

Chemical Engineering Journal 106 (2005) 213-227

www.elsevier.com/locate/cej

A hybrid numerical approach for multi-responses optimization of process parameters and catalyst compositions in CO₂ OCM process over CaO-MnO/CeO₂ catalyst

Istadi¹, Nor Aishah Saidina Amin*

Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, UTM Skudai, Johor Bahru 81310, Malaysia

Received 21 July 2004; received in revised form 24 November 2004; accepted 2 December 2004

Abstract

A new hybrid numerical approach, using Weighted Sum of Squared Objective Functions (WSSOF) algorithm, was developed for multi-responses optimization of carbon dioxide oxidative coupling of methane (CO₂ OCM). The optimization was aimed to obtain optimal process parameters and catalyst compositions with high catalytic performances. The hybrid numerical approach combined the single-response modeling and optimization using Response Surface Methodology (RSM) and WSSOF technique of multi-responses optimization. The hybrid algorithm resulted in Pareto-optimal solutions and an additional criterion was proposed over the solutions to obtain a final unique optimal solution. The simultaneous maximum responses of C₂ selectivity and yield were obtained at the corresponding optimal independent variables. The results of the multi-response optimization could be used to facilitate in recommending the suitable operating conditions and catalyst compositions for the CO₂ OCM process.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Weighted Sum of Squared Objective Functions; CO2 OCM process; Multi-responses optimization; Pareto-optimal solutions

1. Introduction

The high $\rm CO_2/CH_4$ ratio in Natuna's natural gas compositions, comprising of up to 71% carbon dioxide and 28% methane [1], should be strategically utilized for the production of higher hydrocarbons, liquid fuels and other important chemicals. Recently, the conversion of methane to $\rm C_2$ hydrocarbons (ethane and ethylene) using carbon dioxide as an oxidant (carbon dioxide oxidative coupling of methane (CO₂ OCM)) has received considerable attention [2–9]. Eqs. (1) and (2) are the two main $\rm CO_2$ OCM reaction schemes to produce $\rm C_2$ hydrocarbons, while carbon monoxide and water are

$$2CH_4 + CO_2 \rightleftharpoons C_2H_6 + CO + H_2O$$

$$\Delta H_{298}^{\circ} = +106 \text{ kJ/mol}$$
(1)

$$2CH_4 + 2CO_2 \rightleftharpoons C_2H_4 + 2CO + 2H_2O$$

 $\Delta H_{298}^{\circ} = +284 \text{ kJ/mol}$ (2)

Catalyst screening of CeO₂-based catalysts for CO₂ OCM process over binary and ternary metal oxides [9] determined that the 15 wt.% CaO-5 wt.% MnO/CeO₂ catalyst as the most potential. Interestingly, the stability test showed that the 15 wt.% CaO-5 wt.% MnO/CeO₂ catalyst was stable with no obvious coking during 20 h of reaction time on stream. However, the process parameters and the catalyst compositions of the CO₂ OCM process have not been optimized.

the by-products.

^{*} Corresponding author. Tel.: +607 5535588; fax: +607 5581463. E-mail address: r-naishah@utm.my (N.A.S. Amin).

¹ Present address: Department of Chemical Engineering, Diponegoro University, Semarang 50239, Indonesia.