ovulasi pada wanita dengan siklus anovulatorik serta pada amenorea sekunder dengan kadar FSH, LH dan prolaktin normal32.
Program pengobatan klomifen sitrat dimulai pada hari kelima siklus menstruasi, baik pada siklus spontan maupun pada perdarahan lucut. Dosis awal diberikan 50 mg perhari selama lima hari. Klomifen sitrat menyebabkan peningkatan gonadotropin, saat hari kelima sampai sembilan dimana folikel dominan diseleksi. Pada fertilisasi in vitro klomifen sitrat diberikan lebih awal (hari kedua) untuk mendapatkan lebih dari satu ooosit.

Bila ovulasi tidak terjadi, dosis dapat dinaikkan 100 mg perhari, dan bila masih belum berhasil dapat dinaikkan 200-250 mg perhari selama lima hari. FDA merekomendasikan dosis maksimal 100mg perhari. Pemberian klomifen sitrat sebaiknya tidak lebih dari 6 siklus karena meningkatkan kemungkinan terjadinya tumor ovarium, penulis lain menganjurkan tidak lebih dari 4 kali, karena tidak akan meningkatkan *pregnancy rate*.

2.6.2 Induksi ovulasi dengan Human Menopausal Gonadotropin (hMG)

Human Menopausal Gonadotropin adalah hormon glikoprotein, yang diekstrasi dan diisolasi dari urine wanita pasca menopause(hMG) dan dari urin wanita hamil (hCG). Kedua hormon tersebut bekerja secara langsung terhadap ovarium.

Beberapa pasien yang mengalami kegagalan dengan klomifen sitrat meski sudah dikombinasi dengan hCG pada pertengahan siklus, dapat dilakukan induksi ovulasi dengan hMG.

Maksud penggunaan gonadotropin adalah untuk mencapai fungsi ovarium normal sehingga terjadi siklus ovulasi yang normal, termasuk di dalamnya rekrutmen, seleksi, maturasi folikel, ovulasi dan terbentuknya korpus luteum yang
memadai. Jadi terapi gonadotropin yang rasional harus disesuaikan dengan tujuan dari penggunaannya, yaitu untuk meningkatkan kemungkinan terjadinya ovulasi, pada kasus tertentu untuk menghindari hiperstimulasi.

Ada tiga tipe cara pemberian gonadotropin yaitu:

1. *Fixed-dose Regimen*, pada regimen ini sejumlah hMG (atau FSH) diberikan pada hari-hari dalam siklus yang telah ditetapkan, diikuti dengan pemberian hCG pada 1 hari atau lebih setelah pemberian hMG.

2. *Individually adjusted schemes*, diberikan sejumlah dosis tambahan gonadotropin sesuai dengan respon pasien dalam siklus yang sama. Pada beberapa kasus yang sensitif dapat terjadi hiperstimulasi, sebaiknya digunakan prosedur pertama. Besarnya dosis yang diberikan dan dosis tambahan yang diperlukan masih diperdebatkan. Besarnya dosis tambahan biasanya satu ampul, dan pemberian hCG dilakukan bila kadar estrogen urin mencapai 75-200 μg/24 jam atau kadar estradiol plasma 300-900pg/ml.

Akhir-akhir ini ditemukan hal-hal yang mempengaruhi siklus ovarium, seperti efek peningkatan LH yang terjadi pada pertengahan siklus, efek terjadinya peningkatan LH (*LH surge*) tidak pada waktunya, pengaturan faktor-faktor pertumbuhan pada fisiologi dan patologi ovarium, peran faktor pertumbuhan dan
binding protein dalam pengaturan sensitifitas ovarium, serta kejadian yang mungkin berhubungan dengan terjadinya ovarium polikistik dan sindroma hiperstimulasi. Pemberian GnRH agonis secara nyata akan menghambat lonjakan produksi LH dan akan menormalkan pengaruh hormon-hormon endogen terhadap lingkungannya. Sistim umpan balik hipotalamus-hipofise-ovarium juga akan dihambat, LH surge yang prematur atau abormal bisa dicegah\(^{38}\).

GnRH agonis digunakan pada protokol yang menggunakan hMG baik untuk menekan sekresi hipotalamus maupun untuk memperbesar sekresi LH dan FSH, diikuti penekanan terhadap sekresi gonadotropin.

Ada 2 protokol induksi ovulasi yang dikenal dalam terapi kombinasi yaitu *short protocol* dan *long protocol*\(^{34}\).

Pada *short protocol*, GnRH analog dan hMG atau FSH diberikan tiap hari mulai pada hari ke 2-4 setelah perdarahan spontan atau perdarahan lucut sampai tercapainya folikel yang matang. Setelah didapatkan folikel yang matang, diberikan hCG untuk merangsang terjadinya ovulasi. Setelah pemberian dosis inisial maka selanjutnya diberikan dosis yang disesuaikan dengan respon folikulogenesis. Pada pasien yang tua atau dengan riwayat respon yang jelek penderita diberikan 4 sampai 6 ampul r-h FSH. 36 jam setelah pemberian hCG dilakukan aspirasi folikel dengan bimbingan ultrasonografi transvaginal\(^{39}\).

Pada *long or intermediate protocol*, GnRH agonis diberikan mulai pada pertengahan fase luteal 10-14 hari sebelum pemberian kombinasi GnRH agonis-hMG. Protokol ini lebih disukai karena efek awal dari agonis akan mengurangi pengaruh estrogen-progesteron, juga LH terhadap lingkungannya, akhirnya
lingkungan akibat androgen akan ditekan. Dengan protokol ini terjadinya puncak LH endogen prematur sangat jarang (kurang dari 1 %). Pada step-down protocol (pasien yang kurang respon, pasien tua) r-h FSH diberikan 450 IU pada hari pertama, 300 IU pada hari kedua dan 150 IU pada hari ke 3-6. Pemberian selanjutnya tergantung kepada kadar E2 dan gambaran folikel pada USG.

Gambar 5. Siklus long protocol

Gambar 6. Siklus short protocol
2.6.3 Induksi ovulasi dengan Gonadotropin Releasing Hormon

Pada tahun 1971, berhasil diidentifikasi suatu dekapetida yang sekarang dikenal sebagai GnRH yang merangsang pelepasan LH dan FSH dari hipofise. Penelitian selanjutnya membuktikan bila GnRH diberikan secara pulsatil dapat digunakan untuk induksi ovulasi, terutama pada pasien-pasien anovulasi yang disebabkan kegagalan hipotalamus dalam melepaskan GnRH, termasuk sindroma Kallman dan amenorea hipotalamus karena stres41.

GnRH dapat diabsorpsi dengan pemberian secara intravea, subkutan, nasal, dan sublingual. Pada pemberian intra vena diberikan secara bolus dengan dosis 25-100ng/kg. Pada dosis 10-20µg, pengawasan terhadap terjadinya hiperstimulasi dan kehamilan ganda sangat dibutuhkan. Bila diberikan subkutan dibutuhkan dosis antara 10-15µg, akan tetapi penyerapan secara subkutan dipengaruhi berbagai hal sehingga akhirnya akan dihasilkan pertumbuhan folikel yang kurang baik. Pemberian GnRH dengan interval 60 menit direkomendasikan untuk menghasilkan gambaran hormonal seperti pada siklus menstruasi yang normal41.

2.6.4 Induksi ovulasi dengan bromokriptin

Hiperprolaktinemia menyebabkan berbagai gangguan ovulasi dari fase luteal yang tidak adekuat, oligoovulasi sampai anovulasi dan amenorea. Hiperprolaktinemia pada amenorea saja terjadi sekitar 30%, bila amenorea bersamaan dengan galaktorea bersama meningkat menjadi 60-70%16.

Obat-obat psikotropik dan antihipertensi meningkatkan kadar prolaktin
dengan mengganggu fungsi dopamin dalam meningkatkan sekresi prolaktin. Bromokriptin adalah suatu agonis resptor dopamin menjadi obat terpilih untuk mengobati hiperprolaktinemia, termasuk yang disebabkan oleh adenoma hipofise anterior yang mengsekrese prolaktin. Pengobatan dengan bromokriptin juga berguna pada keadaan prolaktin normal atau sedikit meningkat (normal 2-20ng/ml), karena pada keadaan ini tidak jarang ditemukan galaktorea serta gangguan ovarium.

Mekanisme kerja bromokriptin adalah menghambat sintesis dan sekresi prolaktin. Dosis lazim bromokriptin adalah 2,5 mg dua kali sehari, tetapi toleransi terhadap obat ini harus diuji dengan memakai terapi pada 1,25 mg dosis (¼ tablet) dua kali sehari selama minggu pertama untuk mengurangi efek samping mual dan sinkop.

Pengukuran prolaktin serum harus diulangi kira-kira 4 minggu setelah terapi dimulai. Jika konsentrasii prolaktin tetap tinggi, dosis harus ditingkatkan dengan peningkatan 2,5 mg sampai mencapai kadar prolaktin yang normal. Jika kadar prolaktin sudah normal, dosis tersebut dilanjutkan sampai siklus menstruasi kembali. Jika anovulasi masih terjadi walaupun kadar prolaktin sudah normal, klomifen sitrat dapat ditambahkan untuk menginduksi ovulasi.

2.6.5 Kegagalan ovulasi

Pada anovulasi kronis dimana masih ditemukan estrogen akan terjadi perdarahan lucut setelah pemberian progesteron. Wanita yang demikian disebut dalam kondisi 'estrus' karena adanya produksi estrogen yang asiklik (terutama estrone)

Drilling ovarium sebenarnya merupakan salah satu metode induksi ovulasi yang dilakukan pada PCOS. Tindakan ini dilakukan bila terapi dengan klomifien sitrat meskipun dengan dosis yang telah dinaikan gagal, kemudian dicoba dengan gonadotropin baik tunggal maupun kombinasi dengan GnRH agonis tetapi tetap mengalami kegagalan. Dilaporkan angka terjadinya ovulasi setelah drilling sebesar 80%-90% (rata-rata 84,2%), dan angka kehamilan mencapai 45%-65% (rata-rata 55,7%)10.

2.7 Kadar Estrogen.

Kadar estrogen dapat ditentukan baik pada urine maupun plasma. Pengukuran kadar estrogen urine dapat digunakan untuk menentukan kapan saat dimulainya pemeriksaan USG (bila kadar estrone-3-glukorid mencapai > 200 nmol/24 jam), untuk menentukan kapan kira-kira terjadinya ovulasi. Kadar optimal estrone-3-glukorid adalah 200-750nmol/24 jam saat dipicu oleh hCG. Bila kadarannya antara
500-750 nmol/24 jam kemungkinan terjadinya hiperstimulasi adalah 16%, dan hanya 3% bila kadarnya kurang dari 500 nmol/24 jam42.

Estradiol-17β (E2), suatu hormon steroid, merupakan estrogen yang paling aktif dalam tubuh manusia. Saat pubertas, E2 mendukung perkembangan ciri kelamin sekunder, pembesaran uterus, penebalan lendir pada vagina serta perkembangan sistem duktus payudara. Selama fase folikuler dalam siklus menstruasi, E2 merupakan petanda langsung kualitas folikel, sedangkan pada fase luteal E2 merupakan indikator kualitas endometrium43.

Kadar estradiol plasma 500 pg/ml mengindikasikan bahwa suatu folikel yang besar siap untuk diovulasikan. Bila ukuran folikel-folikel digunakan sebagai parameter dalam menilai pertumbuhan folikel, kadar estradiol yang lebih tinggi dibutuhkan untuk menggambarkan pertumbuhan (500-1000 pg/ml sebagai batas bawah dan 1500-2000 pg/ml sebagai batas atas)42.

Ukuran folikel dan konsentrasi estradiol serum sudah sejak lama digunakan sebagai indikator maturasi oosit dalam induksi ovulasi44. Estradiol berperan dalam pematangan endometrium saat fase folikuler dalam hal vaskularisasi, epitelisasi, proliferasi kelenjar dan stroma endometrium. Estradiol juga menimbulkan sentesis protein spesifik dan growth factors, termasuk reseptor estrogen dan progesteron45.

2.8 Lendir serviks

Banyak perubahan terjadi pada lendir di vagina sesuai dengan berjalannya siklus menstruasi sebagai respon terhadap peningkatan produksi estrogen. Selama fase folikuler, lendir serviks yang diproduksi oleh sel endoserviks mengalami perubahan dalam jumlah dan karakteristik. Dimulai 5 hari sebelum ovulasi dan mencapai puncak 12 – 24 jam sebelum ovulasi.46

Ovulasi terjadi bersamaan dengan memuncaknya pengaruh estrogen pada pertengahan siklus haid. Adanya pengaruh estrogen tersebut terhadap getah serviks dapat digunakan untuk melacak adanya ovulasi. Di bawah pengaruh estrogen, terutama fase ovulasi, getah serviks bersifat encer dan mengandung fibrin glikoprotein yang terpolimerisasi. Glikoprotein ini terutama berbentuk jala \textit{(micelle)} dan dikelilingi cairan kuning. Susunan seperti jala ini memiliki cukup selasela yang besar mengandung 98\% air dan konsentrasi garam yang tinggi.

Kadar NaCl bertanggung jawab untuk kristalisasi protein. Dalam praktek klinik peristiwa ini dikenal sebagai uji pakis (tes Fern) dan dapat digunakan sebagai cara diagnostik sederhana untuk membuktikan adanya estrogen.

Gambaran daun pakis ini banyak dijumpai pada masa ovulasi. Selain itu estrogen mengurangi kepekatan (viskositas) getah serviks, sehingga daya membenangnya (Spinbarkeit) tinggi. Kadar glukosa dan tekanan osmotik getah serviks tersebut sesuai dengan yang ada di dalam sperma. Dengan demikian sperma memiliki lingkungan yang sesuai.46

Terdapat beberapa variasi metode skoring untuk menilai lendir serviks sebagai prediktor terjadinya ovulasi. Beberapa parameter yang dipakai untuk menilai kualitas lendir serviks antara lain volume, viskositas, tes Fern, Spinnbarkeit, selularitas dan keasaman.

Produksi dan kualitas lendir serviks dapat dipengaruhi oleh pemakaian obat antihistamin, penyakit sistemik dan paparan kontrasepsi hormonal (dietilstilbestrol pada uterus) atau adanya proses infeksi.

2.9 Sindroma hiperstimulasi ovarium

Sindroma hiperstimulasi ovarium adalah kumpulan gejala perubahan fisiologis yang kadang-kadang terjadi akibat induksi ovulasi47,48.

Dibagi menjadi :

- hiperstimulasi ringan : ovarium tidak lebih dari 5 x 5 cm.
- hiperstimulasi sedang : sampai 10 x 10 cm dan terdapat perubahan berat badan sampai 4,5 kg.
- hiperstimulasi berat : lebih dari 10 x 10 cm, terdapat penambahan berat > 9 kg.
Sindroma hiperstimulasi ovarium dapat terjadi setelah stimulasi pada ovarium dengan gonadotropin, klomifen sitrat, HMG, LH RH, atau FSH. Patofisiologi yang pasti masih belum jelas⁴⁹.

Hiperstimulasi ringan sering terjadi, sedikit menunjukkan risiko, dan tidak membutuhkan pengelolaan khusus. Hiperstimulasi berat memerlukan observasi (berat badan, tanda vital, hematokrit, BUN, elektrolit dan kreatinin. Baik keadaan ringan maupun sedang, ovarium dapat kembali normal setelah sekitar 12 minggu sejak menstruasi terakhir.

Gambar 7. Folikel pada hiperstimulasi ovarium (Diambil dari Sonographie-Website der Sektion Innene Medizin der DEGUM, www/sonoweb.de/casereports/2002/Loesung0602.htm)

2.10 Kerangka teori

Induksi ovulasi

FSH
LH

Folikulogenesis

Estradiol

\(\Sigma \) sel granulosa
Aktifitas aromatase
Stimulasi gonadotropin

Pembesaran kelenjar
Udena stroma
Mitosis sel

Tebal endometrium

Menopause
Kontrasepsi hormonal
Pengangkatan ovarium
Sindroma polikistik
Keganasan

Menopause
Kontrasepsi hormonal
Defek fase luteal
Kelainan uterus
Keganasan
2.11 Kerangka konsep

- Induksi ovulasi
 - Pertumbuhan folikel
 - Estradiol
 - Tebal endometrium
BAB III

HIPOTESIS

1. Pertumbuhan folikel berhubungan dengan meningkatnya kadar estradiol
BAB IV
METODE PENELITIAN

4.1 Ruang Lingkup Penelitian
Ruang lingkup penelitian ini adalah ilmu kebidanan dan penyakit kandungan umumnya dan fertilitas, endokrinologi dan reproduksi pada khususnya.

4.2 Lokasi Penelitian
Lokasi penelitian adalah Klinik Bersama Fertilitas, Endokrinologi dan Reproduksi RS dr. Kariadi Semarang dan RS Telogorejo.

4.3 Waktu Penelitian

4.4 Desain Penelitian
Penelitian ini adalah penelitian observasional dengan analitik. Desain penelitian ini dipilih oleh karena tidak dilakukan intervensi dan hanya dilakukan pengambilan data.

4.5 Populasi dan Sampel Penelitian
4.5.1 Populasi Target Penelitian
Populasi acuan penelitian adalah pasangan infertilitas yang memeriksaan diri ke
Klinik Bersama Fertilitas, Endokrinologi dan Reproduksi RS dr. Kariadi Semarang dan RS Telogorejo.

4.5.2 Kerangka Sampling

a. Cara pengambilan sampel

Semua sampel dimasukkan sesuai dengan jumlah besar sampel yang sudah diperhitungkan. Bila jumlah sampel tidak mencukupi, jumlah sampel yang dimasukkan adalah semua sampel yang terdata sampai waktu penelitian berakhir.

b. Besar sampel.

Sesuai dengan tujuan penelitian adalah untuk mencari hubungan antara kadar estradiol dengan ketebalan endometrium, perhitungan sampel menggunakan rumus besar sampel untuk mencari hubungan yaitu:

\[
N = \left(\frac{(z\alpha + z\beta)}{0.5 \ln \left(\frac{1+r}{1-r} \right)} \right)^2 + 3
\]

Pada penelitian ini untuk mendapatkan kekuatan atau power statistik 80% dengan menggunakan kemaknaan (\(\alpha = 0.05\)).

Keterangan

\(N\) : besar sampel

\(z\alpha\) : karena menggunakan tingkat kemaknaan sebesar 0,05 (\(\alpha=0,05\)), dari
tabel diperoleh $z_{a} = 1,96$

$z_{\beta} :$ karena menggunakan power sebesar 80% ($\beta = 0,2$) dari tabel diperoleh $z_{\beta} = 1,282$

$r :$ besar koefisien korelasi, besar r diasumsikan = 0,5 karena besar nilai r pada hubungan antara kadar estradiol dengan ketebalan endometrium dan kualitas lendir serviks belum pernah dilaporkan sebelumnya. Nilai 0,5 berarti ada korelasi yang moderat antara kadar estradiol dengan ketebalan endometrium.

Sesuai dengan rumus di atas maka besar sampel adalah

$$N = 28,932 \approx 29 \text{ orang}$$

4.5.3 Kriteria inklusi

Yang menjadi kriteria inklusi dalam penelitian ini adalah :

- Pasangan infertilitas
- Mengikuti program bayi tabung

4.5.4 Kriteria eksklusi

- Terdapat riwayat operasi pengangkatan kedua ovarium sebelumnya
- Ukuran uterus tidak normal
4.6 Variabel Penelitian

4.6.1 Variabel bebas

Pertumbuhan folikel merupakan variabel bebas.

4.6.2 Variabel tergantung

Yang menjadi variabel tergantung pada penelitian ini adalah kadar estradiol dan kebalan endometrium.

4.6.3 Variabel pengganggu

Variabel pengganggu dalam penelitian ini adalah:
- lama pemberian induksi ovulasi
- macam obat yang digunakan dalam induksi ovulasi
- metoda yang digunakan dalam induksi ovulasi

4.7 Definisi operasional

a. Kadar estradiol adalah kadar E2 dalam darah, diperiksa saat dilakukan induksi ovulasi sesuai prosedur yang dilakukan:
 - *Long protocol*: diperiksa pada hari ke-1, 8, 10, dan 12 setelah dilakukan *down regulation*, dengan satuan pg/mL
 - *Short protocol*: diperiksa pada hari ke-1, 8, 10 dan 12 dengan satuan pg/mL.

b. Ketebalan endometrium adalah tebal endometrium berdasarkan pengukuran menggunakan alat ultrasonografi (USG) dengan transduser transvaginal, sesuai prosedur yang dilakukan:
- **Long protocol**: diperiksa pada hari ke-1, 8, 10, dan 12 setelah dilakukan *down regulation*, dengan satuan mm.

- **Short protocol**: diperiksa pada hari ke-1, 8, 10 dan 12 dengan satuan mm.

e. Diameter folikel terbesar adalah pengukuran menggunakan USG transvaginal yang dilakukan pada folikel ovarium kanan dan kiri dengan mengukur diameter terbesar. Pengukuran dilakukan pada hari ke-8, 10, dan 12 dengan satuan mm.

d. Jumlah folikel adalah jumlah folikel ovarium kanan dan kiri yang ditemukan saat dilakukan pengukuran menggunakan USG transvaginal. Pemeriksaan dilakukan pada hari ke-8, 10, dan 12.

e. Induksi ovulasi adalah upaya untuk memacu pertumbuhan dan perkembangan folikel sampai didapatkan beberapa folikel dominan dengan memakai obat-obat khusus. Dalam penelitian ini digunakan kombinasi GnRH agonis + FSH dan kombinasi Klomifen sitrat + hCG.

f. Bayi tabung (fertilisasi in vitro) adalah salah satu cara untuk mendapatkan keturunan dengan cara menempatkan hasil konsepsi yang dipertemukan di luar tubuh ibu, ke dalam kavum uteri.
4.6 Etika dan alur penelitian

Penelitian ini tidak melibatkan pasien secara langsung. Peneliti hanya mengambil data yang sudah ada dari catatan medis sehingga kerahasiaan pasien tetap terjaga.
Pasien tidak dibebani dengan biaya untuk penelitian, karena pemeriksaan yang dilakukan adalah pemeriksaan sesuai prosedur tetap pada Klinik Bersama Fertilitas, Endokrinologi dan Reproduksi RS dr. Kariadi Semarang dan RS Telogorejo.

Adapun alur penelitian adalah sebagai berikut:

```
   FIV
    ↓
  Induksi
    ↓
Pertumbuhan folikel
    ↓
  → Tebal endometrium
  → Estradiol
```
BAB V
HASIL PENELITIAN DAN PEMBAHASAN

5.1 Hasil penelitian

Dilakukan pengambilan data berdasar catatan medik siklus FIV, diperoleh informasi tentang keadaan fisik, riwayat perkawinan dan kehamilan, riwayat operasi ginekologi, hasil pemeriksaan laboratorium, dan metode induksi ovulasi.

5.1.1 Karakteristik pasien
Terdapat 30 orang yang mengikuti program FIV dengan usia saat mengikuti program FIV antara 24 tahun sampai 40 tahun. Didapatkan 1 orang (3,3%) dengan perkawinan kedua namun dengan riwayat infertilitas sekunder.

Operasi ginekologi pernah dilakukan pada 13 orang pasien (43,3%), 5 diantaranya operasi kehamilan ektopik terganggu (KET), sedangkan yang lain berupa pengambilan ovarium karena kistoma ovarii unilateral dengan ataupun tanpa diikuti pengambilan tuba, ataupun pengambilan kedua tuba karena hidrosalping dupleks. Dari 5 pasien yang pernah mengalami operasi karena KET, 2 diantaranya mengalami 2 kali KET.
Dari 7 pasien yang tidak dilakukan HSG (23,3%), 1 pasien pernah dilakukan Medis Operatif Wanita (MOW), 1 pasien pernah mengalami 2 kali KET, 2 pasien dengan riwayat salpingektomi bilateral kerena hidrosalping dupleks. Sedangkan 4 pasien lainnya tidak dilakukan uji HSG tanpa alasan yang jelas.

Sedangkan kelainan pada kedua tuba berdasarkan uji HSG didapatkan pada 3 (30%) dari 10 pasien. Sembilan pasien yang lain mengalami gangguan pada salah satu tuba.

Karakteristik pasien dapat dilihat pada tabel 1.

<table>
<thead>
<tr>
<th>Karakteristik</th>
<th>Kategori</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usia</td>
<td><30</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>31-35</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>36-40</td>
<td>14</td>
</tr>
<tr>
<td>Riwayat perkawinan</td>
<td>Pertama</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Kedua</td>
<td>1</td>
</tr>
<tr>
<td>Keadaan tuba berdasarkan HSG</td>
<td>Normal</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Non paten</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Tidak dilakukan HSG</td>
<td>7</td>
</tr>
<tr>
<td>Uji HSG non paten</td>
<td>Unilateral</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Bilateral</td>
<td>3</td>
</tr>
<tr>
<td>Riwayat operasi ginekologi</td>
<td>Pernah</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Tidak pernah</td>
<td>17</td>
</tr>
<tr>
<td>Riwayat operasi KET</td>
<td>1 kali</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2 kali</td>
<td>2</td>
</tr>
<tr>
<td>Jenis infertilitas</td>
<td>Primer</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Sekunder</td>
<td>5</td>
</tr>
</tbody>
</table>

Usia pasien peserta program FIV berkisar antara 24 sampai 40 tahun dengan rerata dan simpang baku (SB) 34,50(3,70) tahun. Sedangkan lama infertilitas pada saat mengikuti program FIV berkisar antara 2 tahun sampai 13 tahun dengan rerata dan simpang baku 7,13(3,04) tahun.
Pada pemeriksaan profil hormon sebelum dilakukan induksi ovulasi, dilakukan bervariasi antara hari ke 3 sampai ke 13. Seluruh sampel menunjukkan keadaan hormon yang sesuai dengan fase folikuler.

Tabel 2. Profil usia dan hormon

<table>
<thead>
<tr>
<th>Karakteristik</th>
<th>Kisaran</th>
<th>Rerata (SB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umur (th)</td>
<td>24 – 40</td>
<td>34,50 (3,70)</td>
</tr>
<tr>
<td>Lama infertilitas (th)</td>
<td>2 – 13</td>
<td>7,13 (3,04)</td>
</tr>
<tr>
<td>Pemeriksaan hormon terhadap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>siklus haid (hari ke)</td>
<td>3 – 13</td>
<td>7,83 (3,05)</td>
</tr>
<tr>
<td>Progesteron (ng/mL)</td>
<td>0,22 – 3,00</td>
<td>0,82 (0,80)</td>
</tr>
<tr>
<td>Estradiol (pg/mL)</td>
<td>12,68 – 1291,02</td>
<td>180,72 (281,76)</td>
</tr>
<tr>
<td>Prolaktin (ng/mL)</td>
<td>5,60 – 59,10</td>
<td>15,99 (12,19)</td>
</tr>
<tr>
<td>LH (mIU/mL)</td>
<td>1,20 – 92,25</td>
<td>14,86 (26,30)</td>
</tr>
</tbody>
</table>

Berdasar agen yang dipakai, 21 pasien menggunakan kombinasi GnRH+FSH analog dan FSH, sedangkan 9 pasien menggunakan kombinasi Klomifen Sitrat+hMG sebagai agen untuk induksi ovulasi.

5.1.2 Hasil pengamatan pada ovarium
Perkembangan folikel diamati pada ovarium kanan dan ovarium kiri pada hari ke-8, hari ke-10 dan hari ke-12. Masing masing diamati jumlah folikel yang terbentuk dan diameter folikel yang terbesar seperti terlihat pada tabel 3 dan tabel 4.

Tabel 3. Diameter folikel terbesar (mm)

<table>
<thead>
<tr>
<th></th>
<th>Kisaran</th>
<th>n</th>
<th>Rerata (SB)</th>
<th>Anova (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarium kanan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-8</td>
<td>3,0 – 20,2</td>
<td>31</td>
<td>10,83 (3,39)</td>
<td></td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-10</td>
<td>3,0 – 20,5</td>
<td>30</td>
<td>13,83 (4,66)</td>
<td>0,00</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-12</td>
<td>3,0 – 23,0</td>
<td>28</td>
<td>18,30 (5,02)</td>
<td></td>
</tr>
<tr>
<td>Ovarium kiri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-8</td>
<td>3,0 – 15,7</td>
<td>30</td>
<td>10,19 (3,61)</td>
<td>0,00</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-10</td>
<td>2,8 – 23,0</td>
<td>29</td>
<td>14,85 (3,71)</td>
<td>0,00</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-12</td>
<td>3,0 – 25,2</td>
<td>27</td>
<td>18,16 (5,28)</td>
<td></td>
</tr>
</tbody>
</table>
Didapatkan rerata diameter folikel yang menunjukkan pola perbedaan berdasarkan waktu pemeriksaan. Perbedaan rerata diameter folikel pada hari ke-8, hari ke-10, dan hari ke-12 bermakna secara statistik ($p=0,00$), artinya terdapat folikel yang bertambah besar. Hal ini menunjukkan bahwa terdapat perkembangan folikel pada fase folikuler berdasarkan diameter pada saat dilakukan pemeriksaan.

Sedangkan rerata jumlah folikel pada ovariurn kanan dan kiri ditunjukkan pada tabel 4.

<table>
<thead>
<tr>
<th>Tabel 4. Jumlah folikel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waktu pengukuran</td>
</tr>
<tr>
<td>Ovarium kanan</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-8</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-10</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-12</td>
</tr>
<tr>
<td>Ovarium kiri</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-8</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-10</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-12</td>
</tr>
</tbody>
</table>

Rerata jumlah folikel tidak menunjukkan pola perbedaan berdasar waktu pemeriksaan baik pada ovariurn kanan maupun ovariurn kiri. Perbedaan rerata jumlah folikel pada ovariurn kanan tidak bermakna secara statistik ($p=0,66$) demikian pula pada ovariurn kiri ($p=0,82$), artinya jumlah folikel pada saat pengukuran tidak bertambah.

Hal ini terjadi karena pengukuran mulai dilakukan pada hari ke-8, di mana pertumbuhan folikel dimulai pada awal siklus, sehingga tidak didapatkan pertambahan jumlah folikel saat berlangsungnya siklus menstruasi.
5.1.3 Kadar estradiol

Kadar estradiol pada hari pertama induksi ovulasi berkisar antara 9,09 pg/mL sampai 60,30 pg/mL dengan rerata dan simpang baku 28,20(12,84) pg/mL. Kadar estradiol diikuti pada hari ke-8, hari ke-10 dan hari ke-12 seperti tercantum pada tabel 5.

<table>
<thead>
<tr>
<th>Waktu pemeriksaan</th>
<th>Kisaran</th>
<th>n</th>
<th>Rerata (SB)</th>
<th>Anova (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal siklus</td>
<td>9,09 – 60,30</td>
<td>31</td>
<td>28,20 (12,84)</td>
<td></td>
</tr>
<tr>
<td>Hari ke-8</td>
<td>44,00 – 868,65</td>
<td>29</td>
<td>289,13 (212,35)</td>
<td></td>
</tr>
<tr>
<td>Hari ke-10</td>
<td>58,62 – 1826,21</td>
<td>29</td>
<td>790,24 (439,61)</td>
<td>0,00</td>
</tr>
<tr>
<td>Hari ke-12</td>
<td>244,29 – 3632,28</td>
<td>28</td>
<td>1427,80 (774,78)</td>
<td></td>
</tr>
</tbody>
</table>

Rerata kadar estradiol pada masing-masing saat pengukuran menunjukkan perbedaan berdasarkan waktu pemeriksaan. Dilakukan uji statistik untuk mengetahui perbedaan rerata kadar estradiol pada hari ke-8, hari ke-10, dan hari ke-12. Perbedaan tersebut bermakna secara statistik (p=0,00). Berarti kadar estradiol makin meningkat sejalan dengan saat pemeriksaan.

Hal ini sejalan dengan pola yang terjadi pada pengukuran diameter folikel.

5.1.4 Lendir serviks

Tabel 6. Kualitas lendir serviks

<table>
<thead>
<tr>
<th>Saat pemeriksaan (hari ke)</th>
<th>Kisaran</th>
<th>n</th>
<th>Rerata (SB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 – 14</td>
<td>14</td>
<td>11,46 (2,18)</td>
</tr>
<tr>
<td>Skore kualitas</td>
<td>3 – 12</td>
<td>14</td>
<td>7,23 (3,44)</td>
</tr>
</tbody>
</table>

Didapatkan rerata hari saat pemeriksaan dan simpang baku adalah hari ke 11,46(2,18) Sedangkan skore kualitas lendir serviks berkisar antara 3 sampai 12 dengan rerata kualitas lendir serviks dan simpang baku sebesar 7,23(3,44). Pemeriksaan ini dilakukan untuk memahami perubahan lendir serviks akibat pengaruh estogen yang meningkat menjelang ovulasi. Secara deskriptif didapatkan pola perubahan skore kualitas lendir serviks berdasarkan hari pemeriksaan seperti terlihat pada gambar 8.

Hal ini menunjukkan bahwa kualitas lendir serviks semakin baik menjelang ovulasi berdasar waktu pemeriksaan, meskipun diperiksa sebelum dilakukan induksi ovulasi.

Gambar 8. Pola perubahan skore kualitas lendir serviks
5.1.5 Endometrium

Tebal endometrium pada hari pertama induksi ovulasi berkisar antara 2,3 mm sampai 7,0 mm dengan rerata dan simpang baku 5,09(1,06) mm. Ketebalan endometrium ini diukur pada hari ke-8, hari ke-10 dan hari ke-12 dengan hasil seperti tercantum dalam tabel 7.

Tabel 7. Ketebalan endometrium (mm)

<table>
<thead>
<tr>
<th>Waktu pemeriksaan</th>
<th>Kisaran</th>
<th>N</th>
<th>Rerata (SB)</th>
<th>Anova (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal siklus</td>
<td>2,3–7,1</td>
<td>31</td>
<td>5,09 (1,06)</td>
<td></td>
</tr>
<tr>
<td>Hari ke-8</td>
<td>4,0–9,8</td>
<td>30</td>
<td>7,02 (1,26)</td>
<td></td>
</tr>
<tr>
<td>Hari ke-10</td>
<td>4,0–12,0</td>
<td>29</td>
<td>8,25 (1,52)</td>
<td>0,00</td>
</tr>
<tr>
<td>Hari ke-12</td>
<td>7,9–14,0</td>
<td>28</td>
<td>9,83 (1,53)</td>
<td></td>
</tr>
</tbody>
</table>

Terdapat perbedaan rerata tebal endometrium pada masing-masing waktu pemeriksaan, seperti pola perbedaan rerata diameter folikel dan rerata kadar estradiol. Dilakukan analisis statistik terhadap perbedaan rerata tebal endometrium pada hari ke-8, hari ke-10, dan hari ke-12. Perbedaan rerata tebal endometrium tersebut bermakna secara statistik (p=0,00). Hal ini berarti endometrium semakin tebal sejalan dengan waktu pemeriksaan.

5.2 Induksi ovulasi dengan kombinasi GnRH+FSH dan Klomifen sitrat+hMG

Dilakukan pemisahan data pada pasien yang memperoleh agen yang berbeda dalam induksi ovulasi yaitu 21 siklus yang menggunakan GnRH+FSH dan 9 pasien yang menggunakan Klomifen sitrat+hMG. Didapatkan karakteristik dan hasil masing-masing seperti tercantum dalam tabel 8 dan 9.
Tabel 8. Karakteristik dan hasil induksi ovulasi pada pasien yang menggunakan GnRH+FSH

<table>
<thead>
<tr>
<th></th>
<th>Kisaran</th>
<th>n</th>
<th>Rerata (SB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umur (th)</td>
<td>29 - 40</td>
<td>21</td>
<td>34,71 (3,41)</td>
</tr>
<tr>
<td>Lama infertilitas (th)</td>
<td>2 - 13</td>
<td>21</td>
<td>7,52 (3,17)</td>
</tr>
<tr>
<td>Kadar estradiol awal siklus (pg/mL)</td>
<td>9,09 - 60,30</td>
<td>22</td>
<td>26,42 (13,61)</td>
</tr>
<tr>
<td>Tebal endometrium awal siklus (mm)</td>
<td>2,3 - 7,0</td>
<td>22</td>
<td>4,84 (1,08)</td>
</tr>
<tr>
<td>Ovarium kanan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-8 (mm)</td>
<td>3,0 - 20,2</td>
<td>22</td>
<td>10,38 (3,77)</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-10 (mm)</td>
<td>3,0 - 20,5</td>
<td>21</td>
<td>13,68 (5,32)</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-12 (mm)</td>
<td>3,0 - 23,0</td>
<td>19</td>
<td>18,16 (5,93)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-8</td>
<td>1 - 8</td>
<td>22</td>
<td>3,73 (1,88)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-10</td>
<td>1 - 8</td>
<td>21</td>
<td>3,81 (1,75)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-12</td>
<td>1 - 6</td>
<td>19</td>
<td>3,16 (1,54)</td>
</tr>
<tr>
<td>Ovarium kiri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-8 (mm)</td>
<td>3,0 - 15,7</td>
<td>21</td>
<td>9,80 (3,88)</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-10 (mm)</td>
<td>7,8 - 23,0</td>
<td>20</td>
<td>14,94 (3,63)</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-12 (mm)</td>
<td>3,0 - 25,2</td>
<td>18</td>
<td>17,77 (5,52)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-8</td>
<td>1 - 8</td>
<td>21</td>
<td>3,43 (1,91)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-10</td>
<td>1 - 8</td>
<td>20</td>
<td>3,15 (1,73)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-12</td>
<td>1 - 5</td>
<td>18</td>
<td>2,94 (1,39)</td>
</tr>
<tr>
<td>Estradiol hari ke-8 (pg/mL)</td>
<td>44,00 - 868,65</td>
<td>20</td>
<td>228,81 (195,09)</td>
</tr>
<tr>
<td>Estradiol hari ke-10 (pg/mL)</td>
<td>58,62 - 1826,21</td>
<td>20</td>
<td>664,17 (431,97)</td>
</tr>
<tr>
<td>Estradiol hari ke-12 (pg/mL)</td>
<td>244,29 - 3632,28</td>
<td>19</td>
<td>1253,69 (833,78)</td>
</tr>
<tr>
<td>Tebal endometrium hari ke-8 (mm)</td>
<td>4,0 - 9,8</td>
<td>22</td>
<td>7,09 (1,28)</td>
</tr>
<tr>
<td>Tebal endometrium hari ke-10 (mm)</td>
<td>4,0 - 12,0</td>
<td>21</td>
<td>8,49 (1,59)</td>
</tr>
<tr>
<td>Tebal endometrium hari ke-12 (mm)</td>
<td>7,0 - 14,0</td>
<td>20</td>
<td>10,02 (1,61)</td>
</tr>
</tbody>
</table>

Pada pasien yang mendapat induksi ovulasi dengan GnRH+FSH dilakukan pemeriksaan pada hari ke-8, hari ke-10, dan hari ke-12. Didapatkan pola perbedaan rerata dan simpang baku dalam hal diameter folikel terbesar (pada ovarium kanan : 10,38(3,77) - 13,68(5,32) - 18,16(5,93), pada ovarium kiri : 9,80(3,88) - 14,94(3,63) - 17,77(5,52)), kadar estradiol (228,81 (195,09) - 664,17 (431,97) - 1253,69(833,78)), dan tebal endometrium (7,09(1,28) - 8,49(1,59) - 10,02(1,61)). Pola perbedaan ini tidak jauh berbeda bila dibandingkan dengan pola perbedaan hasil induksi secara umum seperti telah dikemukakan terdahulu.

Sedangkan pengamatan terhadap siklus yang mendapat induksi ovulasi dengan Klomifen Sitrat+hMG dapat dilihat pada tabel 9. Terdapat 9 siklus yang dilakukan...
induksi ovulasi dengan Klomifen Sitrat+hMG. Perbedaan pelaksanaan dengan penggunaan GnRH+FSH adalah pada proses down regulation. Induksi ovulasi dengan Klomifen Sitrat+hMG tidak melalui proses down regulation terlebih dahulu.

Tabel 9. Karakteristik dan hasil induksi ovulasi pada pasien yang menggunakan Klomifen Sitrat+hMG

<table>
<thead>
<tr>
<th></th>
<th>Kisaran</th>
<th>n</th>
<th>Rerata (SB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umur (th)</td>
<td>24 – 41</td>
<td>9</td>
<td>34,00 (4,50)</td>
</tr>
<tr>
<td>Lama infertilitas (th)</td>
<td>2 – 10</td>
<td>9</td>
<td>6,22 (2,64)</td>
</tr>
<tr>
<td>Kadar estradiol awal (pg/mL)</td>
<td>15,70 – 48,24</td>
<td>9</td>
<td>32,56 (10,08)</td>
</tr>
<tr>
<td>Tebal endometrium awal (mm)</td>
<td>4,5 – 7,0</td>
<td>9</td>
<td>5,77 (0,76)</td>
</tr>
<tr>
<td>Ovarium kanan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-8 (mm)</td>
<td>10,0 – 15,0</td>
<td>9</td>
<td>11,94 (2,01)</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-10 (mm)</td>
<td>10,0 – 18,0</td>
<td>9</td>
<td>14,28 (2,76)</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-12 (mm)</td>
<td>14,0 – 21,0</td>
<td>9</td>
<td>18,61 (2,38)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-8</td>
<td>2 – 6</td>
<td>9</td>
<td>3,67 (1,32)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-10</td>
<td>2 – 6</td>
<td>9</td>
<td>3,89 (1,05)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-12</td>
<td>3 – 6</td>
<td>9</td>
<td>4,11 (0,93)</td>
</tr>
<tr>
<td>Ovarium kiri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-8 (mm)</td>
<td>6,5 – 14,5</td>
<td>9</td>
<td>11,11 (2,89)</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-10 (mm)</td>
<td>8,8 – 20,0</td>
<td>9</td>
<td>14,64 (4,11)</td>
</tr>
<tr>
<td>Diameter folikel terbesar hari ke-12 (mm)</td>
<td>9,5 – 25,0</td>
<td>9</td>
<td>18,93 (4,84)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-8</td>
<td>1 – 6</td>
<td>9</td>
<td>3,67 (1,66)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-10</td>
<td>1 – 6</td>
<td>9</td>
<td>3,67 (1,80)</td>
</tr>
<tr>
<td>Jumlah folikel hari ke-12</td>
<td>1 – 6</td>
<td>9</td>
<td>3,78 (1,72)</td>
</tr>
<tr>
<td>Estradiol hari ke-8 (pg/mL)</td>
<td>154,53 – 836,08</td>
<td>9</td>
<td>423,17 (195,24)</td>
</tr>
<tr>
<td>Estradiol hari ke-10 (pg/mL)</td>
<td>399,74 – 1530,93</td>
<td>9</td>
<td>1070,39 (324,35)</td>
</tr>
<tr>
<td>Estradiol hari ke-12 (pg/mL)</td>
<td>749,18 – 2764,35</td>
<td>9</td>
<td>1795,37 (487,62)</td>
</tr>
<tr>
<td>Tebal endometrium hari ke-8 (mm)</td>
<td>5,0 – 9,0</td>
<td>9</td>
<td>6,81 (1,25)</td>
</tr>
<tr>
<td>Tebal endometrium hari ke-10 (mm)</td>
<td>6,0 – 10,0</td>
<td>9</td>
<td>7,63 (1,19)</td>
</tr>
<tr>
<td>Tebal endometrium hari ke-12 (mm)</td>
<td>8,0 – 12,0</td>
<td>9</td>
<td>9,33 (1,28)</td>
</tr>
</tbody>
</table>

Didapatkan hal yang sama dengan induksi dengan GnRH+FSH, dalam pola perbedaan rerata dan simpang baku perubahan diameter terbesar folikel (pada ovarium kanan : 11,94(2,01) – 14,28(2,76) – 18,61(2,38), pada ovarium kiri : 11,11(2,89) – 14,64(4,11) – 18,93(4,84), kadar estradiol (423,17(195,24) – 1070,39(324,35) – 1795,37(487,62)), dan tebal endometrium (6,81(1,25) – 7,63(1,19) – 9,33(1,28)) pada pemeriksaan hari ke-8, hari ke-10, dan hari ke-12.
Dilakukan uji analisis untuk mencari perbedaan antara pemakaian GnRH+FSH dan Klomifen Sitrat+hMG untuk induksi ovulasi terhadap pencapaian hasil pada saat dilakukan pengukuran. Didapatkan hasil seperti yang tercantum dalam tabel 10.

Uji *t-test* dilakukan dalam hal rerata jumlah folikel, rerata diameter folikel terbesar, rerata kadar estradiol, dan rerata tebal endometrium pada induksi ovulasi dengan GnRH+FSH dan Klomifen Sitrat+hMG berdasar waktu pemeriksaan sesuai hasil yang terdapat pada tebel 8 dan tabel 9.

| Tabel 10. Perbedaan penggunaan GnRH+FSH dan Klomifen Sitrat+hMG |
|-----------------------|---------------------|---------------------|---------------------|
| | Hari ke-8 | Hari ke-10 | Hari ke-12 |
| | *t*-test | *t*-test | *t*-test |
| Kadar Estradiol | 0,953 | 0,020 | 0,018 | 0,278 | 0,084 |
| Tebal endometrium | 0,863 | 0,599 | 0,530 | 0,130 | 0,608 | 0,244 |
| Jumlah folikel | 0,351 | 0,901 | 0,532 | 0,481 | 0,274 | 0,071 |
| Diameter folikel | 0,471 | 0,459 | 0,926 | 0,619 | 0,244 | 0,389 |

Terdapat perbedaan bermakna secara statistik dalam hal kadar estradiol pada hari ke-8 dan hari ke-10. Perbedaan rerata kadar estradiol pada induksi ovulasi dengan GnRH+FSH menunjukkan hasil yang berbeda dengan hasil pada induksi ovulasi dengan Klomifen Sitrat+hMG pada hari ke-8 (\(p=0,020\)) dan rerata kadar estradiol pada hari ke-10 (\(p=0,018\)). Rerata kadar estradiol pada induksi ovulasi dengan GnRH+FSH pada hari ke-8 dan hari ke-10 lebih rendah dari rerata kadar estradiol pada induksi ovulasi dengan Klomifen Sitrat+hMG.

Pada hari ke-12, rerata kadar estradiol pada penggunaan GnRH+FSH tidak menunjukkan perbedaan bermakna secara statistik dengan hasil yang dicapai pada penggunaan Klomifen Sitrat+hMG. Hal ini berarti kadar estradiol pada hari ke-12 induksi ovulasi dengan GnRH+FSH dan Klomifen Sitrat+hMG mencapai tingkat yang sama.
Sedangkan rerata jumlah folikel, rerata diameter folikel terbesar dan rerata tebal endometrium menunjukkan perbedaan yang tidak bermakna secara statistik. Hal ini berarti hasil yang dicapai pada penggunaan GnRH+FSH dan Klomifen Sitrat+hMG adalah sama.

5.3 Korelasi antara pertumbuhan folikel, kadar estradiol, dan tebal endometrium

Untuk mengetahui korelasi antara tiap komponen hasil induksi ovulasi dilakukan uji korelasi (Pearson Correlations Test). Didapatkan hasil seperti tercantum pada tabel 11.

Pada hari ke-10 terdapat korelasi positif derajat sedang antara kadar estradiol dan jumlah folikel ($r=0,544$) dengan $p=0,002$. Pada hari ke-12 masih terdapat korelasi positif derajat sedang ($r=0,467$) antara jumlah folikel dengan kadar estradiol ($p=0,012$), di samping itu juga terdapat korelasi positif derajat lemah ($p=0,220$) antara kadar estradiol dengan tebal endometrium ($p=0,027$).

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar estradiol awal – tebal endometrium awal</td>
<td>0,499</td>
<td>0,004</td>
</tr>
<tr>
<td>Hari ke-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumlah folikel – kadar estradiol</td>
<td>0,127</td>
<td>0,512</td>
</tr>
<tr>
<td>Diameter terbesar – kadar estradiol</td>
<td>0,141</td>
<td>0,465</td>
</tr>
<tr>
<td>Kadar estradiol – tebal endometrium</td>
<td>0,075</td>
<td>0,703</td>
</tr>
<tr>
<td>Hari ke-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumlah folikel – kadar estradiol</td>
<td>0,544</td>
<td>0,002</td>
</tr>
<tr>
<td>Diameter terbesar – kadar estradiol</td>
<td>0,033</td>
<td>0,867</td>
</tr>
<tr>
<td>Kadar estradiol – tebal endometrium</td>
<td>0,048</td>
<td>0,809</td>
</tr>
<tr>
<td>Hari ke-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumlah folikel – kadar estradiol</td>
<td>0,467</td>
<td>0,012</td>
</tr>
<tr>
<td>Diameter terbesar – kadar estradiol</td>
<td>0,160</td>
<td>0,467</td>
</tr>
<tr>
<td>Kadar estradiol – tebal endometrium</td>
<td>0,220</td>
<td>0,027</td>
</tr>
</tbody>
</table>

$r = 0,00$ s/d $0,30$: korelasi tidak kuat

$r = 0,31$ s/d $0,60$: korelasi sedang

$r = 0,61$ s/d $1,00$: korelasi kuat

Hal ini berarti bahwa pembentukan estradiol berkorelasi dengan jumlah folikel pada hari ke-10 dan hari ke-12. Adapun kadar estradiol berkorelasi dengan tebal

Di ovarium, produksi estrogen terjadi karena proses aromatisasi steroid oleh sel granulosa, sehingga makin banyak folikel yang terbentuk, produksi estrogen juga meningkat. Kadar estrogen tersebut dinilai dari banyaknya kadar estradiol dalam sirkulasi perifer.

Adapun diameter folikel tidak berkorelasi dengan kadar estradiol, karena folikel ovarium tidak memproduksi estrogen.

Gambar 9. Grafik korelasi jumlah folikel dan kadar estradiol hari ke-10
Gambar 10. Grafik korelasi jumlah folikel dan kadar estradiol hari ke-12

Gambar 11. Grafik korelasi kadar estradiol dengan tebal endometrium hari ke-12
5.4 Pembahasan

Secara deskriptif terdapat perbedaan nilai rerata diameter terbesar folikel, kadar estradiol dan tebal endometrium berdasarkan waktu pemeriksaan. Perubahan yang terjadi saat pemeriksaan menunjukkan rerata yang cenderung meningkat.

Proses perkembangan folikel (folikulogenesis) pada siklus menstruasi normal melalui tiga tahap yaitu rekrutmen (recruitment), seleksi (selection), dan dominasi (dominance). Tahapan-tahapan tersebut dipengaruhi oleh kadar hormon FSH.

Proses folikulogenesis terjadi di korteks ovarium. FSH memainkan peranan penting dalam mekanisme seleksi dan perkembangan folikel dominan dengan mekanisme utama adalah menstrimulasi reseptor FSH dalam sel granulosa. FSH mengatur aktivitas
diferensiasi gen dalam sel granulosa. Hal ini merupakan dasar proses pembentukan folikel dominan dan perkembangannya menuju tahap preovulasi.

FSH berinteraksi dengan reseptor protein. Ikatan ini ditransduksi dalam sinyal intraseluler melalui proteïn G. Aktifitas interaksi protein G ini (\(aG_{stimulating} / aG_{s-GTP}\)) dengan adenilat siklase mengawali pembentukan cAMP. CAMP berikatan dengan protein kinase A (PKA) menyebabkan stimulasi transkripsi gen (P450-AROM) bersama reseptor LH dalam proses mitosis dan pembentukan cairan folikel\(^5\).

Gambar 12. Hasil pengamatan pertumbuhan folikel hari ke-10 pada salah satu pasien.

Lapisan endometrium menjadi lebih tebal karena terjadi proliferasi sel-sel endometrium karena pengaruh hormon estrogen. Dengan meningkatnya kadar estrogen, proliferasi sel endometrium bertambah, sehingga lapisan endometrium menebal.
Pada penelitian ini juga didapatkan korelasi antara jumlah folikel dan kadar estradiol yang menunjukkan semakin banyak jumlah folikel, semakin tinggi kadar estradiol yang terbentuk. Demikian pula terdapat korelasi antara kadar estaradiol dan tebal endometrium yang menunjukkan semakin tinggi kadar estradiol, maka endometrium semakin tebal.

Selama perkembangan folikel dominan ditandai tingkat proliferasi sel granulosa yang tinggi. Sejalan dengan pertumbuhan folikel dominan, sel granulosa sangat dibutuhkan untuk memproduksi estradiol dalam jumlah besar. FSH menginduksi P450-AROM yang mengakibatkan terjadinya akusisi estrogen dalam folikel. P450-AROM ini membuat sel theca interstitial mengkonversi androgen menjadi estradiol.

Peningkatan progresif kadar P450-AROM ini memungkinkan folikel dominan seakan-akan mensekresi estrogen dalam jumlah banyak pada hari ke-7 sampai 12 siklus menstruasi.

Perkembangan rongga folikel antral menyebabkan pertumbuhan sel granulosa di sekitar oosit dan sel-sel pada perbatasan membrana basalis. Folikel dengan diameter > 8 mm pada pertengahan dan akhir fase folikuler mengandung estradiol yang sangat tinggi. Namun demikian, produksi estradiol semata-mata dihasilkan oleh sel granulosa51.

sirkulasi yang kadarnya meningkat saat fase folikuler, menjadikan aktifitas pada endometrium meningkat, sehingga dicapai penambahan tebal endometrium\(^{32}\).

Gambar 13. Hasil pengukuran tebal endometrium hari ke-12 pada salah satu pasien.
BAB VI

SIMPULAN DAN SARAN

6.1 Simpulan

Peningkatan diameter terbesar folikel, kadar estradiol dan tebal endometrium berdasarkan waktu pemeriksaan menunjukkan folikel bertambah besar, kadar estradiol meningkat, dan endometrium bertambah tebal.

Semakin banyak jumlah folikel, semakin tinggi kadar estradiol yang terbentuk. Semakin tinggi kadar estradiol, maka endometrium semakin tebal.

Estradiol dalam sirkulasi perifer memacu pertumbuhan sel endometrium sehingga mengakibatkan peningkatan tebal endometrium. Tebalnya endometrium ini diharapkan dapat meningkatkan angka kehamilan dan implantasi.

Pada penelitian ini, analisis terhadap kualitas lendir serviks tidak dapat dilakukan, karena tidak didapatkan data pemeriksaan lendir serviks selama proses induksi ovulasi.
6.2 Saran

Pada penelitian ini lendir serviks saat dilakukan induksi ovulasi tidak diperiksa, karena belum merupakan prosedur tetap pada Klinik Infertilitas FK Undip-RSDK-RS Telogorejo. Pemeriksaan tersebut perlu dilakukan karena lendir serviks dapat menjadi salah satu petunjuk respon terhadap peningkatan kadar estradiol.

Dalam memproduksi estradiol, ovarium sangat dipengaruhi oleh FSH. Kadar FSH dapat diperiksa sejalan dengan pemantauan terhadap estradiol.

DAFTAR PUSTAKA

11. Sumapraja S, Soebijanto S, Hadisaputra W. Pengelolaan Infertilitas dasar. KINI
 ; Jakarta, 1994
12. Speroff L, Glass RH, Kase NG. Female Infertility. Dalam : Clinical
 Gynecologic Endocrinology and Infertility 5th Ed. Williams & Wilkins, 1994:
 p 809-40
13. Basir GS et al. Morphometric analysis of peri-implantation endometrium in
 patients having excessively high oestradiol concentrations after ovarian
 stimulation. Human Reproduction, 2000 ; 16 (3) : 435-40
14. Palter SF, Olive DL. Reproductive Physiology. Dalam : Berek JS, Adashi EY,
 Hillard PA, editors. Novak’s Gynecology 12th Ed. Maryland ; Williams &
 Wilkins, 1996 : p 149-74
15. Child TJ, Sylvestre C, Tan SL. Endometrial volume and thickness
 measurements predict pituitary suppression and non-suppression during IVF.
 WB Saunders ; Philadelphia, 1988 : 569 – 91
17. Ijland MM, Evers JLH, Dunselman GA, Hoogland HJ. Endometrial wavelike
 activity, endometrial thickness, and ultrasound texture in controlled ovarian
 hyperstimulation cycles. Fertility and Sterility, 1998 ; 70 (2) : 279-84
18. Oliveira JBA, Baruffi RLR, Mauri AL. Endometrial ultrasasonography as a
 predictor of pregnancy in a in-vitro fertilization programme after ovarian
 stimulation and gonadotrophin-releasing hormone and gonadotrophins. Human
 Reproduction, 1997 ; 12 (11) : 2512-8
19. Kupesic S, Kurjak A. Predictors of IVF outcome by three-dimensional
 appear to be a significant factor in embryo implantation in in-vitro fertilization.
 Human Reproduction, 1995 ; 10 : 919-22

23. Yong PYK, Baird DT, Thong KJ, Neilly AS, Anderson AA. Prospective analysis of the relationships between the ovarian follicle cohort and basal FSH concentration, the inhibin response to exogenous FSH and ovarian follicle number at different stages of normal menstrual cycle and after pituitary down-regulation. Human Reproduction, 2003 ; 12 (1) : 35-44

28. Adonakis, et al. Luteinizing hormone increases estradiol secretion but has no effect on progesterone concentration in the late follicular phase of in vitro fertilization cycles in woman treated with gonadotropin-releasing hormone agonist and follicle stimulating hormone. Feritility and Sterility, 1988 ; 93 (3) : 450-3

37. Teissier MP, Chable H, Paulhac S, Aubard Y. Recombinant human follicle stimulating hormone versus human menopausal gonadotrophin induction:
effects in mature follicle endocrinology. Human Reproduction, 1999; 14 (9): 2236-41

40. Hohmann FP, Macklon NS, Fauser BCJ. A randomized comparison of two ovarian stimulation protocols with gonadotropin-releasing hormone (GnRH) antagonist cotreatment in in vitro fertilization commencing recombinant follicle-stimulating hormone on cycle day 2 or 5 with the standard long GnRH agonist protocol. The Journal of Clinical Endocrinology & Metabolism, 2003; 88 (1): 166-73

